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Abstract 
The Intelligent Payload Experiment (IPEX) is a 

cubesat that successfully launched in December 2013 
and is currently flight validating autonomous operations 
for onboard instrument processing and product 
generation for the Intelligent Payload Module (IPM) of 
the Hyperspectral Infra-red Imager (HyspIRI) mission 
concept.   

We first describe the ground and flight operations 
concept for HyspIRI IPM operations.  We then describe 
the ground and flight operations concept for the IPEX 
mission and IPEX operations are validating the proposed  
HyspIRI IPM operations.  We then detail the current 
status of the IPEX mission and results from the mission 
thus far. 

1 Introduction 

Future space missions will produce immense 
amounts of data.  A single image from the HiRise 
camera on the Mars Reconnaissance Orbiter (MRO) 
spacecraft is 16.4 Gigabits (uncompressed).  The 
HyspIRI mission concept under study [HyspIRI] 
proposes to have two instruments - the HyspIRI thermal 
infrared imager (TIR) projected to produce 1.2 million 
pixels per second with 8 spectral bands at 4 and 7.5-12 
microns per pixel and the HyspIRI visible shortwave 
infrared (VSWIR) projected to produce 300 thousand 
pixels per second with 220 spectral bands per pixel in the 
0.4-2.5 micron range.  Keeping up with these data rates 
would require efficient algorithms, streamlined data 
flows and careful systems engineering. 

The HyspIRI mission concept baselines using Direct 
Broadcast technology [GSFC] to rapidly deliver this data 
to application users on the ground.  However, in order 

to leverage the existing DB network, this downlink path 
is limited to approximately 10 million bits per second.  
The Intelligent Payload Module (IPM) concept for the 
proposed HyspIRI mission is an onboard processing 
system intended to intelligently decide which data to 
downlink when, in order to maximize the utility of the 
DB system. 

The HypsIRI IPM concept would involve both 
ground and flight automation (See Figure 0).  On the 
ground, users would use Google Earth ™ to specify 
geographical and seasonal areas of interest.  These 
requests would be automatically combined with 
predicted overflights to develop a schedule for onboard 
product generation and downlink [Chien et al. 2009].  
Additionally onboard the spacecraft, the instrument data 
would be analyzed to search for specific event or feature 
signatures such as a forest fire, volcanic eruption, or 
algal bloom.  These detected signatures could generate 
alerts or products that would be merged on a priority 
basis to drive spacecraft operations. 

2 IPEX Cubesat Overview 

IPEX is a 1 unit (1U) cubesat (Figure 1) [Chien et al. 
2012] to flight validate technologies for onboard 
instrument processing and autonomous operations for 
NASA’s Earth Science Technologies Office (ESTO).   

As a 1U cubesat, IPEX is approximately 10cm x 
10cm x 10cm.  To support the IPEX primary flight 
software, IPEX carries a 400MHz Atmel ARM9 CPU 
(no hardware floating point) with 128MB RAM, 512MB 
flash memory, a 16 GB Micro SD card, and utilizes the 
Linux operating system.  All six sides of the IPEX 
spacecraft have solar panels for electrical power 
generation providing 1-1.5W power generation when not 



in eclipse.  The IPEX spacecraft uses passive magnetic 
attitude control to stabilize the CubeSat in low earth orbit.  
The spacecraft carries several batteries to enable 
operations in eclipse and continuous processing modes.  
IPEX carries five Omnivision OV3642 cameras, each 
producing images at 2048 x 1536 pixel resolution, 3 
megapixels in size, with a finest instantaneous field of 
view of 0.024 degrees.  With the IPEX orbit these 
cameras enable approximately 200m/pixel imagery of 
the Earth’s surface at nadir.  

IPEX also carries a Gumstix Earth Storm 
computer-on-module [Gumstix 2013] which includes an 
800 MHz ARM processor, 512MB RAM, 512 MB 
NAND flash, utilizing the Linux operating system. The 
Gumstix utilizes less than 1W power and is on the 
majority of the time. 

3 IPEX Ground and Flight Operations 

IPEX demonstrates automated ground and flight 
operations of onboard autonomous processing of 
instrument data.  In order to achieve this end, a range of 
capabilities and software are required. 

3.1 IPEX Ground Mission Planning  
The ground mission planning software for IPEX uses 

the CLASP [Knight & Hu 2009, Rabideau et al. 2010, 
Knight et al. 2012] planning system to determine the 
processing and downlink requests based on the projected 
overflight of the spacecraft.   

These requests are then handled in a priority-based 
fashion by the ASPEN [Rabideau et al. 1999] system to 

generate a baseline schedule for several days operations 
as a forward looking baseline schedule.  ASPEN must 
manage the ground contact schedule, eclipse schedule, 
observation activities, and onboard image processing 
activities.  The onboard image processing activities 
involve a range of constraints including CPU usage, 
RAM usage, and downlink product size.  The primary 
activities of image-acquisition and image-processing can 
also require significant data storage resources based on 
when the image is acquired versus when the Gumstix is 
powered on (thermal & power constrained) to process 
the image. 

3.2 IPEX Onboard Planning  
Onboard the spacecraft, the CASPER [Chien et al. 

2000] planner manages spacecraft resources.  CASPER 
models all of the same resources and constraints as 
ASPEN and modifies IPEX operations in response to 
deviations from the ground predicted plan such as: using 
more or less power than expected, activities taking 
longer or shorter than expected, or image products being 
larger or smaller than expected.  CASPER also 
responds to onboard analysis of instrument data such as 
detection of features or events in imagery.  Onboard 
processing is used to detect data of little value (e.g. 
images of dark space) early in processing activity.  This 
analysis saves processing time, data-storage, and energy 
that would have been spent processing these less 
interesting images.  In response, CASPER can schedule 
follow-on acquisitions from event or feature detection, or 
previously unscheduled lower priority data acquisition 
goals.   

 The CASPER model for IPEX represents a 
number of software processing workflows and a number 



of operations constraints.   

The basic processing flow of the IPEX spacecraft is 
as follows. 

1. Acquire imagery with a camera (ideally of a 
ground specified target area) 

2. Process the image with a preliminary 
assessment which scores the image as likely of 
the Earth 

3. Process the image on the Atmel processor with 
a range of selected image processing algorithms 

4. Process the image on the Gumstix processor 
with a range of selected onboard algorithms. 

5. Compare the generated products to determine if 
the products vary. 

Additionally, at each earth contact, the spacecraft 
performs a number of actions. 

1. Downlink engineering telemetry since the last 
ground contact 

2. Downlink statistics on onboard processing 
(images acquired, images processed, runtimes, 
comparison results). 

3. Downlink a small subset of the images and/or 
products for ground validation 

The CASPER model for IPEX contains a number of 
resources including: the communications system, power, 
battery state of charge (energy), several data stores 
(Atmel SD flash, Gumstix flash, Gumstix SD flash), 
Atmel and Gumstix CPU resources, and camera 
resources. 

The CASPER IPEX model also contains a number of 
activities including power generation (via solar panels), 
acquiring images, processing images using various 
algorithms, conversion of image formats, ground 
contacts, cleaning up file systems, solar view, eclipse, 
and activities pertaining to downlink. 

CASPER onboard generally schedules 
ground-requested imaging, and onboard generated 
imaging requests and associated image processing along 
with each set of images acquired.  CASPER onboard 

receives imaging time windows within which IPEX is 
allowed to image and process.  This is to account for 
the constraint that when the IPEX payload board is 
powered (e.g. camera or gumstix usage) noise from this 
card reduces the ability of IPEX to receive uplinked 
signals. 

With real-time telemetry updates from the system, 
CASPER can also take corrective actions when there are 
observed deviations and conflicts from the in-memory 
projections.  For example, if the battery state-of-charge 
(SOC) reaches a critically low level, CASPER will 
periodically self issue windows of 
no-gumstix-processing, extending some time until after 
the SOC reaches a high-threshold.  Disk utilization may 
also not follow the modelled usage, for example due to 
underperforming downlink bandwidth.  As a 
configurable behaviour, CASPER will generate a 
cleaning activity to purge old data that has an unlikely 
chance of ever being downlinked, to make room for new 
data and progress towards mission milestones and goals.  

3.3 IPEX Base Flight Software 
The base flight software on IPEX is based on 

extensions and adaptation of the Linux operating system.  
The well-known System V init process is used directly to 
start, and restart if necessary, the principal components 
of the flight software: system manager for health 
monitoring, watchdog, beacon for real-time distribution 
of telemetry, datalogger for logging and archiving of 
telemetry and a sequence execution processes for 
real-time, time-based, and event-based commanding of 
the spacecraft. 

4 IPEX Onboard Instrument Processing 

IPEX validates a wide range of onboard instrument 
processing algorithms.  The vast majority are variations 
of pixel mathematics, e.g. normalized difference ratios, 
band ratios, and similar products.  For example, many 
flooding (surface water extent) classifications are based 
on band ratios [Brakenridge et al. 2005, Ip et al. 2006, 
Carroll et al. 2009].  Snow and ice products also use 
simple band processing formulae [MODIS].  Thermal 
anomaly detection algorithms such as for volcano 
[Wright et al. 2003, 2004, Davies et al. 2006] and active 
fire mapping [Justice et al. 2002] also involve 
computationally efficient slope analysis of spectral 
signals.  Finally, a wide range of vegetation indicators 
also involve difference ratios or similar computations 
[Perry and Roberts 2008]. 



IPEX is also flying more computationally complex 
image processing technologies. These include: Support 
Vector Machine Learning Techniques [Cortes and 
Vapnik 1995, Doggett et al. 2006], spectral unmixing 
techniques [Bornstein et al. 2011], and TextureCam 
[Thompson et al. 2012] Random Decision forest 
classification techniques. 

4.1 TextureCam Onboard Image Analysis 
IPEX incorporates scene analysis based on the 

TextureCam image processing suite [Bekker 2014, 
Wagstaff 2013, Foil 2014].  It generates a pixelwise 
map of four pixel categories: (1) Clear surface, which 
could be land or ocean; (2) the planetary limb, or haze; 
(3) clouds; and (4) outer space. The classification reveals 
the image fraction subtended by the planetary disk, and 
the fraction of that surface which is cloud-free terrain or 
ocean.  It assists with downlink prioritization for IPEX, 
and also demonstrates the analysis technique as a 
precursor for future use onboard rovers and surface 
spacecraft [Francis 2014].  Figure 2 shows an example 
of a typical input image and the classification result 

 

Figure 2: TextureCam image analysis uses a random 
forest model to classify image pixels. This simple scene 
required 29 seconds to classify onboard.   

The analysis is a machine learning approach based 
on a random forest classifier [Shotton 2008], an 
ensemble of simple “decision tree” models fit to subsets 
of hand labeled training data.   Each decision tree is a 
branching sequence of simple threshold tests.  At 
runtime, control flow begins at the top node and 
descends down the tree until reaching a terminal leaf 
node where a classification probability is assigned.  The 
intermediate nodes are binary tests on the results of 
specific pixel arithmetic operations such as ratios, 
differences and sums.  Each decision tree independently 
estimates the probability that a pixel belongs to each of 
the four classes.  These probabilities are aggregated 
across 16 trees to produce a final classification decision. 

Decision trees have flown previously on the EO-1 

spacecraft [Chien 2005].  The IPEX decision forest 
advances this strategy in two main ways.  First, it runs 
multiple trees in parallel as described above.  This 
provides statistical regularization [Breiman 2007] 
without the need for explicit pruning.  Second, it 
analyzes spatial neighborhoods to incorporate local 
morphology and texture. Each tree node’s binary 
operation applies to two specific pixels at defined 
locations relative to the pixel being classified.  These 
pixels lie in a local radius-20 neighborhood, and all 
possible combinations produce hundreds of thousands of 
potential features.  We train each decision tree on a 
random subset of these features using an expected 
information gain criterion.  The training process grows 
each tree from the root node outward, selecting the 
feature from its set which can be thresholded to produce 
the best expected information gain to the population of 
pixels reaching that node.  For further explanation of 
the random forest applied to computer vision and 
planetary science, we refer the reader to previous work 
[Shotton 2008, Foil 2013, Wagstaff 2013, Bekker 2014]. 

To reduce runtime, the software classifies every 10th 
pixel along vertical and horizontal directions, filling in 
the remainder with nearest-neighbor interpolation.  The 
classifier takes less than a minute to fully classify an 
image on the IPEX Overo processor.   In addition to 
classifying scene content, the IPEX software uses a 
connected components analysis to determine the center 
of each major contiguous class region. The centers are 
used as the locations of thumbnail subimages 
downlinked with the telemetry as a parsimonious 
description of image content.  After using connected 
components to identify contiguous image areas, a 
distance transform finds the centerpoint of the thumbnail 
that is farthest away from any neighbor region.  This 
approach is similar to the method used for target 
selection in previous autonomous science onboard the 
Mars Exploration Rovers [Estlin 2012].  

The IPEX random forest was trained prior to launch 
using just four hand-labeled images from a high altitude 
balloon flight. Figures 2 and 3 show results from the 
onboard classification.  Figure 2 is a simple scene that 
requires approximately 29 seconds. Figure 3 is a more 
complex scene that requires 48 seconds to complete.  
Accuracy for these images is better than 95%, but 
performance varies by image; the classifier was not 
intended for use over dark terrain or on images with 
significant sun glare artifacts, so it fails (as expected) in 
these cases.  However, our initial tests suggest it 
performs well for favorable imaging conditions.  To our 



knowledge this is the first time a machine learning 
system has been trained on a sub-orbital flight and then 
successfully used on orbit.  For future work we will 
consider revising the decision forest by retraining with a 
wide range of orbital scenes.  

 

Figure 3: TextureCam result for a more complex scene.  
The onboard classification executed in 49 seconds. 

4.2 Salience Onboard Image Analysis 
IPEX also employs an unsupervised method for 

identifying images with potentially interesting content.  
It serves as a complement to supervised methods such as 
TextureCam that can highlight areas that correspond to 
classes defined a priori.  Instead, this algorithm 
proceeds without knowledge of potential pixel classes 
and highlights areas within an image that are statistically 
salient (i.e., areas that stand out from their surroundings).  
Koch and Ullman [1985] first proposed the use of a 
visual salience map to model human visual attention.  
Itti and Koch [2000] combined multiple color, intensity, 
and orientation features into a global salience map, and 
Elazary and Itti [2008] showed that this salience 
correlates well with human judgments of what is most 
interesting in a scene. 

We used a pixel-based measure of visual salience 
that incorporates local context, as proposed by Wagstaff 
et al. [2008].  The salience score for a pixel  is 
defined as the contrast-weighted difference between that 
pixel’s intensity and the distribution of intensities found 
in a spatial window around the pixel: 

 

where  ranges over the possible intensity values and 
 is the probability of observing intensity  in the 

surrounding window.  The sum is normalized by , 
the maximum possible salience value for any pixel in the 
specified window, so all scores range from 0 to 1. 

Onboard the spacecraft, we compute salience scores 
across each image that is collected.  We apply the 
algorithm to a downsampled version of the image using a 
32 x 32 pixel window to identify the five most salient 
regions within the image, stepping the window by half of 
its size across the image.  Thumbnails of these regions, 
along with their salience scores, are saved out for 
downlink and examination on the ground.  If the 
thumbnails are sufficiently interesting, we can request 
that the entire full-resolution image be sent down.  If 
these most salient regions are uninteresting (low salience 
scores and/or no features of interest present), the image 
can be skipped and the bandwidth allocated to other data. 

Figure 4 shows an image collected onboard IPEX 
and the salience algorithm’s corresponding output.  The 
broad cloud-free region is the Taklamakan Desert in 
China.  The first two sub-regions selected by the 
algorithm exhibit interesting cloud structure.  Regions 3, 
4, and 5 pick out interesting ground features, including 
three lakes in Tibet (Lungmu Co, Gozha Co, and 
Bangdad 
Co).

 
Figure 4. Example IPEX image and the top five most 
salient regions selected in an unsupervised fashion, along 
with their salience scores.  These regions include  
interesting cloud structure, and several lakes. 

To our knowledge, this is the first time image 
salience analysis has been performed onboard a 
spacecraft.  Since the technique is based solely on 



image pixel statistics, it requires no prior training and 
executes deterministically.  It provides an objective 
assessment of the visual features contained in the images, 
and the output scores can be used to aid in ranking items 
for downlink when data collection exceeds available 
bandwidth.  High salience scores could also be used as 
an indicator that follow-up imaging at higher resolution 
is merited.  More generally, the region selection process 
provides a valuable focus-of-attention guide to zoom in 
on features of interest. 

5 IPEX Mission Results 

The IPEX mission success criteria consisted of toeo 
parts: (1) demonstrate autonomous onboard product 
generation and (2) demonstrate autonomous operations 
of payload operations.  As this paper goes to press 
(April 2014), the IPEX mission has achieved its full 
mission success technology validation criteria.  With 
respect to onboard product generation, we have 
autonomously generated and validated over 30,000 
image products (detailed statistics shown below). 

Product Type # of Products 
Generated 

Band Ratio Images and Histograms 17108 

Ground Loaded images validated 12300 

TextureCam Thumbnails 3290 

Salience Thumbnails  5920 

With respect to autonomous operations, as this paper 
goes to press, IPEX has acquired and processed over 450 
images, operated over 40 days of autonomous operations, 
acquiring over 93 autonomous response scenes and 
scores of idle/filler imaging requests fulfilled. 

6 Related Work, Future Work, and 
Conclusions  

The Remote Agent controlled the Deep Space One 
spacecraft for approximately two days in 1999 
[Muscettola et al. 1998].  The Autonomous Sciencecraft 
on the Earth Observing One (ASE) spacecraft has 
pioneered onboard instrument data analysis [Chien et al. 
2005].  In particular ASE highlighted onboard product 
generation for volcanology [Davies et al. 2006], flooding 

[Ip et al. 2006], and cryosphere [Doggett et al. 2006] 
disciplines.  However, ASE did not have to deal with 
high data rate streams that challenge IPEX and the 
proposed HyspIRI mission and HyspIRI Intelligent 
Payload Module.   

Onboard the Mars Exploration Rovers, the WATCH 
software enables automatic processing of imagery to 
track dust devils and cloud features [Castano et al. 2008].  
Also onboard the MER rovers the AEGIS software 
enables onboard retargeting for targets of geological 
interest [Estlin et al. 2012].   

We have described the IPEX mission to flight 
validate autonomous operations and onboard instrument 
processing. The IPEX mission demonstrates low cost, 
autonomous ground and flight mission operations 
enabling end users to specify image processing and 
product requests. 
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