
EUROPEAN ROBOTIC ARM:
THE PROBLEM OF PREVENTING COLLISIONS

F. Fusco, R. Gallerini

Tecnospazio S.p.A., Milano, Italy

ABSTRACT

The European Robotic Arm (ERA), to be used for assembly
and servicing activities on the Russian Segment of the
International Space Station (ISS), is an 11 meter long arm,
moving both automatically and under cosmonaut control. A
major safety issue is to avoid possibility of collisions.
Although the most obvious approach is the use of sensors, no
sensor-based solution is practical. A different solution is
adopted, based on a software simulating the ERA motion,
using a geometrical and kinematic model of the arm and its
payload, within a geometrical model of the ISS Russian
Segment. The simulation is aimed to predict collisions in
order to stop the arm before it can actually cause damages to
the station and to itself. This software has been delivered by
Tecnospazio to Fokker Space as part of the ERA onboard
software, and it is currently subject to the ERA system test
campaign.

Keywords: Robotic Arm, Collision Detection, Software
Simulation, 3D Modeling.

1. INTRODUCTION

The European Robotic Arm, a project funded by the
European Space Agency, is an anthropomorphic, relocatable,
nearly symmetric arm. Its purpose is to be used for assembly
and servicing activities on the Russian Segment of the
International Space Station. It is a seven-joint arm operated
with one joint fixed, leading to six degrees of freedom. It can
be controlled both automatically, through pre-programmed
procedures (Mission Plans) or manually, under direct control
of the cosmonauts, from inside or outside the ISS. Different
modes of operation are implemented, to cover the foreseen
needs: free motion in joints or Cartesian kinematics,
proximity motion assisted by video camera image processing,
and compliant motion assisted by torque/force sensors.

Figure 1. ERA layout

Given the wide working area of the arm, which is about 11 m
long, with a maximum payload capacity of 3000 kg, the

potential danger of collisions with the ISS or with the arm
itself has been carefully considered. This paper describes the
work done to provide ERA with the capability of preventing
collisions. The requirements were specified by Fokker Space,
while the development (requirement analysis, design,
implementation and test up to validation) was performed by
Tecnospazio; the Collision Detection was delivered to Fokker
Space in May 1999, where it was integrated in the ERA
Control Computer, which is currently in the system testing
phase.

2. WHY A SOFTWARE FOR COLLISION DETECTION

In the normal situation, ERA operates under Mission Plans,
moving along paths defined during the mission preparation,
and checked on ground to be collision free. When these paths
are executed in flight, an online Path Deviation Check makes
sure that the actual path of the arm does not differ, within a
given tolerance, from the safe pre-planned path. If any
deviation is detected, an emergency procedure causes the arm
to be stopped immediately.
On the other hand, during manual control, when the operator
moves the arm along unforeseen paths not verified on
ground, a Collision Detection system is necessary in addition
to the visual control of the cosmonaut.
To increase safety, it has been decided to have the Collision
Detection active also during Mission Plans execution, in
addition to the Path Deviation Check.
In preliminary studies of the problem, several approaches
were analyzed. The most obvious collision detectors are
sensor-based, like vision or distance/proximity sensors. These
solutions can be grouped in two categories: local and global
sensors. Each of them, if applied to ERA, have serious
drawbacks.
Local sensors are devices mounted on the robot surface, to
measure the distance (or return a proximity threshold flag) of
the closest obstacle within a certain cone. Examples are
optical devices (light emitter and photodiode), magnetic
devices (detecting the proximity of metallic bodies) or
mechanical contact-sensitive devices. The local approach is
effective for compact robots operating in simple
environments, but given the size of ERA and the presence of
obstacles in all space directions, such a solution would
require a very high number of sensors and a complicated
cabling of the arm. Moreover, when ERA carries a payload,
the payload itself needs to be checked for collisions, so it
should mount further sensors, and they have to be electrically
interfaced with ERA. It is clear that this approach leads to
unacceptably complex setup of the arm and its payloads.
Global sensors are independent devices, placed on static
structures, like panoramic cameras mounted on the ISS. Used
in combination, to cover the entire robot workspace, they
could, in principle, detect collisions in the same way human
observers do, i.e. through image processing and pattern
recognition. Apart the obvious technical difficulty to
implement such a sophisticated system, in ERA it would face

two additional problems: the difficult lighting conditions of
the orbital environment and the relocatability of the arm. The
ability to relocate at different positions on the ISS implies
that a system of panoramic cameras aimed to collision
monitoring would have to ensure coverage of the whole
Russian Segment, which is, again, impractical.
Discarded the sensor-based solutions, a completely different
approach was investigated, and finally adopted: it consists of
including in the control software a simulation of the robot
motion within a 3D geometrical model of the environment.
When ERA starts moving, its kinematics is mirrored in a
virtual ISS model, and a geometrical check is activated, so
that, using suitable speed-dependent margins, it can detect
danger of collision in the real world and react by warning the
user or immediately stopping the arm.
Several types of collisions have to be taken into account:
ERA, including its payload, with itself (called link-link and
payload-link) and with the ISS (link-obstacle and payload-
obstacle).
Since 3D simulations are resource-consuming, the main
challenge for the Collision Detection software is to meet the
constraints given by the limited resources (memory and
processing power) available on the ERA Control Computer.
Particular attention has been devoted to the issue, defining a
compact, optimized environment model and a fast algorithm.
They are described in the next sections.

3. GEOMETRICAL MODELS

In order to create our representation of the environment, two
models are defined: the ERA model, representing the arm, and
the world model, representing the ISS Russian Segment.
The ERA model consists of a set of four connected links. A
link is defined as the spherical extension of a segment, i.e. as
the volume containing all the points having a distance from
the segment less or equal than a properly chosen value R
(figure 2).

R

a b

Figure 2. link model (a) and ERA model (b)

Besides the geometrical definition, the ERA model is also a
kinematic model, that is, when the arm moves, the angles
between links are set according to the joint resolvers readout.
The model dimensions are tailored to contain the entire shape
of ERA. It can be observed from figure 1 that not all ERA
links have full cylindrical symmetry, due to handles and other
small protrusions. To minimize R, the link model axis is
aligned to the real link axis only in the two short limbs of era
(connected to the hand and to the shoulder). In the long limbs
(connected to the elbow) the link model axis is slightly

disaligned, to have an higher accuracy in modeling the real
link geometry (figures 3 and 10).
The advantage of such a simple ERA model is that the
calculation of distances between the arm and the environment
deals essentially with segments (taking into account the
radius R).

Figure 3. link model of the ERA hand

The world model follows a different philosophy. It shall be
capable of representing complex shapes of ISS components,
that don’t fit in any general simplification. In this case, the
approach is modular and hierarchical. Since the ISS is not yet
in place we define, as starting assumption, the “real” ISS
Russian Segment by its geometrical specification. Then, a
first split into big, recognizable components is made. These
components are called obstacles. For each obstacle, a
hierarchy of nested sub-components is defined, in a way that
matches the hierarchical organization of the check algorithm
(figure 4). The idea is that while ERA comes closer and
closer to an obstacle, the obstacle is seen as smaller and more
refined models, that at the lowest level coincide with the real
ISS shape. Only when ERA is very near to the environment,
the algorithm needs to go all the way down, ending with the
real ISS shape; in all other cases, a few high level checks are
enough to guarantee operational safety.
Obstacles are composed of elements. An element is
characterized by a bounding box oriented as the main
reference frame x, y, z (the world frame) which is uniquely
defined in the Russian Segment. To get the maximum benefit
from the bounding box usage, the modeler should define as
elements those parts of obstacles that best fit in
parallelepipeds aligned with the world frame (figure 5).
As explained in the next section, all objects shall be enclosed
in additional margins. In the following, when talking of
bounding boxes, bounding spheres, etc., the margins shall be
considered included, as shown in the figures.
Elements are composed of convex polyhedra. Note that the
convexity is not required for elements. A polyhedron is
characterized by a set of faces connected by edges and
vertices, which are, finally, just points of the space. A face is
also characterized by an orientation, i.e. a unit vector located
on the face itself and pointing outward from the polyhedron,
that will be used by the algorithm to tell the outside from the
inside of the polyhedron

a. Obstacle

b. Element

c. Polyhedron

d. Face,
 Edge,
 Vertex

Figure 4. World model hierarchy

It is easily understandable that the polyhedron level of
description requires intensive calculations. To speed up part
of them, an intermediate model has been introduced: the
bounding sphere, i.e. a sphere circumscribing the polyhedron
(plus margin). The bounding sphere can be a more or less
accurate approximation, depending on how much the given
polyhedron shape is close to a sphere.
The last model is the spherical extension of the polyhedron,
defined as the volume containing all the points having a
distance from the polyhedron less or equal to the margin
(figure 6). The spherical extension is nothing more than the
real shape enlarged by the margin; it is the most accurate and
CPU demanding representation.

Figure 5. Bounding box

The generation of the ERA model and the world model is
performed on ground with the support of an additional
software, also developed by Tecnospazio, which converts
CAD models into an optimized format. This optimized
format is more compact then the CAD format and tailored to
the Collision Detection algorithm; this is the format in which
the models are uploaded into the ERA Control Computer.
The world model is easily kept up to date with the reality:
when future modifications will occur in the shape of the ISS
Russian Segment, they will be reflected into the software by
loading a new version of the world model, a routine operation
to be performed in flight.

a b

Figure 6. Bounding sphere (a) and spherical extension (b)

A special case is represented by the modifications of the ISS
caused by ERA itself after grappling and releasing payloads
(figure 7).

a

b

ERA

ERA

ISS

ISS

Figure 7. Change in the world model after payload grappling

A payload fixed to the external structure of the ISS is indeed
part of the ISS, modeled as obstacle as long as ERA does not
grapple it. After grappling, two things change in the
geometry:
- ERA contains a new appendix (the attached payload),

that shall be checked for collisions against the
environment, just as a part of the arm;

- a “hole” has been produced in the world model (the
space formerly occupied by the payload) that shall be
discarded from the volumes to check.

The reverse happens when a payload is released by ERA and
accommodated on the ISS.
The software automatically reflects these modifications into
the Collision Detection database. In fact, part of the
grapple/release procedure consists of updating the world
model so that an obstacle becomes a payload or vice-versa.
The last model still to be described is the payload when
grappled by ERA. Unlike the obstacle case, a general
simplification is done here. Based on the shapes foreseen for
ERA payloads, it has been decided that a realistic model can
be defined using the spherical extension of a segment (as
done for the link model), intersected by two spheres (figure
8).

sphere 1 sphere 2

segment

Figure 8. Payload model

The purpose of the spheres is to minimize the error made at
the segment extremes. The optimal radius and centers are
automatically computed by the ground software. This model
provides acceptable approximation of the foreseen payload
shapes and presents the benefit of requiring not too heavy
geometrical calculations.

4. HOW THE CHECK WORKS

The ERA onboard software is a real-time multitasking Ada
program, where periodic operations are implemented as
cyclic tasks with suitable frequency and priority. Among
them, the family of the Health Checks consists of tasks aimed
to detect deviations from the safe functioning of the most
critical subsystems. The general way these checks work is
that in every cycle they return a check status that can be
nominal, caution or danger. The check status is then read by
a supervisor task, that performs the proper recovery action.
The Collision Detection check fits in this framework as a low
priority, 1 Hz frequency Health Check. It is activated only
when ERA is moving, and can be disabled by the user, like
most Health Checks. Nominal means no collision, caution
means that the collision is signaled to the user display,
requiring to manually stop the arm. Danger means that the

computer shall take control and immediately engage the robot
brakes whatever the user does.
The Collision Detection check reads from the robotic motion
subsystem the current arm position and the speed of each
joint. Then, it calculates two numbers: the caution and the
danger margin. These margins are enlargements to be added
to the shapes used by the algorithm (bounding boxes,
bounding spheres, spherical extensions), to take into account
a number of contributions; the most important are the
following:
- speed of the arm: the sampling of input data introduces a

loss of resolution in the order of the maximum
displacement of ERA during one period;

- stopping distance: from the instant when the software
detects a collision to the instant when the brakes are
actually engaged, an amount of time is spent, due to
software reaction time and brakes activation inertia;

- arm elasticity: when fully braked, the arm will oscillate
in the same direction of the motion, for an extension that
depends on the speed and on the physical characteristics
of limbs and joints;

- cosmonaut reaction time (only for the caution margin): a
customizable database parameter representing the
human reaction delay from the warning signal to the
controlled stop command, usually assumed in the order
of one second.

ERA link

ISS component

Caution margin

Danger margin

Figure 9. Caution and danger margin

Once the caution and danger margins are known, the
algorithm is run against all obstacles, first using the danger
(smaller) margin: if it finds a collision, the check result is
danger, otherwise the algorithm is run using the caution
(larger) margin. If it finds a collision, the check result is
caution. Otherwise, it is nominal.
The relation between the arm speed and the margins leads to
the following typical scenario: after a danger collision is
detected and the arm stops, the control is returned to the user,
who shall then retract the arm to a safe position in order to
restart the move. But the arm is intersecting, by definition, a
danger volume, therefore if the arm speed is the same as
before the collision, obviously the check will trigger again
and the arm will not move at all. The only way to get out
from the danger volume is by reducing the margin, which
means that the user is forced to reduce the speed until the
danger volume does not intersect the arm anymore; only in
that condition the retract maneuver can be performed. ERA
provides a set of predefined velocity scaling factors, so that it
is possible to re-use properly rescaled standard moves, with
no needing of dedicated "slow motion" commands.

An exception in the described check functioning is the
proximity motion, i.e. the control mode used by ERA to
approach a payload to be grappled (and, conversely, to retract
from released payloads). In this mode, the arm is driven very
close to the payload, using data from the camera mounted on
the ERA hand. Clearly, the Collision Detection cannot be
used while this operation is in progress, because it will
trigger collision between the arm and the payload, making
impossible the approach. Therefore, during proximity motion,
the Collision Detection is simplified: it executes only the
link-link check, and then the link-obstacle check only for
links connected to the elbow (i.e. far from the payload).

5. ALGORITHM DESCRIPTION

Up to now we have discussed how the Collision Detection
check operates in the context of the ERA onboard software
and what are the check inputs and outputs. Now the check
algorithm itself will be described.
After the caution and danger margin calculation, the next step
is to check for all possible collisions.
Four collision types are defined, each of them leading to an
independent part of the algorithm:
- link-link,
- link-obstacle,
- payload-link,
- payload-obstacle.

Figure 10. Link-link collision

The link-link algorithm (figure 10) checks for collisions
between non consecutive links (consecutive links are
obviously always in contact). It compares the current margin
(danger or caution) with the distance between spherical
extensions of the links.

The link-obstacle algorithm (figure 11) checks for collisions
between all ERA links and all obstacles in the world model.
For each obstacle, the check is performed hierarchically on
all sub-components. First, the elements: for each of them,
each link position is established against bounding box of the
element. If no intersection is found, then the current element
is discarded (the contained objects certainly don't collide) and
the check moves on to the next element. Otherwise, if the link
intersects the bounding box, then there are two possibilities:
the link is really colliding with an object inside the element,
or it is colliding with an empty part of the bounding box,
therefore, further refinement is required. In this case, the

algorithm shall go down to the polyhedra level. It first checks
the bounding sphere of each polyhedron in the element.

Figure 11. Link-obstacle collision

Applying the same philosophy described above, if there is no
collision, it goes to the next polyhedron, elsewhere it refines
the check by switching to the spherical extension of the
Current polyhedron. This check is in turn split as follows:
check for link intersection with faces, then, to follow the
spherical rounding, a correction on the edges and then on the
vertices of the polyhedron is applied.
All these checks are executed in the described order, that is,
they are sorted by increasing complexity. This choice allows
considerable CPU time saving, because for most obstacles it
is unnecessary to extend the check depth to the detailed
shapes leading to intensive calculations. The algorithm
operates at full depth only for those objects that are complex,
close to the arm, and that don't collide with it (if they do, the
task immediately returns positive result and turns to idle until
the next cycle begins). In all other cases, the tests show that
the CPU load is reasonably light.

Figure 12. Payload-link collision

In other words, the CPU load due to the Collision Detection
for a given trajectory is proportional to the “model

complexity density" along that trajectory, not to the overall
world model complexity. Indeed, if however complex objects
are far from the arm, they are seen as elements, and the
computation time to discard them from the candidates to
collision is small.

The payload-link algorithm (figure 12) checks for collisions
between the grappled payload, if any, and all ERA links,
excluding the tip (which is connected to the payload itself).
This algorithm is simpler than the previous one because of
the simpler payload model format (intersection between the
spherical extension of a segment and two spheres). The
possible collision of a link model with the payload model is
reduced to logical operations applied to the separate
intersections between the link and each sub-component of the
payload (link-spherical extension, link-sphere1 and link-
sphere2).

Figure 13. Payload-obstacle collision

The payload-obstacle algorithm (figure 13) checks for
collisions between the grappled payload, if any, and all
obstacles in the world model. Since the payload model is
composed of a segment spherical extension intersected with
two spheres, the algorithm takes the advantage of re-using the
link-obstacle algorithm previously described, to first intersect
the spherical extension with the obstacle. The spherical
extension is bigger than the payload model, therefore if no
collision is found here, that's enough to discard the current
payload from the candidates. Elsewhere, if a collision is
found, it is necessary to refine the check by intersecting the
two spheres composing the payload model with the obstacle.
If at least one of the spheres collides, then the payload
collides.

6. PERFORMANCE

The performance figures collected in the simulated test
environment authorize to say that the algorithm fits in the
allocated budgets of CPU and memory. A summary is
reported in figure 14. It can be noticed that, in this phase, it
has been found convenient to use elements containing only
one polyhedron each.
The total memory needed for this model is 110 Kbytes.
Additional spare memory has been allocated up to 164
Kbytes, leaving room for future model changes and
improvements.
As far as CPU is concerned, the Collision Detection
execution time measured for many random trajectories

proved that it is indeed quite fast, and the ERA Control
Computer can run it in parallel to its nominal control tasks.
The algorithm is quite accurate: the worst case approximation
has been found to be 50 mm, i.e. less than 0.5% of the arm
length. Of course, additional approximations are introduced
by CAD modeling of real ISS, which is matter of trade off
between memory occupation and accuracy.

Obstacles: 21
Elements: 91

Polyhedra: 91
Faces: 767

Edges: 1698

World model composition

Vertices: 1113
Used memory [kb] 110
Total memory [Kb] 164
Worst case execution time [ms] 26
Worst case numeric error [mm] 50

Figure 14. Performance summary

7. CONCLUSIONS

The Acceptance Tests successfully performed at Tecnospazio
show that the developed software matches the specified
functional and performance requirements. In particular, the
practical feasibility of the Collision Detection concept has
been demonstrated with the execution of a simulated ERA
Reference Mission containing proximity, grappling and
releasing operations, with the Collision Detection check
always enabled.

8. REFERENCES

R. Gallerini, A. Sciomachen, "Collision Detection using
linear programming", 2nd European In-Orbit Operations
Technology Symposium, Toulouse, 1989

J.F.T. Bos, M.J.A. Oort, "Failure Detection, Isolation and
Recovery system concept for the European Robotic Arm",
ESREL ’97 European Safety and Reliability Conference,
Lisbon, 1997

P.G. Beerthuizen, C. Maegaard, A. Rusconi 1998, "ERA
Safety Strategy", DASIA ’98 Conference on Data Systems in
Aerospace, Athens, 1998

R.A. Bosman, J.F.T. Bos 1998, "Control of the joint runaway
hazard for the European Robotic Arm", ESREL ’98 European
Safety and Reliability, Conference, Trondheim, 1998

P.G. Beerthuizen, W. Kruidhof 1999, "System and Software
Safety Analysis for the ERA Control Computer",
SAFECOMP ’99 European Workshop on Industrial Control
Systems: Technical Committee 7 – Safety, Reliability and
Security, Toulouse, 1999

