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ABSTRACT

The paper is devoted to designing of free-flying space
robotic module (SRM) with manipulators for Interna-
tional Space Station’s (ISS) service. SRM is intended
for assembly, external maintenance, inspection and sci-
entific experiments for manned space stations (Ref.1).
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1. INTRODUCTION

Among the others requirements to SRM the following
two (Ref.2) could be separated: 1) optimality of on
board power/ energy consumption; 2) safety of SRM
itself and security of ISS and other space objects, to be
connected with SRM’s activities. From the viewpoint of
safety it is very important the predicted dynamics of
SRM’s motion during its activities. But there exists a
problem: different positions of SRM’s manipulators
change its moment of inertia. Especially it takes place
when manipulators grasp some loads which could have
different masses and dimensions. So the mass-inertia
SRM’s characteristics and as consequence the effective-
ness of control devices are not known in advance. As a
result the SRM’s dynamics will be not only optimal but
not predicted: so the SRM dynamic oscillations could be
not admissible from the viewpoint of SRM’s and ISS’s
safety. Moreover it will be shown that in some positions
SRM with manipulators and loads becomes not con-
trollable that is instead of rotation to required direction
its manipulators’ links could rotate to opposite direction.
So the first problem to be solved in the paper could be
formulated as: what does it mean the concept of tech-
nological controllability for concrete SRM and how to
every time moment to calculate the current technologi-
cal controllability’s degree?

On the base of the answer to the first problem in the
paper it is proposed the method of calculating the cur-
rent permissible domain where SRM possesses by tech-
nological controllability. The information about the cur-
rent SRM’s degree and permissible domain of techno-
logical controllability makes possible to synthesize the
algorithms of SRM’s and manipulators’ control. But it
is arising the second problem to be solved in the paper:

let the current SRM’s degree and permissible domain of
technological controllability are known. How to choose
the SRM’s and manipulators’ control algorithms so that
the control system dynamics would be predicted? The
second problem is solved on the base of adaptive and
co-ordinate-parametric control approaches.

The reason for the second problem is the same: the con-
trol devices’ effectiveness is not known and moreover it
changes during the control process. In the paper there
will be represented the next solutions:

1. Let the control devices effectiveness is not known
but constant. Is it possible to realize the strict time-
optimal trajectory for SRM’s angular rotation and
manipulators’ links motion? In the paper there will
be represented adaptive algorithm that allows to an-
swer positively and to realize the strict time optimal
trajectory without knowing the value of the effec-
tiveness.

2. Let the control devices effectiveness is changed
during the motion. In the paper there will be
represented the concrete algorithm to realize the
quasi time-optimal SRM’s motion and some
simulation oscillograms for this case.

2. MATHEMATICAL MODEL OF SPACE RO-
BOTIC MODULE

In common case the SRM’s equations of motion can be
written as

    )(),()( qMqqHCqqBqqA =+++ &&&&                (1)

where nRq∈  is the generalized co-ordinate vector.

The mathematical model (MM) (1) is nonlinear and it is
difficult to say some conclusions about SRM as a con-
trol object on the base of this MM. But MM (1) could
be simplified to the form

)()( qMqqA =&&                             (2)

with 0),( ≈qqH &  for the assumption that the velocity

vector q&  is small and 0≈B  for the assumption that



the ISS’s trajectory is high enough. The MM (2) is more
simple than (1) but it is nonlinear nevertheless.

Let us assume that M(q) could be presented as

MqDqM )()( = , where ),...,,( 21 n
T MMMM =

and the matrix D(q) = En  for q = 0,  En – is identity
matrix. Then the SRM’s MM could be written in the
form

MqRq )(=&&                                  (3)

where )()()( 1 qDqAqR −= . Assume that

0, maxmax >≤ iii MMM                             (4)

and denote as  Mmax  the control restriction vector
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3. DEFINITION OF TECHNOGICAL CONTROL-
LABILITY FOR SPACE ROBOTIC MODULE

We shall call SRM with MM (3) as autonomously tech-
nologically (AT) controllable with respect to co-
ordinate ),1( niq i =  at the position q = q*, if for

0)( =tqi
, 0)(,0)( == tqtq ii &&&  at *)( tt <  and the ac-

tion max)( ii MtM =  at *tt ≥  there arises acceleration

0)( ≠≥ ii tq ρ&&                                 (6)

where: 1) it takes place regardless from presence or not
presence of others control actions );,1( ijnjM j ≠= ;

2) the signs of Mi(t) and )(tqi
&&  at *tt ≥  are the same.

If at the inequality (6) 0, 00 >=≥ constiii ρρρ

),1( ni =  then we shall call SRM with MM (3) as AT-

controllable at the position q = q*  with the degree of
AT-controllability equal 0

iρ .

We shall call SRM with MM (3) as AT-controllable at
the position q = q* if it is AT-controllable with respect

to any co-ordinate ),1( niq i =  simultaneously.

We shall call SRM with MM (3) as AT-controllable at
the position q = q* with the degree of AT-
controllability equal 0ρ  where
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if it is simultaneously AT-controllable with the degree
of AT- controllability equal 0

iρ  ),1( ni =  with respect to

the co-ordinate 
iq .

We shall call SRM with MM (3) as AT-controllable at
the domain G(q) of the generalized co-ordinate space

{q} if it is AT-controllable at any point )(* qGq ∈ .

4. NECESSARY AND SUFFICIENT CONDITIONS
FOR AT-CONTROLLABILITY OF SRM

Let us consider the equation (3) where ( ))()( qRqR ij=
is )( nn × -matrix and introduce the matrix

( ))()( qSqS ij=  where
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We shall call vector xT=(x1,x2,…,xm)  as positive (x>0)
(nonnegative ( 0≥x )) or matrix X=(xij)

),1;,1( njmi ==  as positive (X>0) (nonnegative

( 0≥X )) if all elements of vector x or matrix X are
positive (nonnegative) (Ref.3).

Theorem. Necessary and sufficient conditions for
AT-controllability of SRM with MM as (3) for the po-
sition q = q* are the next relations:

1) nonsingularity of the matrix S(q) that is the equal-
ity

nqS =*)(rank ;                           (9)

2) the existence of at least a single positive solution of
the inequality

0*)( >γqS                                (10)

where nR∈γ .

Let us note that according to the theorem the fact of
SRM’s AT-controllability at the position q = q* is de-
termined by only SRM’s construction parameters and
not by the vector of control restrictions Mmax

 (5) that is
SRM at the position q = q* either AT-controllable or
not controllable and at the last case it is not possible to
achieve AT-controllability by changing of the vector
Mmax

 (5). But if SRM is AT-controllable at the position
q = q* then it is possible to achieve the prescribed de-
gree of AT-controllability 0ρ  (7) by property choice of

the vector Mmax = )*,( 0max
0 ρqM .



5. SEARCHING OF MINIMAL NECESSARY
CONTROL AT THE POINT

Let at the position q = q* SRM is AT-controllable and

it is necessary to search the vector )*,( 0max
0 ρqM  that

guarantees the degree of AT-controllability at the point
q = q* not less than 0ρ  with the minimal norm of the

vector )*,( 0max
0 ρqM . This vector is defined by the

equality

)*,( 0max
0 ρqM 01 *)( ρqS −= .                    (11)

6. SEARCHING OF THE SRM’S  AT - CONTROL-
LABILITY DOMAIN

The boundary surface for the G(q) domain is defined by
points where the theorem’s conditions are broken that is
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for any ),1(0 nii =>γ .

7. SOLUTION OF SOME TASKS ABOUT SRM’S
AT - CONTROLLABILITY

In the Fig. 1 some construction is shown that cold be
consider as an example of SRM’s plane motion (Ref.1).
The vector of generalized co-ordinates includes 5 com-
ponents: q1=X0, q2=Y0 , ϑ=3q , 14 α=q , 25 α=q . The

concrete data are:
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Fig. 1.
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In the Fig. 2 the domain of SRM’s AT- controllability is
shown with the help of cross-sections for
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5

*
5

*
5 === qqq  at Descartes co-ordinate

system 0q3q4.

Fig 2.

8. PRESCRIBED QUASI – 0PTIMAL CONTROL
BY FREE – FLYING SPACE ROBOTIC MOD-
ULE WITH MANIPULATORS

For simplicity we assume that Mi(t) = ki ui(t), where
ui(t) is the co-ordinate that could be organized with the
help of control law and k i = const > 0. Then from
equation (3) we receive the relation

),,()()( tqFtuqRkq iiiii +=&&                     (13)

where )(),( 0 qFtqF ≤  and for q = q* F0(q*) = const.

We denote )()( qrqRk iiii =  and in this paper we as-

sume the case of F(q,t) ≡  0 (the results could be easy
extended for the case of F(q,t) ≠  0). Then from equa-
tion (13) we receive the equation

)()( tuqrq iii =&&                                            (14)

where the co-ordinate ri(q) could be named as control
effectiveness. The control effectiveness ri(q) could be
changed not only from point to point in the space {q}
but with the time too that is  ri = ri(q,t) (Ref.4). So we



assume  that the value of ri(q,t) is not known but for the
domain G(q) it takes place the inequality

maxmin ),( iii rtqrr ≤≤ ,                                   (15)

where maxmin , ii rr  are known constant positive numbers.

Let the task is to change the position qi from the point qi

= 0 to the point qi = qi pr, qi pr= const. If the effectiveness
ri(q,t) is constant for example  ri(q,t)  = ri

0
, ri

0
 = const >

0 and the value of ri
0
 is known then the solution of the

task could be received on the base of the Pontryagin
maximum principle (Ref.5) and this solution is well
known as the control law
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where x(t) = qi pr - q i(t) and 
i

ii
i k

Mr max0
0 =λ .

Fig 3.a.

In the Fig. 3.a we can see the time-optimal trajectory 1

on the phase-plane with co-ordinates  x and 
dt
dx

y =  for

the case ri
0

 =0,15. But on the same figure we see the
trajectory 2 when the effectiveness was changed from
the value ri

0
 =0,15 to the value ri =0,08 at some mo-

ment.

The trajectory 2 is not only time-optimal but may be
inappropriate from the technical point of view. In paper
(Ref. 4) for this case the control law in the form
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is proposed where 
i

ii
i k

Mr maxmin
min =λ . This control law

guarantees the quasi-optimal trajectory that is shown in
Fig.3.b. This trajectory was received for ri =0,15  on
acceleration part and ri =0,06 on the deceleration part of
trajectory. Comparing trajectory 2 on the Fig. 3.a and
trajectory on the Fig. 3.b we can see that quasi-optimal
control law guarantees the prescribed dynamics in the
sense of absence any motion around the point (0,0) that
is the trajectory is completely belonged to one quadrant.

Fig.3.b.

ACKNOWLEDGMENT

The work is supported by INTAS (project 97-00955)
and by Russian Foundation for Basic research (project
00-01-00208).

REFERENCES

1. Rutkovsky V.Yu. & Sukhanov V.M. 2000, Dy-
mamic Model of  a Free-Flying Space Robotic
Module. [in Russian]. Journal Automatica i Tele-
mekhanika,  5, 39–57.

2. Putz P. 1999, “Space Robotics”, in “Laboratory
Astrophysics and Space Research”, eds. P. Ehren-
frend et al, 547 – 586.

3. Gantmacher F.R. 1959, Matrix Theory. Chelsea.
New York.

4. Glumov V.M. & al 2000, Attitude Control of Non-
stationary Spacecraft with Variable Efficiency of
Control Moments. Journal of Computer and Sys-
tems Sciences International .  39, 1, 114–127.

5. Boltyanskii V.G. 1969. Mathematical Methods of
Optimal Control. Moscow. Nauka.


