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ABSTRACT 

The paper presents an evolutionary robotics model of the Rover Mars robot. This work has the objective to investigate 

the possibility of using an alternative sensor system, based on infrared sensors, for future rovers capable of performing 

autonomous tasks in challenging planetary terrain environments. The simulation model of the robot and of Mars terrain 

is based on a physics engine. The robot control system consists of an artificial neural network trained using evolutionary 

computation techniques. An adaptive threshold on the infrared sensors has been evolved together with the neural control 

system to allow the robot to adapt itself to many different environmental conditions. The properties of the behaviour 

obtained after the evolutionary process has been tested by measuring the performance of the rover under various terrain 

conditions. Simulations results show that the robot, at the end of the evolutionary process, is able to avoid rocks, holes 

and steep slopes based purely on the information provided by the infrared sensors. 

INTRODUCTION 

The history of planetary exploration trace back to the 20
th

 July 1969, when the first human footprint was impressed on 

the surface of the moon. However, exploring other planets with human crews is currently impossible to realize. Besides 

the technical difficulties, the main issue regards the huge distances involved and the long time required to reach such 

remote regions of the Solar System. For that reason, robotics and autonomous robots in particular, will play an essential 

role in the future of planetary exploration. Autonomy is crucial as the more a robot is far from the earth, the more it 

should be able to rely on its own abilities to accomplish its mission. When communication delay between the robot and 

the Earth is hours, devising advanced autonomous capability for an exploring robot is the only route toward the 

expansion of our knowledge into deep space.     

Only recently, under the mission Mars Pathfinder, the first ever robotic exploration vehicle, called Sojourner, landed on 

the Martian surface in 1997. After Mars Pathfinder, more sophisticated robots, such as the rovers Spirit and 

Opportunity, were landed on Mars in 2004. The rovers were designed to withstand harsh Martian conditions for only 90 

days, although after four years they are still exploring Mars and bringing new discoveries [1]. The future NASA’s rover 

mission is called Mars Science Laboratory (MSL) and it is to be launched in 2009. This mission involves a rover 

carrying more sophisticated instruments that will help answering the questions about Mars history, climate, geology, 

possible life and it will also prepare for future human exploration. Alongside the NASA projects, several other projects 

are under development by the European Spatial Agency, as well as China and Japan.    

Among the several tasks that a robot devoted to explore a planet surface has to accomplish, the ability to move 

autonomously within an unknown environment is a basic one. In particular, such a robot must be capable of navigating 

in a new environment and avoiding obstacles that force the robot to deviate from its route. In addition, the obstacles can 

have different characteristics, such as big rocks or holes in the terrain. These differences require the robot to have the 

ability to distinguish between the different types of obstacles and actuate the appropriate avoidance manoeuvres. The 

above-mentioned rovers Sojourner, Spirit and Opportunity, use stereo cameras for navigation and obstacle avoidance. 

The two more recent robots Spirit and Opportunity, in particular, are equipped with three sets of stereo camera pairs. 

One pair is looking forward, under the solar panel in front. Another pair is looking backward, under the solar panel in 

the back, and the last pair is placed on the mast. This camera is mainly used for navigation purposes. With the images 

taken by the cameras, a stereo algorithm calculate the 3D representation of the terrain in front of the robot and other 

algorithms are used to calculate a “traversability” map [2]. The information of this map is then used to calculate the next 

action of the robot. However, there are no other means for the rovers to sense the obstacles if these cameras failed. For 

this reason, it is worth to explore other possible solutions that allow the rovers to navigate and avoid obstacles, besides 

the use of stereo cameras. These alternative methods might represent useful complements in the sensory systems of 



robot which has to operate in difficult conditions into deep space, where any possible human intervention is prevented 

by the huge communication delays. In this paper we will explore the feasibility of an alternative obstacle avoidance 

system based on a set of infrared sensors that provide the robots with information about the presence of obstacles within 

a given range in its proximity. The system presented is able to deal with different types of objects, such as rocks and 

holes, and it is based on evolutionary robotics (ER) techniques. To investigate this alternative methodology, a 3D 

physics rover as well as a terrain model was built using Open Dynamics Engine (ODE), which is an open source library 

for simulating rigid body dynamics (www.ode.org). The computer model of the rover is based on the approximate 

dimensions of the MSL rover and its “brain”, its control system, consists of an artificial neural network (ANN) which 

synaptic weights were evolved using evolutionary computation techniques. This approach is commonly known as 

evolutionary robotics [3]. Evolutionary robotics is inspired by the Darwinian principle of selective reproduction of the 

fittest and attempts to develop sensory-motor control systems for autonomous robots in an automated manner.  

Within the field of evolutionary robotics, obstacle avoidance and navigation behaviours are well known topics that have 

been widely used in the past to demonstrate the feasibility of the evolutionary approach in the robotic domain. In 

particular, those behaviours have been the ideal test bed used by evolutionary robotics to show the inseparable 

interconnection between the control system, the body and the environment in which the robot is operating [4]. 

Alongside the scientific interests that often underpin the experiment in evolutionary robotics, the practical aim of this 

paper is to extend the domain of the evolutionary techniques to the realm of planet exploration. To do that, not only we 

will have to evolve a control system capable of avoiding obstacles, but we need to face all the complexity of an 

hypothetical exploratory mission on the planetary surface, i.e. exploring an unknown environment by autonomously 

finding an effective route on rough surface full of obstacles in a safe mode and by taking into account the limited 

computational capability of the on-board hardware [5]. The accomplishment of such a task requires, on one hand, a 

control system that must be able to sense the different types of obstacles and to deal with a rough terrain that often can 

make hard to navigate on it. That is, the robot should autonomously understand when a terrain is safe for navigation or 

when it is better to change direction. On the other hand, the limited on-board computing power forces us to reduce the 

complexity of the algorithms that provide the required navigation capabilities.          

In evolutionary robotics, the most recent works that explicitly address the issue of the navigation in rough terrain, by 

avoiding obstacles and holes, are mainly based on coordinated motion behaviour. This approach aims to solve the 

problem by the evolution of complex coordinated behaviours of simple interconnected mini-robots [6]. Another 

approach is based on the idea of reconfigurable robots, where robots can adopt different shapes in order to cope with 

different environmental conditions [7][8][9]. In contrast to the previous studies, our intention is to use a single robot 

similar to MSL rover and investigate whether it would be possible to evolve a neural network controller able to tackle 

obstacles like walls, different rocks, rough terrain as well as holes and cliffs.  

In this paper we present the already mentioned rover model that is equipped with eighteen infrared sensors and a 

controller, which is based on a single layer neural network. Because it was necessary to evolve a robot that can deal 

with both rocks and holes, we provided the robot with an evolvable threshold. This threshold adaptively modifies the 

activation range of the infrared sensors, in order to use front sensors for both rocks and holes detection. The threshold, 

which is evolved together with the control system, can differentiate rocks and holes from the noise originating from 

rough terrain and has been set by means of a co-evolutionary process between the rover’s behaviour and the threshold 

itself, which suggests that both behaviour and threshold are interdependent. The system was evolved in an environment 

that contained many different rocks, cliffs, holes, walls and areas of rough surface. Results from the experiments and 

testing showed that the system is very robust and it is able to adapt to different surface conditions. 

In the following sections we describe our methodology, which involves a detailed description of the rover model, its 

neural network controller and the genetic algorithm (GA) used to evolve the connection weights of the neural network. 

We will present in detail the experimental setup used throughout all evolutionary runs and the obtained results. In order 

to show the reliability of the evolved system, we ran a series of tests that measure the robustness and adaptability to 

different environmental circumstances. Finally, in the conclusion we will discuss the results of the experiments and 

their relevance for space exploration research in the future. 

METHOD 

As we have mentioned in the introduction, our approach is based on evolutionary robotics (ER). The ER approach 

emphasizes agent’s embodiment, which means that an emerging behaviour is not only dependent on various properties 

of the actual robot such as its size, speed, degrees of freedom, sensors and actuators, but also on the environment with 



which a robot interacts. The behaviour is seen as an emergent result of the dynamical interaction between the control 

system, the body, and the external environment [10] and relies on the fact that, while moving, motor actions partially 

determine the sensory pattern that a robot  receive from the environment. Thus, by coordinating sensory and motor 

processes it is possible to create control systems which are able to select favourable sensory patterns and, in turn, 

enhance their ability to achieve their goals [4]. ER is an excellent technique that allows us to create artificial control 

systems that autonomously develop their skill in close interaction with the environment and that exploit very simple, but 

extremely powerful sensory-motor coordination [11].  ER is mainly based upon two computational techniques: artificial 

neural networks and genetic algorithms. Artificial neural networks (ANNs) are very powerful brain-inspired 

computational models, which have been used in many different areas such as engineering, medicine, finance, and many 

others [12]. ANNs are constituted by a certain number of simple computational units, the neurons, massively 

interconnected through a series of connections, the synaptic weights. Synaptic weights can be associated to variable 

numerical values that can be modified in order to allow the ANN to show a specific behaviour. In ER the synaptic 

weights are usually modified through an automatic evolutionary process which is inspired to the Darwinian principles 

that govern the natural process of evolution. This process, called genetic algorithm [13], is based on a simple biological 

model of evolution where the survival of the fittest and a constant production of new offspring result in adaptation to 

changing environments and ability to respond to unexpected events. It usually works with a population of artificial 

chromosomes that are evaluated for their performance and best of these are selected for further reproduction. The 

optimal solution is obtained after a series of generations in which chromosomes are evaluated and selected on the basis 

of their adaptability (i.e. the fitness).   

The Rover model 

 

The robot used in this experiment is a 3D physical model of the MSL rover. The model cannot be considered as a 

trustful and detailed representation of the actual rover, but only an approximate copy. This is mainly because of the lack 

of information on the rover’s real dimensions, weights and sizes of different parts, as well as many other details. 

According to Centre National d'Etudes Spatiales [14], the dimensions of the real rover are 2900Lx2700Wx2200H mm 

and its weight is about 775 kg. The physical rover model was therefore built considering these details and several 

diagrams and pictures that were available. These limitations are in this case minor as we want to demonstrate that it is 

possible to use ER approach and a simple sensory setup to develop a suitable controller abler to handle complex 

obstacle avoidance tasks.  

The motor system of the rover model (see Fig. 1a) consists of six wheels where two front and two rear wheels are able 

to turn up to 90° to either side. The rover is capable of overcoming obstacles that are approximately of the size of its 

wheels. This is possible thanks to a rocker-bogie suspension system. This advanced suspension system is designed to be 

operating at low speed, and consists of two pivotal joints connecting two bogies with two rockers [15]. The rockers are 

connected together via a differential join. This means that left and right part of the rocker-bogie system can move 

independently while keeping the main body levelled.  

The rover is equipped with a sensory apparatus that comprehends eighteen infrared sensors in order to provide sufficient 

information from the surrounding environment. In order to accommodate detection of various obstacles, two different 

set of sensors were used (see Fig. 1b). The first set consists of six lateral sensors which provide extra safety when it 

approaches obstacles from a side. These sensors have a range of three meters and are not able to detect holes. Lateral 

sensors cover an area of approximately 200° around the rover, leaving the front area deliberately uncovered. These 

sensors return either 0 (no obstacle) or 1 (obstacle present), when the sensor is activated by the presence of an obstacle 

within the activation range of the sensor. The second set consists of twelve infrared sensors with the maximum reach of 

five and half meters. These infrared sensors, that we call ground sensors, are positioned on the rover’s camera and are 

pointing downwards in 45° angle and reaching the ground approximately three meters in front of the rover. The twelve 

sensors are positioned and directed so that they are able to reach around 400 mm more than the level of the ground. 

Ground sensors constantly scan the distance from the surface and are able to detect both rocks and holes. Each of these 

sensors returns a floating point value from 0 (no feedback) to 1 (strongest feedback). Holes or cliffs can be detected by 

the rover when it loses sensory feedback from the ground (i.e. ground sensor returns a value 0). The same sensors allow 

the robot to detect dangerous rocks or excessively rough terrain. This is achieved thanks to a particular threshold. When 

the activation of a sensor reaches that threshold it means that the robot is facing an insurmountable rock or a potentially 

dangerous rough terrain. If a sensor’s output goes over this threshold (a rock) or returns 0 (a hole) then its output value 

is changed from 0 (not active) to 1 (active). On the other hand, if the returned value stays within a certain boundary, 

which is given by the threshold, then a sensor returns 0. From this perspective a 0 activation can be seen as safe zone 



and 1 as an obstacle in the front. To model the lateral sensors and the ground sensors we aimed to simulate the existing 

infrared sensors Sharp 3A003 and Sharp 0A700, respectively. 

In order to provide the robot of more flexibility and allow the system to be completely free to adapt autonomously to the 

environment, the value of the threshold was not pre-set, but rather evolved throughout the evolutionary process. In this 

case the evolutionary process can find a threshold value which is more suitable to the physical characteristic of the rover 

and to a particular environment. Threshold can be in a range [0,1]. In addition to the above sensors, the rover is 

provided with a couple of internal sensors measuring its speed and the position of the wheels.  

 

 

Fig. 1. 3D physics model of the rover highlighting different parts of the rocker-bogie suspension system (left). Side 

view (top right) and front view (bottom right) of the rover showing lateral and ground sensors and their positions 

 

Control System Architecture and Evolutionary Parameters 

 

The control system is a fully-connected feedforward ANN with evolvable bias and discrete time (see Fig. 2). A set of 18 

sensory neurons receive the activation from the 18 infrared sensors of the rover and an additional set of 2 proprioceptive 

neurons encode the value returned by the internal sensors, which provide information about the speed and the position 

of the wheels. The 20 sensory neurons are fully connected to 2 motor neurons that modulate the level of the force which 

is applied to the actuators, which are directly responsible for rover’s speed and steering, respectively. Motor neurons 

have sigmoid activation functions:  

 

𝑓 𝑥 =
1

1+𝑒−𝑥                                                                        (1) 

in the range [0, 1], where x is the weighted sum of the inputs minus the bias. Biases are implemented as a weight from 

an input neuron with an activation value set to -1. The ANN has no hidden layer as we have found out that same results 

can be achieved with simpler architecture, that greatly reduce the computation demand of the control systems. 

 
Fig. 2. Feed-forward neural network used as a control systems for the rover in the evolutionary experiments 



Rover’s actions depend on the value of the synaptic weights of the ANN. So that, each weight must be set to an 

appropriate value to produce a desired output and, as we mentioned before, a genetic algorithm was used to evolve 

them. The free parameters, i.e. genes, that constitute the genotype of the control system and that are subject to evolution 

consist of: 42 synaptic weights (the 40 synaptic weights that connect the 20 sensory neurons to the 2 motors neurons, 

plus the 2 biases) and a single gene which encodes the threshold applied to the ground sensors. The parameters are 

encoded as floating point values in the range [-1, 1] and the threshold in the range [0, 1]. In this ways the ANN’s 

weights can be simply represented as these genes and let GA to develop their strengths. 

In our experiments we used a population size of 100 individuals, where the best 20 individuals were allowed to produce 

5 offspring each. In practice, after a phase in which every 100 randomly generated ANNs were tested (i.e. were 

deployed in the rover and their performance were measured), a process of reproduction acted on the 20 best individuals 

where their genes were randomly mutated with a probability of 10% (a mutation occurs by adding to the original gene’s 

value a quantity in the range [-1, 1]). The reproduction and mutation processes were repeated 5 times for each of the 

best individuals, by generating 5 mutated copies of each of them. The only exception was the first offspring of the best 

individual, which was copied to the next generation without mutation. This is often known as elitism where the best 

solution is always preserved by not allowing mutations to change its genes. In this way we produced a new generation 

of 100 individuals that inherit their genes from the best individuals of the previous generation. The whole evolutionary 

process lasted 100 generations. On each generation, each control systems has been tested 10 times, by deploying it in 

the rover and allowing it to act in the environment for up to 3000 sensory-motor cycles, that is, 3000 activations of the 

ANN. However, this was not always the case, as the evaluation of a particular genotype was terminated when a rover 

fell into a hole or crashes into an obstacle. To assure a good level of robustness of the evolved controllers, 15 

evolutionary runs were conducted. Each of these was initialized with a different randomly generated population. 

The performance of every single control system was evaluated according to the fitness function (2) that was carefully 

designed to shape the behaviour of the robot for effective and reliable exploration and obstacle avoidance behaviours:  

F=
1

S ∙ T
 Sp ∙ St                                                                        (2) 

 

where the fitness F is a function of the measured speed Sp and steering angle St, where Sp and St are in the range [0, 1]. 

Speed Sp is 1 when the rover goes at the maximum speed and 0 when it does not move or goes backward. Steering 

angle St is 1 when wheels are straight and 0 when they are turned over an angle of 30° from the centre. If for example 

the angle was 15° then St would be 0.5. T is the number of trials (10 in these experiments) and S is the number of 

sensory-motor cycles per trial (3000 in these experiments). Equation (2) shows how the fitness is calculated at every 

sensory-motor cycle. Thus, the GA has to maximize the fitness by increasing the value of Sp and St, which implies that 

a rover has to move at a maximum possible speed while steering only when necessary. In fact, if a rover goes forward at 

the maximum speed but keeping the steering angle over 30° then its final fitness would be 0. Similarly, if a rover goes 

backwards or does not move at all, its fitness would also be 0 regardless the steering angle. The maximum fitness 

contribution at each time step is therefore 1/(S ∙ T). The final fitness of each individual is in a range [0, 1] and it is the 

sum of all contributions from all time steps of all trials. 

 
Fig. 3. Environment that was used during all evolutionary runs 



In order to evolve a good controller, it was necessary to create a suitable environment (see Fig. 3.) and to allow the 

rover to interact with it. The environment that we modelled for this purpose is an arena of 60x60 m surrounded by holes 

and walls and containing obstacles and holes.  

RESULTS 

The results obtained from all the fifteen evolutionary experiments show that an effective behaviour emerged in all 

evolutionary runs. In particular, thanks to the general behaviour optimised by the fitness function and the evolutionary 

threshold, we obtained robots that can navigate the environment with a certain degree of efficacy and are able to avoid 

obstacles of different types by dealing with a rough terrain. The chart in Fig. 4. shows the results from all evolutionary 

runs. The graph was created by averaging values from all the fifteen runs. The blue line shows the maximum fitness 

obtained by the best individuals, the red line the average fitness of all the populations and the green line shows the 

threshold value across the generations. By looking at the graph it can be noticed that while the maximum and the 

average fitness are increasing the threshold is decreasing and reaching the optimum value of about 0.3 by 50
th

 

generation. With this optimized threshold the rover can detect all the rocks present in the terrain while not being 

confused by its roughness.  

 
Fig. 4. Fitness graph showing maximum and average fitness as well as the threshold. Note that the fitness can never 

reach 1.0 as the rover needs to turn and decrease its speed to avoid obstacles 

A number of results from different evolutionary runs showed dramatic changes in the fitness after a suitable threshold 

value was found. This suggests that a good behaviour can only emerge if a suitable threshold value is found. Another 

interesting finding was that even a few evolutionary runs that did not end up with high fitness were capable to evolve 

good obstacle avoidance. In order to understand the changes in fitness, as well as the differences between certain 

experiments, several tests were conducted. In particular, tests were designed to evaluate the system robustness in terms 

of performance, reliability and adaptability to new conditions. These properties of the evolved controllers were 

examined using two different tests where the time for genotype evaluation was lengthened to 10,000 sensory-motor 

cycles to make sure the system is robust. The first test measured the fitness of the best fifteen controllers. For this 

purpose, the best controller from the last generation of each run was evaluated. Each of these controllers was tested 100 

times from random initial positions/rotations and average fitness was recorded. This process was repeated on two other 

terrains (same width and length). One terrain had the same obstacles but extra roughness, and the other terrain had extra 

rocks and holes. The left graph in Fig. 5. shows the average fitness of all evolutionary runs for the basic terrain. 

Average fitness value of controllers tested on original or rough terrain is around 0.5. This number drops dramatically on 

the terrain with more obstacles and reaches the value of 0.38. However, this is not surprising as the fitness is affected by 

the rover steering. In this terrain, the rover had to turn much more than in the original terrain, which reflected in the 

lower fitness. The second test measured the exploration ability of the best controllers. The main purpose of this test was 

to have a more reliable measure of the system performance. It was clear that the fitness will decrease if the rover is 

tested in such environment where it is required to steer much more. Therefore, we conducted an additional test, which 

should reveal whether our system is robust or not. For this purpose, the three terrains were therefore divided into 400 

square blocks (20x20), each being 3x3meters long. In this test, we recorded the number of squares that a particular 

controller was able to visit. Same as in the previous test, each controller was tested 100 times from random 



positions/rotations. The average of these trials was taken and used for the statistics where we show the percentage of the 

terrain that was explored within a given time. Note that this percentage considers only those squares that the rover can 

visit. Hence, squares covering areas with holes and rocks were not considered as it can be seen from (3), where E is the 

percentage of the explored terrain, 𝑆𝑣𝑖𝑠𝑖𝑡𝑒𝑑  is the number of visited squares, 𝑆𝑡𝑜𝑡𝑎𝑙  is the total number of squares and 

finally 𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠  is the number of squares covering obstacles (37 for the first two terrains and 91 for the terrain with 

more obstacles). This approach helps us to understand the extent to which the evolved system is robust as this test is not 

so much affected by the number of obstacles in the terrain. As it can be seen from the right graph in Fig. 5 there is only 

a slight difference in exploration success on the three terrains. The average exploration was 41.8% on the original 

terrain, 42.4% on the rough terrain and 38.3% on the terrain with more obstacles. The results obtained from the terrain 

with more obstacles deviate more (3.5%) from the original terrain than the results from the rough terrain (0.6%). 

However, this small difference is negligible and it seems to be caused by the fact that the rover tends to explore more 

often same areas of the terrain. It is more likely for the rover to explore less of the environment if there are many 

obstacles, which cause the rover to visit the same places more than once, rather than moving over new areas. In other 

words, the presence of many obstacles make it less likely that all parts of the terrain are explored within 10,000 sensory-

motor cycles. 

𝐸 =
𝑆𝑣𝑖𝑠𝑖𝑡𝑒𝑑

𝑆𝑡𝑜𝑡𝑎𝑙 − 𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠
                                                                       (3) 

 
Fig. 5. Graphs showing average fitness (left) and exploration(right) of all evolutionary runs 

CONCLUSIONS 

We have shown that the rover model equipped with the evolved neural network controller is able to deal with different 

types of obstacles by distinguishing between terrain roughness noise and dangerous obstacles thanks to an evolvable 

threshold.  Our tests indicate that the system is very robust and able to maintain the obstacle avoidance behaviour under 

different circumstances and in different environments.  

It is worth to note that the exploration and the obstacle avoidance behaviours are not obtained through a pre-designed 

pattern of interaction between the rover and the environment. Rather, they are the emergent product of a fitness function 

that works at the level of the whole behaviour of the robot. Those behaviours are actually discovered autonomously by 

the evolutionary process and are functional to the optimization of the global fitness used for the evolution. We are 

convinced that this property of evolutionary robotics can be very useful to design a robust and computationally light 

controller, capable to deal with some of the peculiar problems which will be facing the future planetary robotics 

missions. As we have shown in this work, the evolved neural network controllers can be extremely simple, require only 

a minimum processing power and yet be very robust and reliable.  

In the future we plan to use this system together with an active vision pan/tilt camera that would provide the rover with 

navigation capabilities. Active computer vision systems are inspired by information gathering of mammals and insects. 

Such systems can greatly simplify the computational complexity as they only use information from an environment that 

is necessary to solve a certain task while the rest is ignored. Past research in this field demonstrated that it is possible to 

combine an active vision system together with feature selection to acquire and integrate information from an 

environment  in order to solve a specific task [16]. Hence, our future goal is to use both the active vision system and the 

current system to achieve complex, robust and reliable, yet computationally cheap behaviours. We are aware that future 

planetary robotics missions will have to face many challenges and we are convinced that evolutionary robotics is worth 

to be considered as a possible approach that could address several problems that are hard to overcome using 

conventional methods. 
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