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ABSTRACT 
 

In this paper we discuss some of the new work we 
have been carrying out with the objective of making 
evolutionarily obtained behavior based architectures and 
modules for autonomous robots more standardized and 
interchangeable. These architectures are based on a 
hierarchical behavior structure where all of the modules, 
as well as their interconnections, are automatically 
obtained through evolutionary processes. The emphasis 
of this work is to produce behavior based structures that 
work on real robots operating in real environments and 
to be able to obtain them as independent of the platform 
as possible. To address this problem we have introduced 
the concept of virtual sensors and effectors in behavior 
based architectures and studied different approaches to 
automatically obtain them. 

 
1. INTRODUCTION 
 

Mobile Robots are very good examples of systems 
that can be autonomous. They interact with their 
environment performing actions in order to achieve 
objectives as a function of perceptions and previous 
actions. Obviously, as Van de Velde (Ref. 1) indicates, 
for a system to be autonomous it must organize its own 
internal structure in order to behave adequately with 
respect to its goals and the world, that is, it must learn. 
Learning involves several aspects that affect the 
cognitive and physical structure of a robot. It must be 
carried out all the way from the organization of 
perceptual information to the synchronization of the 
actuation of the robot. 

Behavior based robotics (Refs. 2-4) draws 
inspiration from natural phenomena and its emphasis is 
on behavior and fast reaction and not knowledge and 
planning. The main ideas behind these proposals are 
that representations are not necessary for intelligence, 
except in a very limited sense, as the world is a good 
enough model of itself, that there must be a direct 
interaction between the robot and the world and that the 
robot must be taken as a whole and constructed bottom 
up, and not as in traditional AI as a sum of independent 
knowledge modules. The focus of these reactive 
systems is on behaviors, which can be taken as 
"stimulus response pairs modulated by attention and 
determined by intention" (Ref. 5), where attention 
prioritizes tasks and provides some organization in the 
use of sensorial resources and intention determines the 

behaviors to be activated depending on the objectives or 
tasks the robot must achieve.  

Thus, in the behavior-based approach to robotics, 
behaviors are the building blocks of the robotic 
cognitive system. Explicit abstract representations of 
knowledge are avoided. Animal behavior is taken as a 
model and the systems are inherently modular from a 
software point of view. 

One of the main problems of behavior based 
architectures lies in the difficulty in scaling them. To 
make a real agent operate in a real environment doing 
something useful, it is necessary to provide it with many 
individual behaviors that interact with each other. This 
requires obtaining the individual behaviors and, what is 
more complex, generating the interaction patterns 
between them to achieve what is expected from the 
agent. 

In this paper we have addressed this problem from 
the point of view of a methodology for automatically 
obtaining multiple module behavior based architectures 
for individual robots so that reuse of behaviors is 
maximized (intra-robot behavior reuse). Additionally, 
we have designed two ways of introducing virtual 
sensors and behavior interfaces so that behaviors 
generated contemplating one robot model could be used 
when designing behavior architectures for a different 
robot model (inter-robot behavior reuse). 

 
2. INTRA-ROBOT  BEHAVIOR REUSE 

 
When but a few behavior modules are required in 

order to implement a robot behavior controller, the 
complexity in a design scales with the number of 
possible interactions among modules. This was already 
pointed out by Cliff et al. (Ref. 6). If the behaviors and 
their interconnections are designed by hand, two 
problems arise, one due to complexity and the other to 
the fact that the hand-designed behaviors are not 
necessarily the best, or, in some cases even adequate for 
the task.  

The next problem that arises is how to structure the 
different behaviors so that meaningful tasks can be 
accomplished. It is important in any structure, or 
strategy for obtaining global controllers, to minimize the 
participation of the designer and maximize behavior 
reuse in order to simplify the overall architecture.  



In the late eighties and early nineties, artificial 
evolution was proposed as a means to automate the 
design procedure of these types of systems (Refs. 6-8). 
Many authors have taken up this issue and have 
developed different evolutionary mechanisms and 
strategies in order to obtain robotic controllers, mostly 
applied to single behavior modules in the form of 
Artificial Neural Networks (ANNs), Augmented Finite 
State Automata (AFSM), Classifier Systems (CS) or any 
other type of paradigm. When considering more 
complex structures it is necessary to provide 
mechanisms for reducing the participation of the 
designer so that the behaviors can evolve more freely 
and adapted to the specific characteristics of the robot. 
An attempt must be made to reduce complexity and the 
more modules that are reused the more economical the 
design process will become (Figure 1). 

Monolithic architectures implement all the 

behaviors in the same controller, whether an ANN, a 
CS, or an AFSM, etc. The advantage they offer is that it 
is not necessary to have prior knowledge about potential 
sub-behaviors and the interrelations between them. The 
disadvantage is that it is not possible to reuse the 
individual behaviors. If a new behavior is required it is 
necessary to evolve the complete module again, even if 
it could have reused previously learnt or evolved 
behaviors. 

In hierarchical modular architectures, the global 
behavior is decomposed, as necessary, into lower level 
behaviors that will be implemented in particular 
controllers. The higher-level controllers can take 
information from the sensors or from low-level 
controllers, and depending on the architecture, act over 
the actuators or select a lower level controller for 
activation. The advantage of these methods is that the 
behaviors can be obtained individually and then the 
interconnection between them can be established. Also, 
it is possible to reuse the behaviors obtained when 
implementing higher-level behaviors. The problem that 
arises is that the decomposition is not clear in every 

case, as it implies a specific knowledge of what sub-
behaviors must be employed. This, in general, implies a 
greater participation of the designer in the process of 
obtaining a global controller. 

Finally, distributed architectures, where there are 
no priorities and all the controllers compete for control 
of the actuators at each instant of time lead to less 
participation of the designer. They also preserve the 
level of behavior reuse. However, as a drawback, they 
induce a higher level of difficulty when obtaining 
complex behaviors. 
 
3. AUTOMATIC DESIGN 
 
 In the work presented here, we have tried to 
combine, in a practical way, the advantages of a 
monolithic approach and a hierarchical modular 
structure so that complex behaviors could be generated 
automatically but took into account the experience 
accumulated through the implementation of previous 
behaviors. 
 In particular, using this method (Figure 2) a designer 
provides the system with whatever behaviors he has or 
decides that may be useful. This initial set need not be 
complete and may include many unnecessary behaviors. 
When obtaining the higher level controller, the 
evolution process will select those lower level behaviors 
from the initial set that are useful in order to perform the 
task assigned and will ignore the rest. If some part of the 
global behavior cannot be obtained through the 
interconnection of the available modules, a new 
monolithic module that handles this part will be co-
evolved with the global controller 

In a first step, a designer must identify sub-
behaviors that may be useful to generate the global 
behavior required. The designer need not be exhaustive 
nor does he need to be concise, i.e. there is no problem 
if useless behaviors are included in this preliminary set. 
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Figure 2. Schematic of the operation of the automatic behavior 
architecture evolver. 
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Figure 1. Comparison of relevant parameters for different 
general types of behavior architectures. An optimal one would 
maximize behavior re-use and minimize designer intervention 
and complexity. This is what we aim to achieve through the 
automatic generation of hierarchical structures. 



The selection and interconnection of these behaviors are 
carried out by means of an additional ANN that is 
evolved. Thus, the designer does not have to specify 
which low-level module must be executed at each 
moment in time. The evolutionary algorithm will evolve 
the ANN so that it makes this selection appropriately, 
based on data from sensors or from the outputs of other 
behavior controllers. This higher-level ANN differs 
from the lower level ones in that its output does not 
always act over the actuators; it mostly selects the 
adequate lower level behavior. There is nothing in this 
architecture to limit the number of levels to two. The 
lower level behavior selected by a given higher-level 
behavior may itself select a lower level behavior that 
acts over the actuators. 

Using this structure, the controllers may be used in 
multiple composite behaviors without duplicities. As 
new behaviors are evolved, this evolution becomes 
faster and simpler due to the fact that a lot of experience 
in the form of previously evolved behaviors is available. 

To prevent the problem of the designers having to 
be exhaustive in their determination of all the necessary 
lower level behaviors, we have included the possibility 
of cooperatively coevolving lower and higher-level 
behaviors. That is, a higher-level behavior may be 
evolved by itself using previously evolved lower level 
behaviors, or it may be coevolved with part of the lower 
level behaviors and use the previously evolved ones. 
This way, when the designer is faced with a problem 
where he is only able to identify part of the behaviors 
that may be involved, the unidentified ones will be 
evolved at the same time as the higher-level controller. 
This option makes the evolution of complex behaviors a 
lot easier for the designer, as it works even when the 
designer is not capable of identifying any of the 
behaviors involved. The designer can provide a set of 
previously evolved behaviors as a guess and let the 
evolver do the rest.  
 
4. INTER-ROBOT BEHAVIOR REUSE 

 
Until recently most behavior modules, whether 

implemented by means of neural networks or any other 
paradigm, were evolved or created for a given robot 
type in a certain environment (Refs. 6, 9). Environment 
that was particular in terms of noise and/or features.   

An attempt to increase the reusability of modules 
generated for one robot in a different one is made in the 
work by Floreano and Mondada (Ref. 10), in which the 
authors evolve controllers for a Khepera robot that are 
used as seeds in the evolution of controllers for a Koala 
robot. This second robot is similar to the first one but 
larger in size. This method would not be valid for robots 
that present different sensing capacities, which is the 
general case. 

To prevent all of these drawbacks and, at the same 
time, preserve the inherent advantages of behavior 
based architectures in terms of autonomy, and of 
evolutionary robotics in terms of automatic 

development of systems, in our group we have 
addressed these problems through the use of virtual 
sensors and effectors. For us, a virtual sensor is just a 
stage that integrates, interprets and homogenises 
information from a single or several sensors and 
provides a standardized output that is taken up by the 
behavior based control mechanism. A virtual effector is 
a stage that interprets standardized inputs and converts 
them into motor commands for a given effector or set of 
effectors. Thus, a first approach to produce controllers 
that may be used in different robots implies changing 
from a structure that links the environment directly to 

Sensors Effectors 

Virtual Sensors Virtual Effectors 

Shared 

Figure 3.  Architecture where the whole behavior structure is 
shareable between different types of robots using virtual sensor and 
effector interfaces. 

Sensors Effectors 

Shared 

Figure 4. Architecture where part of the behavior structure is 
shareable between different types of robots and part is particular to 
each robot. The interface is at the behavior level. 



the behavior based control mechanism, to a structure 
that implies intermediate modules, which are in charge 
of common pre-processing tasks (figure 3). In a sense, 
these modules regularize and structure common 
sensorial input and output spaces for the control 
modules. That is, the virtual sensors and effectors act as 
an interface between different sensor and effector sets 
(in the same or different robots) with the same behavior 
module. It is important to note that, in order to prevent 
an inadequate selection by the designer, we may also 
obtain the virtual sensors and virtual effectors using 
automatic procedures, such as learning or evolution.  

A second approach to improving inter-robot 
behavior reusability, and one that is much closer to the 
concept of behavior based robotics is to include the 
interface between robot-specific and shared modules at 
the level of behaviors. In our case, as the behavior 
architectures generated by our systems are basically a 
hierarchy of behaviors, a division between low-level, 
robot specific behaviors and higher-level shared 
behaviors is relatively easy to obtain. Thus, even though 
the lower-level behaviors are robot specific, different 
robots can share the higher-level structure. This idea 
corresponds to the diagram shown in figure 4. Note that 
obtaining lower level behaviors for robots is, in general, 
quite simple as compared to the whole structure 

 
5. APPLICATION EXAMPLES 

 
All of the behavior architectures we use are based on 

Artificial Neural Network modules. They are evolved in 
simulated environments and then transferred to real 
robots. For a simulation to be appropriate for the 
transference of behaviors developed using it to the real 
world, it must meet some criteria, such as those 
established by Jakobi (Ref. 11), which usually imply 
handling different levels and types of noise. We have 
taken these criteria into account in our simulator adding 
generalization noise, random noise, temporal noise and 
systemic noise.  

Regarding the simulation/evolution environment, we 
have selected a Macro Evolutionary Algorithm (MA) 
(Ref. 12). In our case, the original structure of MAs has 
been adapted to the development of ANN based robot 
controllers by uniformly distributing the initial 
population throughout the search space and subdividing 
it into races to prevent the clustering that arises when a 
random initial distribution of the low fitness individuals 
of small populations is employed. 

The evolutionary algorithm can evolve a single low 
level behavior, a high level behavior that makes use of 
the low level behaviors we provide it with or co-evolve 
both simultaneously. The encoding scheme employed 
for the Neural Networks that implement the controllers, 
is just a direct genotypic representation of the phenotype 
in terms of synaptic weights and delays, bias and 
sigmoid slopes when appropriate.  
 Each individual in the robot population must live its 
life out in the environment interacting with whatever 

objects are included in it. The fitness criteria, as 
described elsewhere (Ref. 13), involves the robot eating 
food in the environment. The food is distributed 
according to the task we want the robot to perform. 

In the next two sections we present two examples of 
control structures developed using the methodology 
described above. The first one involves a hexapod robot 
for which we have developed a virtual sensor. This 
sensor must make use of temporal information to obtain 
appropriately precise information of where objects are 
located from an imprecise infrared sensor that is swept.  
Once the sensor is obtained the robot may use behavior 
modules developed for any other robot whose input 
requires a reasonably precise position of the objects in 
front of it. The second example involves a behavior 
hierarchy that was developed according to the second 
approach mentioned above. The higher-level modules 
are shared and the lower level ones robot specific. 
 

6. VIRTUAL SENSOR FOR HERMES II 

 
To present the power of virtual sensing we will 

make use of a simple, but very illustrative, example. It 
uses a time delay based ANN to increase the precision 
in object-detection of an infrared (IR) sensor of the 
Hermes II robot (figure 5). 

Infrared sensors are very common in robots because 
they are quite robust and simple to use, but they are not 
very precise given their ambiguity regarding the exact 
position of an object. These devices, usually couple an 
IR radiation emitter tuned to a given wavelength and an 
IR receiver that selects reflections of the same 
wavelength. The infrared sensors in our Hermes II robot 
are located on the top of each leg so we have six IR 

Figure 5. The low accuracy problem with the 
response of the Hermes II infrared sensor. At the left 
is the network with time delays used as virtual sensor. 
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sensors and they sweep a given area according to the 
motion of the leg. In figure 5 we display the response of 
the front-left IR sensor.  

The output from the robot is encoded by means of a 
value between 0 (near) and 20 (far) and, as we can see, 
the shape of the curve makes it impossible to 
discriminate with precision the exact distance and angle 
at which the object is located. For example, if we place 
the same object in the two positions pointed by the 
arrows in figure 5, the output of the Hermes IR sensor 
would be 16 in both cases. This problem exists for all 
the parallel lines in the IR value axis, so we have a very 
important positional ambiguity problem. Notice also 
that this particular sensor detects the objects better if 
these are placed in front of it or to its right (although 
this is not a practical problem if we use all the IR 
sensors of the robot).  

Through the inclusion of time in our IR sensing, and 
consequently through the introduction of previous 
information, the position of an object can be 
disambiguated. We use the IR sensor values taken in 
one sweep of the front-left leg and a synaptic delay 
based neural network manages these values. 

In figure 5 we also display the experimental setup 
including the angles and distances being considered. In 

each sweep we obtain the different values of the IR 
reading and the leg angle (á) so we have the two inputs 
to our neural network. The outputs of the network are 
the distance to the object (r) and the polar angle (è) at 
which it is located from the IR sensor. The neural 
network in the example has two input neurons; two 
hidden layers with 15 neurons each and both output 
neurons. We have assumed the requirement that two 
consequent measurements should overlap (the IR sensor 
covers exactly 21º in each IR detection), so we took 12 
values of IR and á to cover the whole sweep of one leg  
(84º).  

Figure 6 displays results for an experiment where we 
placed a tree-like object, represented by ellipses, at 
different positions in front of the robot (positioned at 
x=y=0) and plotted 5 outputs (different sweeps) from 
the network for each ellipse. We can see that the 
accuracy of our sensing is now adequate; the robot is 
able to locate the object independently of its lateral 
position. Using larger networks and more training 
examples may increase the accuracy. It is only limited 
by the repeatability of the outputs provided by the IR 
sensors. Another way to increase precision could be to 
make a finer sweep. In this case, the one obtained was 
quite enough for the task the robot had to perform, and 
that is navigate through an environment with tree like 
objects it had to avoid.  

We have tested this network with the Hermes II 
robot in motion using a single sensor and it was able to 
detect the obstacles in its path and avoid them by going 
around them to one side or the other depending on the 
exact position of the obstacle in relation to the robot, as 
can be seen in bottom part of figure 6. On one hand, the 
sensing precision while the robot is in motion has been 
highly increased and. On the other hand, which is the 
point we want to make here, any behavior module 
developed for a different robot which uses sensorial 
information in a similar range regarding the position of 
objects in the robot path can now be used directly in the 
robot following the structure shown in figure 3 and does 
not need to be redeveloped for this particular animat. 

 
7. SHARED HIGHER-LEVEL BEHAVIOR 

 
The second example was implemented with the 

behavior hierarchy shown in figure 7. This behavior 
corresponds to a compound wall following task that 
comprises modules for finding a wall, following it and, 
if the robot collides, allowing it to get unstuck (collision 
avoidance). In this compound behavior we include a 
virtual sensor for the detection of collisions (developed 
for both a Rug Warrior robot and contact sensors and a 
Pioneer II robot using sonar and wheel encoders) and a 
virtual sensor for the detection of objects closed to the 
robot (employing IR sensors with the Rug Warrior and 
sonar sensors with the Pioneer II).  

The Rug Warrior robot is a very small round robot 
with two very imprecise and noisy infrared sensors and 
three contact sensors. The Pioneer II robot is a much 

Figure 6. Top: Position data obtained by the trained networks 
(squares) for objects in different locations (ellipses). The 
sensor is located in position (0,0). Bottom: Trajectory of the 
Hermes robot using the virtual sensor and a single IR 
detector.  
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bigger, almost rectangular, robot with sonar sensors and 
encoders. The Pioneer II moves much faster than the 
Rug Warrior. 

In the example, the inclusion of these virtual sensors 
allows both robots to make use of the same higher-level   
behavior module (developed using the Rug warrior) to 
carry out a wall following task in an efficient manner, as 
shown in figure 8.  In the tests we carried out both 
robots operated satisfactorily, finding the walls, 
following them with very few or no collisions and when 
a collision occurred, getting unstuck and continuing 
with the task.  

The lower level behaviors, in this case, are particular 
to each type of robot, and thus make better use of their 
idiosyncrasies leading to better results in cases where 
the sensing apparatus of the robot is better, as in the 
case of the Pioneer II. In this case, the more elaborate 
sensing apparatus with sonar sensors all around the 
body of the robot, allows it to obtain a better wall 
following behavior, and without the need of use of 
temporal information as in the case of the Rug Warrior 
due to the binary nature of its infrared sensors. In 
addition, this structure is much more coherent with 
behavior based robotics than the previous one used in 
the Hermes II robot, but it does add an element of 
complexity and a new design decision must be made of 
where the interface between shared and particular 
behaviors must be established.  

 
8. CONCLUSIONS 

 
In this article we have presented a structured way of 

obtaining compound behaviors in different robots. This 
implies a hierarchical structure where the different 
behaviors are implemented through ANNs, some of 
them using temporal delays to consider time related 
events. Through this structure, the controllers may be 
used in multiple compound behaviors without 
duplicities, and, as new behaviors are evolved, this 
evolution becomes faster and simpler due to the fact that 
a lot of experience in the form of previously evolved 
behaviors is available.  

To make things even easier, we have presented two 
ways of using behavior modules developed for one 
robot in the behavior structure of a different type of 
robot. These modules can be introduced as possible 
tools during the evolution of the global controller and 
thus, experience in the form of behavior controllers 
obtained in one platform can be readily used in a 
different one. The first approach implies using a virtual 
sensor and effector based interface between the real 
sensors and effectors of the particular robot and its 
behavior based architecture. Doing things this way has 
the advantage of simplifying the whole process and 
being able to use complete behavior architectures 
developed for one robot in another. The main drawback 
the approach presents is that the behavior architecture 
does not really take into account the advantages 
provided by the idiosyncrasies of each type of robot for 
performing particular tasks, and, consequently, leads to 
the problem of having to use the features of the least 
capable system as a reference. It also implies deciding 
the interface beforehand and thus losing part of the 
grounding property of the behavior based alternative. 
Additionally, from a conceptual point of view, it 
represents a trade-off between behavior-basedness and 
ease of implementation, thus hybridizing the paradigm.  

The second approach implies developing lower level 
behaviors that are particular to each robot, but which are 
easier to obtain, and only sharing higher-level 
behaviors.  This approach seems conceptually sounder 

Wall following 
Collision 
avoidance 

Figure 7.  Behavior based architecture with the top module 
shared by the Rug Warrior and the Pioneer II robot. 

Figure 8.Operation of the Pioneer II robot (top) in simulation 
and the Rug Warrior (bottom) using the behavior based 
structure shown above. 



and, in practice, makes the unstructured development of 
complex architectures more straightforward. The 
alternative makes use of all the possibilities of the 
sensor apparatus of each robot, its range of detection 
and particular position of all the sensors; thus, the 
resulting behavior will be grounded. The compound 
wall following behavior with the Rug Warrior and 
Pioneer robots is an example of that, where the behavior 
is obtained with low level modules tuned to the different 
sensor apparatus of each robot. The drawback is that we 
move the decision of the interface between dependence 
and independence of the platform one step up, and thus 
we need to obtain these low level behaviors in all the 
robots, as opposed to the first alternative in which it 
would only be necessary to obtain the lower level 
behaviors once. 

 
ACKNOWLEDGEMENTS 

This work was funded by Xunta de Galicia under 
project PGIDT99PXI10503A. 

 
REFERENCES 

 
[1] Van de Velde, W, 1993, Towards Learning Robots, 

MIT Press, Cambridge, MA.   
[2] Brooks, R.A. 1991, Intelligence without 

Representation, Artificial Intelligence, Vol. 47, 139-
159. 

[3] Maes, P., A 1990, Bottom-up Mechanism for 
Behavior Selection in an Artificial Creature, 
Proceedings of the First International Conference on 
Simulation of Adaptive Behavior (SAB90). 

[4] Mataric, M.J. 1992, Integration of Representation into 
Goal Driven Behavior Based Robotics, IEEE 
Transactions on Robotics and Automation, Vol. 8, 
No. 3, 304-312. 

[5] Arkin, R.C. 1998, Behavior Based Robotics, MIT 
Press, Cambridge, MA. 

[6] Cliff, D., Harvey, I. and Husbands, P. 1992, 
Incremental Evolution of Neural Network 
Architectures for Adaptive Behaviour, Tech. Rep. No. 
CSRP256, Brighton, School of Cognitive and 
Computing Sciences, University of Sussex, UK. 

[7] Harvey, I., Husbands, P., and Cliff, D. 1993, Issues in 
Evolutionary Robotics, J-A. Meyer, H. Roitblat, and 
S. Wilson (Eds.), From Animals to Animats 2. 
Proceedings of the Second International Conference 
on Simulation of Adaptive Behavior (SAB92), MIT 
Press, Cambridge, MA, pp. 364-373. 

[8] Beer, R.D. and Gallagher, J.C. 1992, Evolving 
Dynamical Neural Networks for Adaptive Behavior, 
Adaptive Behavior, Vol. 1, No. 1, pp. 91-122. 

[9] Nolfi, S. 1997, Using Emergent Modularity to 
Develop Control Systems for Mobile Robots, 
Adaptive Behavior, Vol. 5, No.3-4, pp. 343-363. 

[10] Floreano, D. and Mondada, F. 1998, Evolutionary 
Neurocontrollers for Autonomous Mobile Robots, 
Neural Networks, Vol. 11, pp. 1461-1478. 

[11] Jakobi, N. 1997, Evolutionary Robotics and the 
Radical Envelope of Noise Hypothesis, Adaptive 
Behavior, Vol. 6, No. 2, pp. 325-368. 

[12] Marín, J. and Solé, R.V. 1999, Macroevolutionary 
Algorithms: A New Optimization Method on Fitness 
Landscapes. IEEE Transactions on Evolutioanry 
Computation. V3, N4, 272-286. 

[13] Becerra, J.A., Santos, J., and Duro, R.J. 1999, 
Progressive Construction of Compound Behavior 
Controllers for Autonomous Robots Using Temporal 
Information, Advances in Artificial Life, Dario 
Floreano, Jean-Daniel Nicoud and Francesco 
Mondada (Eds.), Lecture Notes in Artificial 
Intelligence, Vol. 1674, pp. 324-328, Springer-
Verlag, Berlín. 

 
 
 
  

 
 
 


