
© Sara Fleury & Félix Ingrand,
LAAS/RIA, 2000

Architecture for Autonomy:
from Robots to Satellites

Sara Fleury & Félix Ingrand
(sara@laas.fr felix@laas.fr)

LAAS-CNRS
(www.laas.fr)

7 avenue du Colonel Roche
F-31077 Toulouse FRANCE

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

Motivations
• Methodologies and tools to design embeded

software architectures for autonomous systems
• Results taken from robotic research
• Application to new generation of satellites:
 on board execution control and mission management

– ground station maintenance simplified

– flexibility and high level interactions

• Autonomy => reactive + decision making capabilities

• Architecture properties:

adaptability

reactivity

consistent
behavior

robustness

extensibility/
reusability

programmability

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

Logical System

Physical Platform

Environment

1. Decision Level
 (planning and supervision of action)

2. Execution Control Level
 (actions coordination)

3. Functional Level
 (actions execution)

Modules

The 3 levels LAAS architecture:
from decision to action

Supervisor Planner

Executive

N

S

W E

mission report

Propice
+

IxTeT

kheops +
transgen

GenoMtools

tools

tools

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

From autonomous mobile robots ...

a coordinated fleet of robots

Diligent at an exhibition

SNCF robot Commutor

new harbour of Rotterdam

an Hilare robot
with a trailer and
a 6dof arm

Planetary
exploration

robotics

Service
robotics

Trans-
shipment
roboticsthe rover Lama

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

… to autonomous satellites

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

LAAS architecture for an autonomous
earth observation satellite

Security/redundancy
• 1 module per sensor-

actuator
• hierarchical modules

organization in 4 sub-
systems:
– trajectory control

– orbit prediction

– power management

– imager control

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

LAAS level 1: the Functional Level
Integrates all the operational functions
(hardware control, servo-control, data processing, …)

Modules database

services
library

processes

Request Reply

 to other modules or
 hardware devices

data data

po
st

er

a moduleupper level or operator

Module: entity responsible
for a physical or logical
resource

Structured as a set of
independent modules
(dynamically controlled by
the upper level)

N

S

W E

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

The Generator of Modules
GenoM

• Automatic code synthesis
• No need to know the underlying OS
• One can concentrate on the functionalities
• Incremental design

module Motion {
 number: 9600;
 SDI: MOTION_DATA;
}
request SetPos {
 type: control;
 input: pos::pos;
 control: controlPos;
 report: BAD_PARAM;
}
task Move {
 period: 25;
 priority: 15;
}

STATUS
controlPos (POS_STR *pos, REPORT *reoort)
{ if (pos->x < 0.0) {
 *report = BAD_PARAM;
 return ERROR; }
 return OK;
}

GenoM
• parser
• generic
 module
 instantiation

• compilation
• link editing

executable module
(various OS)

Interface libraries
(C, Propice, TCL, ...)

1. totoTy 2. Wqfh
3. Fwgfg 4. Urivh
5. Uewn c 6. ivivnv

>>
test programs

1. module description1. module description 2. module generation2. module generation

4. tests4. tests3. algorithms 3. algorithms
integrationintegration

tool

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

 LAAS level 2: the Execution
Control level

• Pivot between functional/decision levels

• Purely reactive system that reacts to decision
level requests and functional level replies

• State controller of function level:
– maintains functional level state
– filters decision level requests
– detects and manages conflicts
– recovers failures locally

• kheops : automatic automaton synthesis from a
set of propositional rules (complete, consistent, optimised)
tool

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

LAAS level 3: the Decision Level
• All processes that require anticipation and global

knowledge of the task and of the execution context.

• Structured in supervisor-planner layers:

supervisor planner
goal + state

plan + modalities

requests replies

situation-driven
procedures

missions results

upper level or operator

execution controller
Supervisor:
• Interprets upper mission
• Selects action procedures (or call planner)
• Controls the procedures execution
• Reacts to events (replies) from lower level
• : PROPICE

Planner:
• Queried by supervisor
• Deals with:

• time constraints
• resources constraints
• predictable events

• Produces plan of actions
• : IxTeT

tool
tool

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

The Procedural Reasoning
System PROPICE

Properties:
– high-level language
– parallel tasks + asynchronous

events handling
– temporal properties

Main components:
– automatically updated database

(view of the world)
– a library of procedures:

• sequence of actions and tests
• to achieve given goals, or
• to react to certain situations

– a dynamic task graph Example of a PROPICE procedure

tool

Sara Fleury & Félix Ingrand, LAAS/RIA, © 2000

 IxTeT Temporal Planner
IxTeT: IndeXed Time Table

• IxTeT kernel: an efficient time-map manager

• Time-point algebra relations and restricted
 interval algebra
• Used in situation
 recognition and
 plan synthesis
• Common
 knowledge
 representation:
 chronicles

Example of an IxTeT plan

tool

