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Abstract

Images are one of the most powerful robot informa-

tion sources, in particular, when that type of data

allows the computation of 3D maps of the surround-

ing environment. Stereo vision is a common way of

creating these 3D maps. In the whole stereo process,

matching corresponding points in two images is the

most diÆcult task to accomplish. In this paper we de-

scribe a methodology to reliably solve this problem.

The main contribution is that it is able to handle most

of the commonly used assumptions in a unique for-

mulation, independent of the domain of application

and type of features. It performs correspondence and

outlier rejection in a single step, and achieves global

optimality with feasible computation. This is a key

feature since most methods in the literature are either

inherently sub-optimal or impose extra assumptions

to constrain the search space.

1 Introduction

Space exploration is nowadays one of the key areas

where robotics can play an important role. Within

the �eld of mobile robotics, computer vision has been

a very important �eld of research to providing sensory

data for complex tasks like satellite docking, manipu-

lation and navigation of mobile robots. To acomplish

this task, estimating point correspondences between

two or more images is one of the most important ad

long standing open problem in computer Vision, with

direct application in stereo vision. By matching two

correspondent points in two images, one is able to

reconstruct the 3D structure of the environment. In

this paper, we describe a powerful methodology to

reliably solving the correspondence problem between

two sets of features.

The approach we propose deals both with outlier

rejection and correspondence in a single integer op-

timization problem that considers the whole space

of possible point selection and correspondences. In

other words, by recurring to a formulation where each

point in one image can be permuted with every other

point in the second image, we �nd the match the min-

imizes some global criterion. Combinatorial search is

avoided without extra assumptions by relaxing the

discrete search into its convex-hull (continuous do-

main). The special structure of the constraints and

objective function allow the creation of an equiva-

lent continuous-domain optimization problem, solv-

able with eÆcient algorithms.

2 Methodology

For the sake of simplicity, we consider the two image

correspondence problem. Extension to full sequences

is straightforward. In section 3.2 we show a three-

image situation.

2.1 Correspondence as an opti-

mization problem

Consider two sets of feature-points observed by a

stereo pair or by a moving camera. Consider that

some of these pairs are the projections of the same 3D

points. We collect the features of the �rst and second

images, in two stacks of row vectors, respectively X

and Y. Features can represent the image coordinates

of feature-points or any image-related quantity like a

local neighborhood of intensities. The type of infor-

mation conveyed by the features has to be coherent

with the criterion, but does not a�ect our formula-

tion.

Using the previous de�nitions we can formulate the

correspondence problem as an integer minimization

problem P� = arg minP J(X;Y;P), where P is a

zero-one variable that selects and sorts some rows of

Y, putting them to correspondence with the rows of

X. To guaranty robustness in the presence of outliers,

P must allow some features not to be corresponded,

so it cannot be a simple permutation. To avoid com-

binatorial explosion, we must be able to extend the

zero-one domain. This results on the minimization

problem 1 where J is a scalar objective function.

Problem 1

P
�
= arg min

P
J(X;Y;P)

s.t. P 2 Pp(p1; p2)

In this problem, P is constrained to Pp(p1; p2), the set

of p1 � p2 partial permutation matrices (p
p
-matrices).

A pp-matrix is a permutation matrix to which some

columns and rows of zeros were added. Each entry

Pi;j when set to 1 indicates that features Xi� (row i

ofX) andYj� (row j ofY) are put to correspondence.

p
p
-matrices represent, at most, one correspondence

for each feature, and allow some features not to be

matched. If row Pi� is a row of zeros then feature

Xi� is not matched. If column P�j is a column of

zeros then feature Yj� is not matched. Both corre-

spondence and outlier rejection are intrinsic to this

formulation because each element of Pp(p1; p2) per-

mutes only a subset of all the features. The global



Figure 1: EÆcient solution of the combinatorial

problem.

optimal solution of problem 1 is the best among all

possible combinations of samples and permutations.

We generalize the usual de�nition of p
p
-matrices

to non-square matrices, saying that any p1 � p2 real

matrix P is a p
p
-matrix i� it complies with the fol-

lowing conditions:

Pi;j 2 f0; 1g ; 8i = 1 : : : p1 ; 8j = 1 : : : p2 (1)Pp1
i=1

Pi;j � 1 ; 8j = 1 : : : p2 (2)Pp2

j=1
Pi;j � 1 ; 8i = 1 : : : p1 (3)

To avoid the trivial solution P� = 0, we establish

a �xed number of correspondences pt � min(p1; p2)

by considering a slightly di�erent set of matrices

P
pt
p (p1; p2). We call these rank-pt partial permutation

matrices (rank-pt pp-matrices). Constraining the op-

timization problem to P
p
t

p (p1; p2) leads to a process

of picking up just the best pt correspondences. Like

in most robust methods [9], pt should be kept near

the minimum number of features required by the as-

sumed model or lower than the estimated number of

inliers. The de�nitions and properties of P
pt
p (p1; p2)

and other useful sets of matrices can be found in [5].

2.2 Reformulation with a compact

convex domain

Problem 1 is a bluntly posed | brute force | inte-

ger minimization problem. In general, there is no ef-

�cient way to optimally solve such type of problems.

Nonetheless there is a related class of optimization

problems for which there are eÆcient, optimal algo-

rithms. Such a class can be de�ned as Problem 2.

Problem 2
P
� = arg min

Q
J�(X;QY)

s.t. Q 2 DSs(p1; p2)

where J� is a concave version of J | Equation 4 |

and DSs(p1; p2) is the set of real p1 � p2 doubly sub-

stochastic matrices, the convex hull of Pp(p1; p2).

Problems 1 and 2 can be made equivalent | same

global optimal | by �nding an adequate concave ob-

jective function J�. Also we must be sure that the

vertices of DSs(p1; p2) are the elements of Pp(p1; p2).

Figure 1 summarizes the whole process. In short, the

methodology is outlined as follows:

1. Extract points of interest and use their represen-

tations to build X and Y.

2. Use X and Y to build the objective function J .

Examples are Equations 10 and 13.

3. Use the procedure in Section 2.3 to produce

an equivalent concave objective function J� |

Equations 4 and 5.

4. Convert the desired convex constraints into the

canonical form using Equations 7 and 8.

5. Solve the problem using a linear or concave pro-

gramming algorithm.

Section 2.3 contains the proof for the equivalence of

Problems 1 and 2. Extensions for the inclusion of

other constraints can be found in [5].

2.3 Equivalence of the Prob-

lems 1 and 2.

Theorem 1 states the fundamental reason for the

equivalence. [3] contains its proof.

Theorem 1 A strictly concave function J : C ! IR

attains its global minimum over a compact convex set

C � IRn
at an extreme point of C.

The constraining set of a minimization problem with

concave objective function can be changed to its

convex-hull, provided that all the points in the origi-

nal set are extreme points of the new compact set.

The problem now is how to �nd a concave function

J� : DSs(p1; p2)! IR having the same values as J at

every point of Pp(p1; p2). Furthermore, we must be

sure that the convex-hull of Pp(p1; p2) is DSs(p1; p2),

and that all p
p
-matrices are vertices of DSs(p1; p2),

even in the presence of the rank-�xing constraint.

Consider Problem 1, where J(q) is a class C2 scalar

function. Each entry of its Hessian is a continuous

function Hij(q). J can be changed to its concave

version J� by

J�(q) = J(q) +
Pn

i=1
�iq

2
i �

Pn

i=1
�iqi (4)

Note that the constraints of Problem 1 include qi 2

f0; 1g; 8i, so J�(q) = J(q); 8q. On the other

hand Pp(p1; p2) is bounded by a hypercube B =

fq 2 IRn : 0 � qi � 1; 8ig. All Hij(q) are continu-

ous functions so they are bounded for q 2 B |

Weierstrass' theorem. This means that we can always

choose a set of �nite values �r, de�ned by

�r � � 1
2

�
maxq

Pn

s=1;s6=r

��� @2J(q)@qr@qs

����minq
@2J

@q2
r

�
(5)

which impose a negative stricly dominant diago-

nal to the Hessian of J�, that is to say, jHiij >Pn

j=1;j 6=i
jHij j ; 8i. A strictly diagonally dominant

matrix having only negative elements on its diagonal

is strictly negative de�nite [2], so these values of �r
will guaranty that J�(q) is concave for q 2 B and,

therefore, also for q 2 DSs(p1; p2).

Finally, note that problem 2 is constrained to the

set of doubly sub-stochastic matrices, de�ned by con-

ditions 2, 3 and 6

Qi;j � 0 ; 8i = 1 : : : p1 ; 8j = 1 : : : p2 (6)

This set has the structure of a compact convex set

in IRp1�p2 . Its extreme points are the elements of



Pp(p1; p2) | see [5]. This fact together with Theo-

rem 1 proves that the continuous Problem 2 is equiv-

alent to the original discrete Problem 1, since we're

assuming that J� was conveniently made concave. If

we use the P
pt
p (p1; p2) set instead then its compact ex-

tension is DS
p
t

s (p1; p2), the set of rank-pt dss-matrices

| see [5].

2.4 Constraints in canonical form

Most concave and linear programming algorithms as-

sume that the problems have their constraints in

canonical form. We now show how to put the con-

straints that de�ne DSs(p1; p2) in canonical form,

that is, how to state Problem 2 as

Problem 3
P
�
= arg min

q
J�(X;Y;q)

s.t. Aq � b ; q � 0

where A[m�n] and b[m�1] de�ne the intersection of

m left half-planes in IRn.

The natural layout for our variables is a matrix

Q, so we use q = vec(Q), where vec() stacks the

columns of its operand into a column vector. Condi-

tion 2 is equivalent to Q:1[p2�1] � 1[p1�1]. Applying

the vec operator [4] to both sides of this inequality

we obtain
�
1>[1�p2]


 I[p1]
�
q � 1[p1�1], where 
 is

the Kronecker product, so set

A1 = 1
>

[1�p2]

 I[p1] ; b1 = 1[p1�1] (7)

By the same token we express condition 3 as

A2 = I[p2] 
 1
>

[1�p1]
; b2 = 1[p2�1] (8)

The intersection of conditions 2 and 3 results on the

constraints of Problem 3 with

A =

�
A1

A2

�
; b =

�
b1

b2

�
(9)

Similar conditions can be found for DS
p
t

s (p1; p2) and

other useful sets.

2.5 Minimizing a linearly con-

strained concave function

To solve linear problems we use the the lpSolve1 im-

plementation of the simplex algorithm. For concave

problems we use an extension of the exact method

of [1]. Other exact methods provide more eÆcient

procedures [3, 7] but this one is simple and easy to

implement. Like the simplex algorithm, worst case

complexity is factorial, but typically it visits only a

small fraction of the vertices of the constraints. It

performs surprisingly well in concave quadratic prob-

lems.

The method is based on a very simple iterative

scheme. In each iteration the next best solution of a

linear program is computed [10]. This can be accom-

plished by a few simplex pivoting steps. As iterations

run, a sequence of ever-improving vertices of the con-

straining polytope is return, as well as a sequence of

tighter and tighter bounds on the global minimum.

1
written by M. Berkelaar and J. Dirks at Eindhoven U.

of Technology

Global optimality is tested by checking for coherence

between the current best solution and the bounds.

Note that these are general-purpose algorithms,

which solve the problems for any kind of constraints.

If eÆciency is an issue, then specialized algorithms

should be used, wich have lower algorithmic com-

plexity but will only work for a particular set of con-

straints. Examples are dynamic-programming [6] and

graph-matching [8].

3 Experiments

In this section we will consider two of the most fre-

quently used assumptions and insert them in the de-

scribed framework. The resulting methods are tested

in real images and their robustness is compared with

benchmark algorithms.

3.1 Correlation matching by linear

programming

Matching by correlation of image patches requires the

solution of emerging ambiguities and outlier rejection.

Our formulation solves both in a natural way. To use

this criterion, features consist of image patches with

N pixels centered around the previously segmented

points of interest. Row i of X (and Y) is the row

vectorization of a patch around the ith feature-point

of the �rst (and second) image. The sum of the cor-

relation coeÆcients of the rows of X and Y is given

by the matrix inner product of X̂ and Ŷ, which are

normalized to have zero mean and unit norm rows.

So, the objective function is J1(Q) = �tr
�
QŶX̂>

�
.

Using algebraic properties of the trace operator [4]

J1(q) = �c
>

1 q (10)

c1 = vec
�
X̂Ŷ

>
�

which is linear in q = vec(Q). Problem 3 can be

solved by simplex algorithm.

3.1.1 Results

We compared the results of our method with those of

two benchmark algorithms. The �rst algorithm solves

the same problem with the same constraints using a

greedy suboptimal approach. The second benchmark

improves the results of the �rst one by using a ran-

dom sampling validation algorithm described in [9],

that uses an extra rigidity assumption. This is known

to achieve very reliable results. This algorithm ran-

domly chooses sets of only a few of the feature pairs to

estimate the Fundamental matrix, and keeps the so-

lution with smallest median of the feature to epipolar

distances. It then selects correspondences consistent

with this Fundamental matrix. The number of itera-

tions was set to 200.

We selected some image pairs with large disparity

from the Kitchen sequence2 and built three sets of

corrupted data. The �rst set consisted of images with

added zero-mean gaussian noise. In the second set,

images were corrupted with salt-and-pepper noise. In

2
Data was provided by the Modeling by Videotaping

group in the Robotics Institute, CMU.



Figure 2: Average number of incorrect matches

found in 40 trials for each noise level.

Figure 3: Notation for a trinocular system.

the last set, outlier features | with randomly gener-

ated coordinates | were added to the extracted fea-

tures, and all the images were corrupted with zero

mean gaussian noise. We measured the number of

incorrect matches returned by the three algorithms.

The results are summarized on Figure 2.

3.1.2 Discussion

The greedy solution consistently produced higher

number of mismatches, so we conclude that assur-

ing optimality is a key factor on the reduction of the

number of mismatches.

For the �rst two data sets, the random sampling al-

gorithm returns the same percentage of mismatches of

our method. When outliers are present, our method

performs better. This is mainly because the valida-

tion procedure also rejects many good matches, which

tends to raise the percentage of wrong matches.

The simultaneous rejection and correspondence of

features is a reliable strategy, even in the presence

of as much as 70% of outliers in data. The linear

problems were solved in a fraction of a second by

a simplex algorithm running on a 166MHz Pentium

processor. In the case of 40 features plus 40 outliers,

the cardinality of Pp(p1; p2) is roughly 10
70. Exhaus-

tive search would be impractical, while the simplex

algorithm visits less than 300 solutions.

3.2 Epipolar search by quadratic

concave minimization

Consider a trinocular system in generic con�guration

| focal points are not collinear | from which we

known all Fundamental Matrices. Figure 3 shows the

notation. Matrices P1;2 and P1;3 are the variables of

our problem. Each known Fundamental matrix Fk;l

de�nes pl epipolar lines L
m
k;l ;m = 1; : : : ; pl on image

k. A point on image k corresponding to the m-th

point on image l must lie close3 to Lm
k;l. This de�nes

a constraint that we represent by an indicator matrix

Sk;l. If entry (i; j) of Sk;l is set to 0, then entry (i; j) of

3
de�ne a distance threshold or choose a few from the

nearest

Figure 4: Three images from the Castle sequence,

and some of the epipolar lines.

Pk;l permanently set to 0. On the other hand, entry

(i; j) of Sk;l is set to 1 if the i-th point on image k is

close to L
j

k;l
. This means that entry (i; j) of Pk;l is a

variable.

We represent these constraints implicitly with a

squeezed set of variables pck;l of dimension nk;l. These

do not include the entries of Pk;l �xed to 0. We re-

cover the full matrices through vec (Pk;l) = Bk;l p
c

k;l,

so the sub-stochastic constraints become�
1>[1�pk]


 I[pl]

I[pk] 
 1
>

[1�pl]

�
Bk;l p

c

k;l � 1[1�nk;l]
(11)

We close the loop by estimating the compound corre-

spondence P̂2;3 = P>

1;2P1;3 and checking its coherence

with S2;3. The objective function is

J2 =

p1X
i=1

p2X
j=1

(P1;2 �D1;2 +P1;3 �D1;3+

+P̂2;3 �D2;3 + P̂2;3 � �S2;3

�
i;j

(12)

where � is the elementwise product, �S2;3 =�
1[p2�p3] � S2;3

�
, and Dk;l(i; j) is a matrix with the

distances between the points i = 1; : : : ; pk of image

k and the epipolar lines L
j

k;l. The lack of coherence

between P̂2;3 and S2;3 is penalized by the last term.

The other terms are the sum of all point-to-epipolar

distances. These will disambiguate between di�erent

compatible solutions. By algebraic manipulation, we

get the objective function

J2 (p) = p
>
J2p+ c

>

2 p (13)

written in a complete vector of variables p =�
pc1;2
pc1;3

�
, and with

J2 = B
>

1;2

��
D2;3 + �S2;3

�

 I[p1]

�
B1;3

c2 =

�
B>

1;2 vec (D1;2)

B>

1;3 vec (D1;3)

�

Note that J2 is, in general, not concave, so a concave

version J� must be computed using Equations 4 and 5,

before the minimization algorithm is applied.

3.2.1 Results

We applied the described method to the images of

Figure 4, which are details taken from the Castle

sequence4. The white lines are epipolar lines corre-

sponding to a few points of the �rst image. The white

dots are edge points from the Canny edge extractor.

4
Data was provided by the Calibrated Imaging Labo-

ratory at CMU.



Figure 5: Graphical representation of the ob-

tained P1;2 and P1;3.

The feature points | crosses in black | come from

inside a manually de�ned rectangular region of inter-

est. They were automatically chosen from the set of

edges by a bucketing procedure to guaranty a mini-

mum distance between them. At the end we obtained

50 points from the �rst image and 130 points from

each of the other images. Note that the second and

third images contain, at least, 80 outliers, so the prob-

lem is solved in the presence of roughly 60% of outliers

in the data. We �xed the number of computed cor-

respondences by setting pt = 30, and obtained the

correspondences in Figure 5.

3.2.2 Discussion

We detected 3 mismatches in P1;2 and 2 mismatches

in P1;3, corresponding to 8% errors. The algo-

rithm stopped after less than 100 iterations, when

the bounds | Section 2.5 | were closer than a

�xed threshold, so the depicted solution is not op-

timal. We set this threshold to admit only solutions

without violations of the epipolar constraints, though

mismatches can occur when more than one point is

within the lozenge de�ned by the crossing of two

epipolar lines. The mismatches occour because the

�rst three terms of the objective function | Equa-

tion 12 | are unable to correctly disambiguate these

situations, so the introduction of other assumptions

would result on a better performance.

4 Conclusion

We have shown a methodology to solve the correspon-

dence problem, which avoids unwanted assumptions

by requiring their explicit statement. Furthermore

it reliably handles outliers, even in situations where

other robust methods fail.

The most important limitation of the methodology

is the dimensionality of the optimization problems,

specially when the objective functions are high-order

polynomials. A practical way of minimizing this is the

selection of a small number of reliable features in one

of the images. Ongoing work is being conducted on

the implementation of an eÆcient algorithm for high-

order polynomial problems, and dealing with the as-

sumption of rigidity under various camera models |

see [5]. We plan to extend the methodology to dealing

with extended sequences of images. Also we are work-

ing on reducing the dimensionality of the problem by

integration of more than one assumption.
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