

In the proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2 - 4, 2004

EUROBOT EVA-assistant robot for ISS

Ph. Schoonejans, F. Didot, R. Stott, A. Jain (ESA)

D. Buffa, R. Boaretto, (Alenia Spazio)

C. Heemskerk (Dutch Space)

Presentation Overview

- EUROBOT Mission Objectives & Task Requirements
- Modes of Operation
- System Breakdown
- Mobile Segment Configurations Under Trade-Off
- Tools Panoply
- ORU & I/F Panoply
- Home Base
- Life after ISS ... applications for Exploration...
- Project Schedule
- Conclusion

Objectives

- EUROBOT Motivations:
 - Reduce the amount of crew time required for ISS external maintenance
 - Reduce EVA sortie duration & numbers
 - Surgical model: human = surgeon, Eurobot = nurse
- EUROBOT Tasks Requirements:
 - EVA worksite preparation & closing tasks (2 EVAs in 1)
 - EVA co-operative task (2 EVAs in 1)
 - EVA sortie substitute:
 - Orbital Replacement Unit (ORU) installation / exchange
 - Payload servicing/ maintenance

Tasks Requirements

- Deployment from Home-Base
- Locomotion & Transportation
 - self-RELOCATE to specified location (using handrails & / or other standard external ISS I/Fs)
 - TRANSPORT ORU/ payload (hold in 1 hand) while relocating
- Prepare EVA worksite
- Support EVA sortie (lighting worksite, monitoring, temporary stowage for ORUs, tools...)
- Close-up inspection and monitoring
- Safing / Keep-Alive / Maintenance
 - RECHARGE at Home-Base docking station
 - enter SAFE / STAND-BY / DORMANT state (stand-by & dormant at docking station)

Modes of Operation

- Modes of Operation:
 - *Autonomous* for all well structured/ repeatable/ tasks such as:
 - Deployment, locomotion & transportation to worksite
 - Worksite preparation prior to EVA sortie: foot-restraint installation, camera / lighting set-up, carrying tools-set
 - EVR compatible ORUs exchange
 - *Manual* for less structured/ predictable tasks:
 - EVA/ EUROBOT choreography while at worksite
 - Local inspection for troubleshooting

System Breakdown

6

System Configuration

- Trade-off ongoing for different configurations
- Key issues
 - Large number of handling I/Fs to deal with
 - Large number of actuation I/Fs to deal with
 - Difficult to choose between many configuration options
 - Home base location
 - Charging station (TBC) location(s)
 - Wireless communications
 - Thermal
- Constraints
 - Ingress/egress through airlock

Initial ESA Baseline Configuration

Configuration-1 Under Trade

- 3 identical arms of 1 meter each
- Each arm with 7 d.o.f
- Symmetrically mounted at 120 degrees around the body
- Initial PRR configuration

Configuration-2 Under Trade

- 3 identical arms of 1 meter each
- Each arm with 7 d.o.f, with camera & lighting
- Symmetrically at 120 degrees around the body
- Set of cameras mounted (2 mono or 1 stereo) on pan & tilt unit on central body (not visible in picture)

Configuration-2 Under Trade

• EUROBOT size/reach compared to EVA

Configuration-3 Under Trade

- 2 identical arms of 1 meter each
- 1 stronger leg arm
- Each arm with 7 d.o.f
- 2 arms symmetrically mounted
- 2 cameras mounted on central body, on pan & tilt unit

Configuration-4 Under Trade

- Identical arms of 1 meter each
- 1 stronger leg arm
- Each arm with 7 d.o.f
- 2 symmetrically mounted arms
- Same concept as -3- but different head and arms

Configuration-5 Under Trade

- Identical arms of 1 meter each
- Each arm with 7 d.o.f
- 2 symmetrically mounted arms
- Camera on top
- End effector storage on "belly"
- Removable battery

Configuration-5 Under Trade

Configuration-5 at work on Columbus-EPF

Stepping over Columbus-Node3

Tools Panoply

ORU Panoply in Brief

ORU Panoply: from Small (~1 kg) to Large (max 362 kg)

I/F Panoply

H-Fixture

Micro Square

Micro Conical

US-Segment "Dog Bone"

RS "Square"

Home Base Concept

Home Base Concept

HME-MRE

Life After ISS ...

- Humans will move beyond Earth orbit ... back to the Moon & on to Mars
- Mobile **manipulator technologies** developed for EUROBOT project may be applied & developed further for Exploration programme
- Technologies used both in early robotic missions & later human missions
- Human missions may benefit from dedicated Mobile Manipulator System (MMS) in the role of EVA crew assistant

Manipulators in Space

		Exploration Phase							
		Robotic Exploration	Human Arrival Imminent	Human Arrival	Long-Term Presence				
Space Environment	Earth orbit	Test robotic/MMS technology & operations in LEO or on ISS	Test robotic/MMS technology & operations in LEO or on ISS	Use during potential on-orbit assembly of human mission modules	Use during potential on-orbit assembly of human mission modules				
	Interplanetary Space			Transfer vehicle maintenance; crew assistant	Transfer vehicle maintenance; crew assistant				
	Moon/Mars orbit	On MSR mission, use for sample handover from ascent vehicle to Earth-return vehicle	Maintenance of human mission modules sent in advance of human arrival	Orbit vehicle maintenance; crew assistant	Orbit vehicle maintenance; crew assistant				

Manipulators on Moon/Mars Surface

Planetary Science		Site Scouting & Characterisation	Site Preparation & Infrastructure Deployment	Infrastructure Operation & Maintenance	EVA Support	IVA Support
Surface characterisation experiments		Imaging/mapping	Clearing landing site?	Operation & inspection of ISRU systems	Carry tools and hand them to astronauts	Routine greenhouse operations
Sample handling*		Travel to/through hostile terrain	Deployment of solar arrays	Inspection & monitoring of propellant & consumables storage tanks	"Eyes" for IVA astronaut	Process plants into ingredients
Imaging		Mobile "weather" station	Deployment & check-out of nuclear power systems	Inspection of nuclear facility	Emergency / back-up comms station	Telemedicine?
Astrobiology experiments (search for life)		Search for micro-climates, eg thru changes in volatiles	Deployment & check-out of ISRU units	Inspection of site damage after storm	Additional / mobile comms relay sta <u>tion</u>	
Telescope/obs operation	servatory	Determine present state, 3D distribution and cycling of water	Help make Lunar/Martian concrete/cement	NDI (Non-destructive Inspection) type testing of structures	Sample handling*	
Characterise s atmosphere in		Sample handling		Maintenance of solar arrays (eg wrt dust etc)	Robotic cameraman / journalist	
Determine pr regolith forma subsequent v Determine pr		Requir Instrument de Soi	Mobile computer / reference manual			
controlling dis dust, water, 0 determining li term events	Scie	nce sample handling Object	"Record" EVA sessions ("diary-keeper")			
		Mech Tools hand	Deployable navigation aid / emergency beacon			
		"Interface with surfa	Additional/emergency lighting			
2 Nov 2004 HME-MRE					"Fetch & carry" Emergency re-charge station for PLSS?	26

HME-MRE

Eurobot KO : April 04 KO Study **Demonstrator Full Eurobot Branch** Branch Developme nt Plan Phase A Feasibility Identification Of Demonstrator Feasibility PRR/dPRR: Mid Nov 04 PRR Preliminary Preliminary Phase B1 Definition Definition SRR: Feb 2005 SRR Detailed Phase Definition **B2** PDR: Jun 2005 PDR PR: Jun 2005 input for C/Min Programmatic Review 2 Nov 2004

Conclusion

Eurobot presents a robotic solution to problems of EVA crew availability and hostile environments

ESA robotics studies harmonised to focus in same direction (arm/leg, hand, teleops, MMI)

Study aimed at getting a flight demonstrator on ISS before end of this decade