
IMPROVING REUSABILITY OF BEHAVIOR BASED ROBOT COGNITIVE
ARCHITECTURES OBTAINED THROUGH EVOLUTION

R. J. Duro, J. A. Becerra, J. Santos

Grupo de Sistemas Autónomos, Universidade da Coruña, Mendizábal s/n, Ferrol, Spain
gsa@cdf.udc.es

ABSTRACT

In this paper we discuss some of the new work we
have been carrying out with the objective of making
evolutionarily obtained behavior based architectures and
modules for autonomous robots more standardized and
interchangeable. These architectures are based on a
hierarchical behavior structure where all of the modules,
as well as their interconnections, are automatically
obtained through evolutionary processes. The emphasis
of this work is to produce behavior based structures that
work on real robots operating in real environments and
to be able to obtain them as independent of the platform
as possible. To address this problem we have introduced
the concept of virtual sensors and effectors in behavior
based architectures and studied different approaches to
automatically obtain them.

1. INTRODUCTION

Mobile Robots are very good examples of systems
that can be autonomous. They interact with their
environment performing actions in order to achieve
objectives as a function of perceptions and previous
actions. Obviously, as Van de Velde (Ref. 1) indicates,
for a system to be autonomous it must organize its own
internal structure in order to behave adequately with
respect to its goals and the world, that is, it must learn.
Learning involves several aspects that affect the
cognitive and physical structure of a robot. It must be
carried out all the way from the organization of
perceptual information to the synchronization of the
actuation of the robot.

Behavior based robotics (Refs. 2-4) draws
inspiration from natural phenomena and its emphasis is
on behavior and fast reaction and not knowledge and
planning. The main ideas behind these proposals are
that representations are not necessary for intelligence,
except in a very limited sense, as the world is a good
enough model of itself, that there must be a direct
interaction between the robot and the world and that the
robot must be taken as a whole and constructed bottom
up, and not as in traditional AI as a sum of independent
knowledge modules. The focus of these reactive
systems is on behaviors, which can be taken as
"stimulus response pairs modulated by attention and
determined by intention" (Ref. 5), where attention
prioritizes tasks and provides some organization in the
use of sensorial resources and intention determines the

behaviors to be activated depending on the objectives or
tasks the robot must achieve.

Thus, in the behavior-based approach to robotics,
behaviors are the building blocks of the robotic
cognitive system. Explicit abstract representations of
knowledge are avoided. Animal behavior is taken as a
model and the systems are inherently modular from a
software point of view.

One of the main problems of behavior based
architectures lies in the difficulty in scaling them. To
make a real agent operate in a real environment doing
something useful, it is necessary to provide it with many
individual behaviors that interact with each other. This
requires obtaining the individual behaviors and, what is
more complex, generating the interaction patterns
between them to achieve what is expected from the
agent.

In this paper we have addressed this problem from
the point of view of a methodology for automatically
obtaining multiple module behavior based architectures
for individual robots so that reuse of behaviors is
maximized (intra-robot behavior reuse). Additionally,
we have designed two ways of introducing virtual
sensors and behavior interfaces so that behaviors
generated contemplating one robot model could be used
when designing behavior architectures for a different
robot model (inter-robot behavior reuse).

2. INTRA-ROBOT BEHAVIOR REUSE

When but a few behavior modules are required in

order to implement a robot behavior controller, the
complexity in a design scales with the number of
possible interactions among modules. This was already
pointed out by Cliff et al. (Ref. 6). If the behaviors and
their interconnections are designed by hand, two
problems arise, one due to complexity and the other to
the fact that the hand-designed behaviors are not
necessarily the best, or, in some cases even adequate for
the task.

The next problem that arises is how to structure the
different behaviors so that meaningful tasks can be
accomplished. It is important in any structure, or
strategy for obtaining global controllers, to minimize the
participation of the designer and maximize behavior
reuse in order to simplify the overall architecture.

In the late eighties and early nineties, artificial
evolution was proposed as a means to automate the
design procedure of these types of systems (Refs. 6-8).
Many authors have taken up this issue and have
developed different evolutionary mechanisms and
strategies in order to obtain robotic controllers, mostly
applied to single behavior modules in the form of
Artificial Neural Networks (ANNs), Augmented Finite
State Automata (AFSM), Classifier Systems (CS) or any
other type of paradigm. When considering more
complex structures it is necessary to provide
mechanisms for reducing the participation of the
designer so that the behaviors can evolve more freely
and adapted to the specific characteristics of the robot.
An attempt must be made to reduce complexity and the
more modules that are reused the more economical the
design process will become (Figure 1).

Monolithic architectures implement all the

behaviors in the same controller, whether an ANN, a
CS, or an AFSM, etc. The advantage they offer is that it
is not necessary to have prior knowledge about potential
sub-behaviors and the interrelations between them. The
disadvantage is that it is not possible to reuse the
individual behaviors. If a new behavior is required it is
necessary to evolve the complete module again, even if
it could have reused previously learnt or evolved
behaviors.

In hierarchical modular architectures, the global
behavior is decomposed, as necessary, into lower level
behaviors that will be implemented in particular
controllers. The higher-level controllers can take
information from the sensors or from low-level
controllers, and depending on the architecture, act over
the actuators or select a lower level controller for
activation. The advantage of these methods is that the
behaviors can be obtained individually and then the
interconnection between them can be established. Also,
it is possible to reuse the behaviors obtained when
implementing higher-level behaviors. The problem that
arises is that the decomposition is not clear in every

case, as it implies a specific knowledge of what sub-
behaviors must be employed. This, in general, implies a
greater participation of the designer in the process of
obtaining a global controller.

Finally, distributed architectures, where there are
no priorities and all the controllers compete for control
of the actuators at each instant of time lead to less
participation of the designer. They also preserve the
level of behavior reuse. However, as a drawback, they
induce a higher level of difficulty when obtaining
complex behaviors.

3. AUTOMATIC DESIGN

 In the work presented here, we have tried to
combine, in a practical way, the advantages of a
monolithic approach and a hierarchical modular
structure so that complex behaviors could be generated
automatically but took into account the experience
accumulated through the implementation of previous
behaviors.
 In particular, using this method (Figure 2) a designer
provides the system with whatever behaviors he has or
decides that may be useful. This initial set need not be
complete and may include many unnecessary behaviors.
When obtaining the higher level controller, the
evolution process will select those lower level behaviors
from the initial set that are useful in order to perform the
task assigned and will ignore the rest. If some part of the
global behavior cannot be obtained through the
interconnection of the available modules, a new
monolithic module that handles this part will be co-
evolved with the global controller

In a first step, a designer must identify sub-
behaviors that may be useful to generate the global
behavior required. The designer need not be exhaustive
nor does he need to be concise, i.e. there is no problem
if useless behaviors are included in this preliminary set.

Evolver / coevolver

Previously
evolved behaviors

New higher level
behavior

New lower level
behavior

Goal

Environment

Figure 2. Schematic of the operation of the automatic behavior
architecture evolver.

Difficulty in obtaining
complex behaviors

Participation of
the designer

Behavior Re-use

Monolithic

Hierarchical

Distributed

Figure 1. Comparison of relevant parameters for different
general types of behavior architectures. An optimal one would
maximize behavior re-use and minimize designer intervention
and complexity. This is what we aim to achieve through the
automatic generation of hierarchical structures.

The selection and interconnection of these behaviors are
carried out by means of an additional ANN that is
evolved. Thus, the designer does not have to specify
which low-level module must be executed at each
moment in time. The evolutionary algorithm will evolve
the ANN so that it makes this selection appropriately,
based on data from sensors or from the outputs of other
behavior controllers. This higher-level ANN differs
from the lower level ones in that its output does not
always act over the actuators; it mostly selects the
adequate lower level behavior. There is nothing in this
architecture to limit the number of levels to two. The
lower level behavior selected by a given higher-level
behavior may itself select a lower level behavior that
acts over the actuators.

Using this structure, the controllers may be used in
multiple composite behaviors without duplicities. As
new behaviors are evolved, this evolution becomes
faster and simpler due to the fact that a lot of experience
in the form of previously evolved behaviors is available.

To prevent the problem of the designers having to
be exhaustive in their determination of all the necessary
lower level behaviors, we have included the possibility
of cooperatively coevolving lower and higher-level
behaviors. That is, a higher-level behavior may be
evolved by itself using previously evolved lower level
behaviors, or it may be coevolved with part of the lower
level behaviors and use the previously evolved ones.
This way, when the designer is faced with a problem
where he is only able to identify part of the behaviors
that may be involved, the unidentified ones will be
evolved at the same time as the higher-level controller.
This option makes the evolution of complex behaviors a
lot easier for the designer, as it works even when the
designer is not capable of identifying any of the
behaviors involved. The designer can provide a set of
previously evolved behaviors as a guess and let the
evolver do the rest.

4. INTER-ROBOT BEHAVIOR REUSE

Until recently most behavior modules, whether

implemented by means of neural networks or any other
paradigm, were evolved or created for a given robot
type in a certain environment (Refs. 6, 9). Environment
that was particular in terms of noise and/or features.

An attempt to increase the reusability of modules
generated for one robot in a different one is made in the
work by Floreano and Mondada (Ref. 10), in which the
authors evolve controllers for a Khepera robot that are
used as seeds in the evolution of controllers for a Koala
robot. This second robot is similar to the first one but
larger in size. This method would not be valid for robots
that present different sensing capacities, which is the
general case.

To prevent all of these drawbacks and, at the same
time, preserve the inherent advantages of behavior
based architectures in terms of autonomy, and of
evolutionary robotics in terms of automatic

development of systems, in our group we have
addressed these problems through the use of virtual
sensors and effectors. For us, a virtual sensor is just a
stage that integrates, interprets and homogenises
information from a single or several sensors and
provides a standardized output that is taken up by the
behavior based control mechanism. A virtual effector is
a stage that interprets standardized inputs and converts
them into motor commands for a given effector or set of
effectors. Thus, a first approach to produce controllers
that may be used in different robots implies changing
from a structure that links the environment directly to

Sensors Effectors

Virtual Sensors Virtual Effectors

Shared

Figure 3. Architecture where the whole behavior structure is
shareable between different types of robots using virtual sensor and
effector interfaces.

Sensors Effectors

Shared

Figure 4. Architecture where part of the behavior structure is
shareable between different types of robots and part is particular to
each robot. The interface is at the behavior level.

the behavior based control mechanism, to a structure
that implies intermediate modules, which are in charge
of common pre-processing tasks (figure 3). In a sense,
these modules regularize and structure common
sensorial input and output spaces for the control
modules. That is, the virtual sensors and effectors act as
an interface between different sensor and effector sets
(in the same or different robots) with the same behavior
module. It is important to note that, in order to prevent
an inadequate selection by the designer, we may also
obtain the virtual sensors and virtual effectors using
automatic procedures, such as learning or evolution.

A second approach to improving inter-robot
behavior reusability, and one that is much closer to the
concept of behavior based robotics is to include the
interface between robot-specific and shared modules at
the level of behaviors. In our case, as the behavior
architectures generated by our systems are basically a
hierarchy of behaviors, a division between low-level,
robot specific behaviors and higher-level shared
behaviors is relatively easy to obtain. Thus, even though
the lower-level behaviors are robot specific, different
robots can share the higher-level structure. This idea
corresponds to the diagram shown in figure 4. Note that
obtaining lower level behaviors for robots is, in general,
quite simple as compared to the whole structure

5. APPLICATION EXAMPLES

All of the behavior architectures we use are based on

Artificial Neural Network modules. They are evolved in
simulated environments and then transferred to real
robots. For a simulation to be appropriate for the
transference of behaviors developed using it to the real
world, it must meet some criteria, such as those
established by Jakobi (Ref. 11), which usually imply
handling different levels and types of noise. We have
taken these criteria into account in our simulator adding
generalization noise, random noise, temporal noise and
systemic noise.

Regarding the simulation/evolution environment, we
have selected a Macro Evolutionary Algorithm (MA)
(Ref. 12). In our case, the original structure of MAs has
been adapted to the development of ANN based robot
controllers by uniformly distributing the initial
population throughout the search space and subdividing
it into races to prevent the clustering that arises when a
random initial distribution of the low fitness individuals
of small populations is employed.

The evolutionary algorithm can evolve a single low
level behavior, a high level behavior that makes use of
the low level behaviors we provide it with or co-evolve
both simultaneously. The encoding scheme employed
for the Neural Networks that implement the controllers,
is just a direct genotypic representation of the phenotype
in terms of synaptic weights and delays, bias and
sigmoid slopes when appropriate.
 Each individual in the robot population must live its
life out in the environment interacting with whatever

objects are included in it. The fitness criteria, as
described elsewhere (Ref. 13), involves the robot eating
food in the environment. The food is distributed
according to the task we want the robot to perform.

In the next two sections we present two examples of
control structures developed using the methodology
described above. The first one involves a hexapod robot
for which we have developed a virtual sensor. This
sensor must make use of temporal information to obtain
appropriately precise information of where objects are
located from an imprecise infrared sensor that is swept.
Once the sensor is obtained the robot may use behavior
modules developed for any other robot whose input
requires a reasonably precise position of the objects in
front of it. The second example involves a behavior
hierarchy that was developed according to the second
approach mentioned above. The higher-level modules
are shared and the lower level ones robot specific.

6. VIRTUAL SENSOR FOR HERMES II

To present the power of virtual sensing we will

make use of a simple, but very illustrative, example. It
uses a time delay based ANN to increase the precision
in object-detection of an infrared (IR) sensor of the
Hermes II robot (figure 5).

Infrared sensors are very common in robots because
they are quite robust and simple to use, but they are not
very precise given their ambiguity regarding the exact
position of an object. These devices, usually couple an
IR radiation emitter tuned to a given wavelength and an
IR receiver that selects reflections of the same
wavelength. The infrared sensors in our Hermes II robot
are located on the top of each leg so we have six IR

Figure 5. The low accuracy problem with the
response of the Hermes II infrared sensor. At the left
is the network with time delays used as virtual sensor.

I

IR
 v

al
ue

IR
 v

al
ue

X (cm)

Y
 (cm

)

25,0

20,0

15,0

10,0

5,0

0,0

-5,0

-10,0

-15,0

20,0
30,0

40,0
50,0

60,0
70,0

80,0

0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

14

16

18

20

16

x

 y

sensors and they sweep a given area according to the
motion of the leg. In figure 5 we display the response of
the front-left IR sensor.

The output from the robot is encoded by means of a
value between 0 (near) and 20 (far) and, as we can see,
the shape of the curve makes it impossible to
discriminate with precision the exact distance and angle
at which the object is located. For example, if we place
the same object in the two positions pointed by the
arrows in figure 5, the output of the Hermes IR sensor
would be 16 in both cases. This problem exists for all
the parallel lines in the IR value axis, so we have a very
important positional ambiguity problem. Notice also
that this particular sensor detects the objects better if
these are placed in front of it or to its right (although
this is not a practical problem if we use all the IR
sensors of the robot).

Through the inclusion of time in our IR sensing, and
consequently through the introduction of previous
information, the position of an object can be
disambiguated. We use the IR sensor values taken in
one sweep of the front-left leg and a synaptic delay
based neural network manages these values.

In figure 5 we also display the experimental setup
including the angles and distances being considered. In

each sweep we obtain the different values of the IR
reading and the leg angle (á) so we have the two inputs
to our neural network. The outputs of the network are
the distance to the object (r) and the polar angle (è) at
which it is located from the IR sensor. The neural
network in the example has two input neurons; two
hidden layers with 15 neurons each and both output
neurons. We have assumed the requirement that two
consequent measurements should overlap (the IR sensor
covers exactly 21º in each IR detection), so we took 12
values of IR and á to cover the whole sweep of one leg
(84º).

Figure 6 displays results for an experiment where we
placed a tree-like object, represented by ellipses, at
different positions in front of the robot (positioned at
x=y=0) and plotted 5 outputs (different sweeps) from
the network for each ellipse. We can see that the
accuracy of our sensing is now adequate; the robot is
able to locate the object independently of its lateral
position. Using larger networks and more training
examples may increase the accuracy. It is only limited
by the repeatability of the outputs provided by the IR
sensors. Another way to increase precision could be to
make a finer sweep. In this case, the one obtained was
quite enough for the task the robot had to perform, and
that is navigate through an environment with tree like
objects it had to avoid.

We have tested this network with the Hermes II
robot in motion using a single sensor and it was able to
detect the obstacles in its path and avoid them by going
around them to one side or the other depending on the
exact position of the obstacle in relation to the robot, as
can be seen in bottom part of figure 6. On one hand, the
sensing precision while the robot is in motion has been
highly increased and. On the other hand, which is the
point we want to make here, any behavior module
developed for a different robot which uses sensorial
information in a similar range regarding the position of
objects in the robot path can now be used directly in the
robot following the structure shown in figure 3 and does
not need to be redeveloped for this particular animat.

7. SHARED HIGHER-LEVEL BEHAVIOR

The second example was implemented with the

behavior hierarchy shown in figure 7. This behavior
corresponds to a compound wall following task that
comprises modules for finding a wall, following it and,
if the robot collides, allowing it to get unstuck (collision
avoidance). In this compound behavior we include a
virtual sensor for the detection of collisions (developed
for both a Rug Warrior robot and contact sensors and a
Pioneer II robot using sonar and wheel encoders) and a
virtual sensor for the detection of objects closed to the
robot (employing IR sensors with the Rug Warrior and
sonar sensors with the Pioneer II).

The Rug Warrior robot is a very small round robot
with two very imprecise and noisy infrared sensors and
three contact sensors. The Pioneer II robot is a much

Figure 6. Top: Position data obtained by the trained networks
(squares) for objects in different locations (ellipses). The
sensor is located in position (0,0). Bottom: Trajectory of the
Hermes robot using the virtual sensor and a single IR
detector.

20

30

40

50

60

70

80

90

25 -15 -5 5 15 25 X(cm)

Y
(c

m
)

bigger, almost rectangular, robot with sonar sensors and
encoders. The Pioneer II moves much faster than the
Rug Warrior.

In the example, the inclusion of these virtual sensors
allows both robots to make use of the same higher-level
behavior module (developed using the Rug warrior) to
carry out a wall following task in an efficient manner, as
shown in figure 8. In the tests we carried out both
robots operated satisfactorily, finding the walls,
following them with very few or no collisions and when
a collision occurred, getting unstuck and continuing
with the task.

The lower level behaviors, in this case, are particular
to each type of robot, and thus make better use of their
idiosyncrasies leading to better results in cases where
the sensing apparatus of the robot is better, as in the
case of the Pioneer II. In this case, the more elaborate
sensing apparatus with sonar sensors all around the
body of the robot, allows it to obtain a better wall
following behavior, and without the need of use of
temporal information as in the case of the Rug Warrior
due to the binary nature of its infrared sensors. In
addition, this structure is much more coherent with
behavior based robotics than the previous one used in
the Hermes II robot, but it does add an element of
complexity and a new design decision must be made of
where the interface between shared and particular
behaviors must be established.

8. CONCLUSIONS

In this article we have presented a structured way of

obtaining compound behaviors in different robots. This
implies a hierarchical structure where the different
behaviors are implemented through ANNs, some of
them using temporal delays to consider time related
events. Through this structure, the controllers may be
used in multiple compound behaviors without
duplicities, and, as new behaviors are evolved, this
evolution becomes faster and simpler due to the fact that
a lot of experience in the form of previously evolved
behaviors is available.

To make things even easier, we have presented two
ways of using behavior modules developed for one
robot in the behavior structure of a different type of
robot. These modules can be introduced as possible
tools during the evolution of the global controller and
thus, experience in the form of behavior controllers
obtained in one platform can be readily used in a
different one. The first approach implies using a virtual
sensor and effector based interface between the real
sensors and effectors of the particular robot and its
behavior based architecture. Doing things this way has
the advantage of simplifying the whole process and
being able to use complete behavior architectures
developed for one robot in another. The main drawback
the approach presents is that the behavior architecture
does not really take into account the advantages
provided by the idiosyncrasies of each type of robot for
performing particular tasks, and, consequently, leads to
the problem of having to use the features of the least
capable system as a reference. It also implies deciding
the interface beforehand and thus losing part of the
grounding property of the behavior based alternative.
Additionally, from a conceptual point of view, it
represents a trade-off between behavior-basedness and
ease of implementation, thus hybridizing the paradigm.

The second approach implies developing lower level
behaviors that are particular to each robot, but which are
easier to obtain, and only sharing higher-level
behaviors. This approach seems conceptually sounder

Wall following
Collision
avoidance

Figure 7. Behavior based architecture with the top module
shared by the Rug Warrior and the Pioneer II robot.

Figure 8.Operation of the Pioneer II robot (top) in simulation
and the Rug Warrior (bottom) using the behavior based
structure shown above.

and, in practice, makes the unstructured development of
complex architectures more straightforward. The
alternative makes use of all the possibilities of the
sensor apparatus of each robot, its range of detection
and particular position of all the sensors; thus, the
resulting behavior will be grounded. The compound
wall following behavior with the Rug Warrior and
Pioneer robots is an example of that, where the behavior
is obtained with low level modules tuned to the different
sensor apparatus of each robot. The drawback is that we
move the decision of the interface between dependence
and independence of the platform one step up, and thus
we need to obtain these low level behaviors in all the
robots, as opposed to the first alternative in which it
would only be necessary to obtain the lower level
behaviors once.

ACKNOWLEDGEMENTS

This work was funded by Xunta de Galicia under
project PGIDT99PXI10503A.

REFERENCES

[1] Van de Velde, W, 1993, Towards Learning Robots,

MIT Press, Cambridge, MA.
[2] Brooks, R.A. 1991, Intelligence without

Representation, Artificial Intelligence, Vol. 47, 139-
159.

[3] Maes, P., A 1990, Bottom-up Mechanism for
Behavior Selection in an Artificial Creature,
Proceedings of the First International Conference on
Simulation of Adaptive Behavior (SAB90).

[4] Mataric, M.J. 1992, Integration of Representation into
Goal Driven Behavior Based Robotics, IEEE
Transactions on Robotics and Automation, Vol. 8,
No. 3, 304-312.

[5] Arkin, R.C. 1998, Behavior Based Robotics, MIT
Press, Cambridge, MA.

[6] Cliff, D., Harvey, I. and Husbands, P. 1992,
Incremental Evolution of Neural Network
Architectures for Adaptive Behaviour, Tech. Rep. No.
CSRP256, Brighton, School of Cognitive and
Computing Sciences, University of Sussex, UK.

[7] Harvey, I., Husbands, P., and Cliff, D. 1993, Issues in
Evolutionary Robotics, J-A. Meyer, H. Roitblat, and
S. Wilson (Eds.), From Animals to Animats 2.
Proceedings of the Second International Conference
on Simulation of Adaptive Behavior (SAB92), MIT
Press, Cambridge, MA, pp. 364-373.

[8] Beer, R.D. and Gallagher, J.C. 1992, Evolving
Dynamical Neural Networks for Adaptive Behavior,
Adaptive Behavior, Vol. 1, No. 1, pp. 91-122.

[9] Nolfi, S. 1997, Using Emergent Modularity to
Develop Control Systems for Mobile Robots,
Adaptive Behavior, Vol. 5, No.3-4, pp. 343-363.

[10] Floreano, D. and Mondada, F. 1998, Evolutionary
Neurocontrollers for Autonomous Mobile Robots,
Neural Networks, Vol. 11, pp. 1461-1478.

[11] Jakobi, N. 1997, Evolutionary Robotics and the
Radical Envelope of Noise Hypothesis, Adaptive
Behavior, Vol. 6, No. 2, pp. 325-368.

[12] Marín, J. and Solé, R.V. 1999, Macroevolutionary
Algorithms: A New Optimization Method on Fitness
Landscapes. IEEE Transactions on Evolutioanry
Computation. V3, N4, 272-286.

[13] Becerra, J.A., Santos, J., and Duro, R.J. 1999,
Progressive Construction of Compound Behavior
Controllers for Autonomous Robots Using Temporal
Information, Advances in Artificial Life, Dario
Floreano, Jean-Daniel Nicoud and Francesco
Mondada (Eds.), Lecture Notes in Artificial
Intelligence, Vol. 1674, pp. 324-328, Springer-
Verlag, Berlín.

