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ABSTRACT 

This paper describes research into the kinematic robustness of autonomous robotic systems. Kinematic structures 
typical of those employed in the manipulation and locomotion elements of planetary exploration vehicles are 
represented using Graph Theory techniques, extended by the novel concept of the Constraints Matrix. This replaces the 
elements (zeroes and ones) of the standard adjacency matrix of the interchange graph of a kinematic system by integer 
elements representing the numbers of constrained degrees of freedom (dof) throughout the system. It is shown that, as 
motion faults develop progressively within a particular kinematic system, the succession of kinematic states lies along a 
trajectory in an abstract kinematic fault space derived from Constraints Matrix eigenvalues. For a 3-link system, 
progressing along the trajectory, the change from one kinematic state to the next is accompanied by a rotation of the 
corresponding (Constraints Matrix) orthonormal eigenvectors, according to the nature of each fault that has occurred. 
Thus, aspects of the robustness to, and recovery from kinematic faults, of a kinematic system are represented in 
geometrical terms. 

MODELLING OF KINEMATIC SYSTEMS USING GRAPH THEORY 

Kinematic topology refers to the organisational arrangement, juxtaposition and interconnection of components and sub-
systems that involve movement. This provides a means whereby the manipulation and locomotion elements of 
planetary exploration vehicles and their subsystems can be represented, modelled and eventually designed, and Graph 
Theory [6] is one of several possible techniques for achieving this. Graph Theory is not discussed in detail here, 
although, for convenience, some relevant terms are defined within the text. 

The first step in applying graph theory to a moving system is to identify the kinematic chain of, for example, a 
locomotion subsystem. The next step is then to generate the interchange graph representation of the kinematic chain, 
in which the links and joints of the chain are represented by vertices and edges respectively [2].  
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(similar to Stewart Platform [10]) 
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Fig.1: Kinematic Chains and Interchange Graphs of three 3-dof Manipulation/Locomotion systems  

   



Fig.1 illustrates the kinematic chains of three 3-dof manipulation / locomotion systems - a serial kinematic chain 
(typically a robot manipulator), a branched kinematic chain (typically a legged locomotion system), and a parallel 
(looped) kinematic chain (typically a flight simulator platform), together with their interchange graphs. 

The standard interchange graph representation of a kinematic system can yield insights into the system’s kinematic 
structure and behaviour. However, its usefulness is limited by the fact that it does not directly represent some critical 
design features. Nor does it completely represent some functioning aspects such as the nature and operational status of 
the joints present, and whether or not these are active (driven or not), or passive. Therefore, the standard interchange 
graph representation is extended here to encompass the more general concept of the kinematic state graph. In this, 
each of the joints connecting a pair of links (graph vertices) is represented by a number of edges corresponding to the 
number of dof of that particular joint.  

Franz Reuleaux (1829– 1905) defined six fundamental types of surface-contact joints between rigid bodies, the so-
called ‘lower kinematic pairs’ [3][4], having dofs ranging from 1 to 3 – Table 1. 

Table 1: The Six Reuleaux Surface-Contact ‘Lower Kinematic Pairs’ 

Reuleaux Joint Type Revolute Prismatic Screw (helical) Cylindric Spherical Planar 
Joint Symbol R P H C S E 

Number of dof 1 1 1 2 3 3 
 

Kinematic state graphs are illustrated in Figure 2, for three example systems each consisting of three links connected 
serially by two Reuleaux joints of various dofs. Note that a planar joint can be regarded as a serial combination of two 
non-parallel prismatic joints together with a revolute joint whose axis is orthogonal to the two prismatics (E ≡ R + 2P). 
Similarly, a spherical joint can be regarded as a serial combination of three revolute joints, where the three revolute 
axes all intersect at the same point (S ≡ 3R). Hence, with this viewpoint, all three dofs of a planar or spherical joint are 
controllable, and consequently we consider it possible for a particular E or S joint to lose one or more dofs in such a 
way that the remaining dofs are still controllable. 

In this paper, the kinematic states of serial 3-link systems such as those shown in Fig.2 are denoted using the format 
(l,r) where l and r are respectively the numbers of dof in the left and right joints on either side of the central vertex 
(link). This format is readily extendable to larger serial kinematic systems consisting of more than three links and two 
joints. 

When a degree of freedom of a joint is lost through a kinematic fault or failure, this is represented in the graph by 
replacing a full edge with a dashed edge – Fig.3. Additionally, where a joint is being actively driven, the edge is 
annotated ‘(d)on’. Where a driven joint exists, but is inactive (by choice, or through a fault), this is shown as ‘(d)off’. 

  
 
 
 
 

 
 
 

3- Link system (1,1) with two 1-dof 
joints - revolute, prismatic or screw. 

3- Link system (2,2) with two, 2-dof 
joints - cylindric. 

3- Link system (3,3) with two 3-dof joints 
- planar or spherical. 

Fig.2: Kinematic State Graphs for Different Joint Types 
 
 
 
 
 
 
 

 

3-Link system (3,3) with two 3-dof joints - planar or 
spherical – with identification of active driven joint 

3-Link system (3,2) with two 3-dof joints - planar or 
spherical - driven joint, with 1 dof switched off or failed 

Fig.3: Kinematic State Graphs showing the Representation of Failed dof and Driven Joints 
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Thus, using this kinematic state graph representation, it is possible to represent many of the kinematic fault states of a 
system. It should be noted that, when representing joints by multiple edges in system fault states, two possible 
conditions arise. The first condition refers to those situations, where either the loss of one or more of the multiple edges 
connecting a particular pair of vertices is reversible, (e.g. caused by a motor switching on or off), or where, because of 
a fault or failure, the loss of only one of the several edges in a multiple edge between a pair of vertices has occurred. 
Here, some relative motion of the two links represented by the vertices in question remains possible, although the 
number of dof has been reduced. This case is referred to as being ‘without total loss of edge’. In this case, the graph 
retains the original number of vertices. The second instance refers to those situations where the change (again caused 
by a fault or failure) is irreversible and leads to the two links represented by the two vertices in question becoming 
locked together – in effect becoming the same link (vertex)– so that there is no relative motion between the two links 
concerned. This case is referred to as ‘vertex identification with total loss of edge’.  

LINEAR ALGEBRA AND GRAPH REPRESENTATIONS 

It is possible to develop graph representations using aspects of linear algebra to provide further insights into kinematic 
behaviour. The following definitions from linear algebra form the starting point: 
 
The Adjacency Matrix of a graph (such as an Interchange Graph) with n vertices is defined as the square real 
symmetric n×n matrix A whose ij-th term is the number of edges joining vertex i and vertex j [6]. 
 
The Characteristic Polynomial, P(λ), of a square matrix (such as an Adjacency Matrix) A is defined as the 
determinant |λI - A|, where λ is a dummy variable, and I is a unit matrix of the same order as A [7]. 

The novel concept of a Constraints Matrix, C is introduced here to replace the zeroes and ones of the standard 
adjacency matrix of the interchange graph of a kinematic system by integers representing the number of constraints on 
each joint. In this representation, diagonal elements are no longer ‘zeroes’ but now become ‘sixes’, since no link 
(vertex) can have any degrees of freedom relative to itself. Those matrix elements representing edges connecting 
vertices between which no connections exist continue to be represented as zeroes. 

Thus, for the nominal state of the 3-link (3,3) system with two 3-dof joints shown at the right-hand side of Fig.2: 
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Adjacency Matrix    Constraints Matrix 
Fig.4: Adjacency and Constraints Matrices of a Typical 3-Link Serial Kinematic System (3,3) connected by Two 3-dof 

Joints  

For the Constraints Matrix, the characteristic polynomial, P(λ), is defined as the determinant:  

P(λ) = | λI - C | ……………………..……………..….………… (1)   

Where C is the Constraints Matrix, and other symbols are as previously defined. 

The eigenvalues, which are the roots of the characteristic polynomial, P(λ), and their associated eigenvectors, which are 
the corresponding solutions for X of the equation: 

λX = CX …………..……………..……………..….………… (2)   

can be evaluated from (1) by standard means [1][5].  For the example Constraints Matrix shown in Fig.4, the 
eigenvalues and eigenvectors are:  
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We now investigate whether constraints matrices can be used to characterise both the behaviour of kinematic systems in 
their nominal (unfailed) and failed states, and the transitions between these. In order to progress we consider in greater 
detail the nature of these transitions and the kinematic states connected by them. Together, these form a kinematic ‘fault 
path’ representing a system’s response to a particular sequence of kinematic faults. 

KINEMATIC FAULT PATHS 

A kinematic fault path comprises a sequence of discrete steps between the kinematic states of a kinematic system, 
where each step corresponds to the loss of a degree of freedom within one of the joints of the system. Typically such a 
fault path continues through a number of intermediate kinematic states until a state is reached which represents a 
terminating kinematic state. Such a terminating state would be one where all system movement has been lost, or where 
the movement that remains cannot be utilised in any meaningful way. The number of sequences in which successive 
faults can occur grows rapidly with the number of joints in the system, and even for ‘small’ systems the number of 
permutations of fault occurrence is significantly high. Consider Fig.5, which identifies the kinematic states 
corresponding to faults in the 3-link (3,3) system shown on the right of Fig.2. For simplicity, here the sequence of faults 
develops in just one joint. 

For ease of visualisation, the faults are considered to arise in discrete steps, although, in practice, this may not be the 
case, or the steps may follow one another so rapidly that effectively they are simultaneous. Successive fault states are 
numbered sequentially, with State 1 being taken as the nominal condition. 

The degradation of an n-link kinematic system under the action of progressive faults may be visualised n-
dimensionally. For a 3-link kinematic system, such as that in Fig.5, the constraints matrix is a 3×3 matrix and this has 
three eigenvalues, λ1, λ2, λ3. These eigenvalues may be considered to be the three co-ordinates, (λ1, λ2, λ3), of a point 
in a 3-dimensional eigenvalue space. As each fault occurs, the Constraints Matrix changes and so, therefore, do its 
three eigenvalues. A sequence of faults produces a ‘fault trajectory’ within the (eigenvalue) space. Fig.6 attempts to 
show this for the three-dimensional eigenvalue space in which the four points representing States 1, 2, 3, and 4 of the 
3-link (3,3) kinematic system shown in Fig.5 are embedded. 

ROTATION OF EIGENVECTORS 
As a kinematic system progresses through a sequence of kinematic fault states, the latter give rise to a corresponding 
sequence of Constraints Matrices (one for each step of the sequence). Because the latter are (real) symmetric matrices, 
their eigenvectors are orthogonal, and additionally, these are usually normalised since, by convention, only eigenvector 
direction is of relevance. 

Fig.7 shows an example of the behaviour of the orthonormal eigenvectors corresponding to the Constraints Matrices, as 
the fault path illustrated in Fig.5 is traversed. Essentially the effect of each system fault is to cause a rotation of the triad 
of eigenvectors, considered as a rigid frame forming a rigid body. For a higher order system (such as an n-link system 
under the action of successive faults), the triad of eigenvectors would be replaced with a ‘rigid’ orthonormal system (an 
‘n-ad’) of n eigenvectors. 
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Fig.5: Degeneration of a 3-Link (3,3) System under the action of Progressive Faults in one joint 
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Fig.6: Eigenvalue Space for the Four 3-Link Kinematic Systems - (3,3), (3,2), (3,1), (3,0) using System Eigenvalues as 
the Co-ordinates of the Four System Points in the Space  

Fig.7 shows the eigenvector rotations for the systems shown in Fig.5. 

 

 

  

 
 
 

 
 

Fig.7: Eigenvector Rotation for Degradation through a Sequence of Faults of a 3-Link Serial System with two 3-dof 
Joints 

Graph Theory may be used to represent the evolution of a kinematic system from its nominal operational state through 
various sequences of possible kinematic fault states. The collection of all possible ‘fault paths’ for a particular system, 
may be represented as a digraph [6] of fault states. In contrast to the interchange graph, considered earlier, where 
vertices and edges represent kinematic links and joints, respectively, this fault-path digraph now has vertices 
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representing the particular kinematic fault states, and edges representing the transitions between adjacent states. Fault 
states fall into the following categories, not all of which will occur in every digraph: 

• nominal state – the unfailed, start state,  
• substitute operational state – a fault state which still leaves the system with some usable degree of its 

original mobility 
• non-operational state – a fault state in which the system ceases to operate 
• intermediate enabling state – a non-operational fault state, into which a system can be placed by choice, 

which can be used as an intermediate step in moving to an alternative fault state. 
• non-operational absorbing state – a terminal condition in which the system ceases to operate, and from 

which there is no recovery – ie a failure state. 
A primary objective is to establish the desirable reconfigurations of a kinematic system by improving the availability of 
substitute operational states and any associated intermediate enabling states such that the non-operational absorbing 
state is not reached until the latest possible moment. Consider the 3-link kinematic system on the right hand side of 
Fig.2. This has 16 possible kinematic fault states obtained by having in various combinations 0, 1, 2 or 3 dof in the 
joints on either side of the central link. This is represented in digraph form in Fig.8. 

The Constraints Matrices, the eigenvalues and the eigenvectors of the sixteen kinematic fault states shown in Fig.8 are 
listed in Table 2. If a path is traversed through Table 2 via any sequence of kinematic system states from left to right, or 
from top to bottom, this represents a fault path that can arise as the system progressively loses degrees-of-freedom. 
Conversely, a path drawn through a sequence of states from right to left, or from bottom to top represents a path that 
cannot be achieved without some form of intervention to reinstate lost degrees-of-freedom. Table 2 shows that: 

• When moving from left to right across Table 2, there is an anti-clockwise rotation of the eigenvectors about the y-
axis in the 3D eigenvector space.  

• When moving from top to bottom in Table 2, there is a clockwise rotation of the eigenvectors about the y-axis in 
the 3D eigenvector space. 

• When moving from right to left across Table 2, there is a clockwise rotation of the eigenvectors about the y-axis in 
the 3D eigenvector space.  

• When moving from bottom to top in Table 2, there is an anti-clockwise rotation of the eigenvectors about the y-axis 
in the 3D eigenvector space.  

• For each of the above four cases, in the 3D eigenvalue space, the point (λ1, λ2, λ3) progresses along the straight line 
formed by the intersection of the plane λ1 + λ2 + λ3 = 18 with the plane λ1 = 6. 

• All four of the systems (3,3), (2,2), (1,1) and (0,0) have the same three eigenvectors but their second and third 
eigenvalues differ. 

• Systems (3,0) and (0,3) have the same eigenvalues but different eigenvectors, as do systems (2,0) and (0,2), 
systems (1,0) and (0,1), systems (3,2) and (2,3), systems (3,1) and (1,3), and systems (2,1) and (1,2). Each pair of 
these ‘mirror image’ systems exhibits a corresponding mirroring in the x- and z-components of their eigenvectors.  
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Fig.8: Digraph for the Sixteen Kinematic Fault States of a (3,3) Kinematic System 
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Table 2: Eigenvalue and (Normalised) Eigenvector Data for the Set of 3-Link Serial Kinematic Systems with Spherical 
or Planar Joints (an example fault path is overlaid) 

3-Link serial kinematic systems (n,m) [n = left joint dof; m = right joint dof] 
 (3,3) (3,2) (3,1) (3,0) 

Constraints Matrix 

6 3 0
3 6 3
0 3 6

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎟
⎝ ⎠
⎜

 
6 3 0
3 6 4
0 4 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
6 3 0
3 6 5
0 5 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
6 3 0
3 6 6
0 6 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

First Eigenvalue λ1 = 6 λ1 = 6 λ1 = 6 λ1 = 6 
First Eigenvector (0.707, 0, -0.707) (0.800, 0, -0.600) (0.857, 0, -0.514) (0.894, 0, -0.447) 

Second Eigenvalue λ2 = 10.243 λ2 = 11 λ2 = 11.831 λ2 = 12.708 
Second Eigenvector (0.500, 0.707, 0.500) (0.424, 0.707, 0.566) (0.364, 0.707, 0.606) (0.316, 0.707, 0.632) 
Third Eigenvalue λ3 = 1.757 λ3 = 1 λ3 = 0.169 λ3 = -0.708 
Third Eigenvector (0.500, -0.707, 0.500) (0.424, -0.707, 0.566) (0.364, -0.707, 0.606) (0.316, -0.707, 0.632) 

 (2,3) (2,2) (2,1) (2,0) 

Constraints Matrix 

6 4 0
4 6 3
0 3 6

⎛ ⎞
⎜
⎜
⎜
⎝ ⎠

⎟
⎟
⎟ ⎠

 
6 4 0
4 6 4
0 4 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
6 4 0
4 6 5
0 5 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝

 
6 4 0
4 6 6
0 6 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

First Eigenvalue λ1 = 6 λ1 = 6 λ1 = 6 λ1 = 6 
First Eigenvector (0.600, 0, -0.800) (0.707, 0, -0.707) (0.781, 0, -0.625) (0.832, 0, -0.555) 

Second Eigenvalue λ2 = 11 λ2 = 11.657 λ2 = 12.403 λ2 = 13.211 
Second Eigenvector (0.566, 0.707, 0.424) (0.500, 0.707, 0.500) (0.442, 0.707, 0.552) (0.392, 0.707, 0.588) 
Third Eigenvalue λ3 = 1 λ3 = 0.343 λ3 = -0.403 λ3 = -1.211 
Third Eigenvector (0.566, -0.707, 0.424) (0.500, -0.707, 0.500) (0.442, -0.707, 0.552) (0.392, -0.707, 0.588) 

 (1,3) (1,2) (1,1) (1,0) 

Constraints Matrix 

6 5 0
5 6 3
0 3 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
6 5 0
5 6 4
0 4 6

⎛ ⎞
⎜ ⎟
⎜
⎜
⎝

⎟
⎟
⎠

 
6 5 0
5 6 5
0 5 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
6 5 0
5 6 6
0 6 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

First Eigenvalue λ1 = 6 λ1 = 6 λ1 = 6 λ1 = 6 
First Eigenvector (0.514, 0, -0.857) (0.625, 0, -0.781) (0.707, 0, -0.707) (0.768, 0, -0.640) 

Second Eigenvalue λ2 = 11.831 λ2 = 12.403 λ2 = 13.071 λ2 = 13.810 
Second Eigenvector (0.606, 0.707, 0.364) (0.552, 0.707, 0.442) (0.500, 0.707, 0.500) (0.452, 0.707, 0.543) 
Third Eigenvalue λ3 = 0.169 λ3 = -0.403 λ3 = -1.071 λ3 = -1.810 
Third Eigenvector (0.606, -0.707, 0.364) (0.552, -0.707, 0.442) (0.500, -0.707, 0.500) (0.452, -0.707, 0.543) 

 (0,3) (0,2) (0,1) (0,0) 

Constraints Matrix 

6 6 0
6 6 3
0 3 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
6 6 0
6 6 4
0 4 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
6 6 0
6 6 5
0 5 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
6 6 0
6 6 6
0 6 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

First Eigenvalue λ1 = 6 λ1 = 6 λ1 = 6 λ1 = 6 
First Eigenvector (0.447, 0, -0.894) (0.555, 0, -0.832) (0.640, 0, -0.768) (0.707, 0, -0.707) 

Second Eigenvalue λ2 = 12.708 λ2 = 13.211 λ2 = 13.810 λ2 = 14.485 
Second Eigenvector (0.632, 0.707, 0.316) (0.588, 0.707, 0.392) (0.543, 0.707, 0.452) (0.500, 0.707, 0.500) 

Y

Y

Y

Y
 

Y

λ3 = -0.708 λ3 = -1.211 λ3 = -1.810 λ3 = -2.485 Third Eigenvalue 
(0.632, -0.707, 0.316) (0.588, -0.707, 0.392) (0.543, -0.707, 0.452) (0.500, -0.707, 0.500) Third Eigenvector 

The example fault path shown overlaid in Table 2 may be represented on the fault-path digraph of Fig.8 as shown 
overlaid in Fig.9. It can be seen that the clockwise rotated element (from (1,1) to (1,2)) corresponds to a movement 
opposing system degradation.  
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Fig.9: Example Fault Path Overlaid on the Digraph for the Sixteen Kinematic Fault States of a (3,3) Serial Kinematic 
System 

   



DISCUSSION 

Thus, initial indications are that there is potential for the degradation of a kinematic system due to faults, and the effect 
of any subsequent rectification action, to be represented in terms of Constraints Matrix eigenvalue and eigenvector 
behaviour. Here, this effect has only been explored in depth for a 3D eigenspace. The behaviour of serial kinematic 
systems consisting of more than three links and their representations in 4D, 5D, and n-D eigenspace, together with that 
of branched and looped kinematic systems, remains to be explored in detail. This is complicated by the fact that the 
concept of rotation in higher dimensional spaces is not a straightforward extension of the 2D and 3D situations. Various 
different 'types' of rotation emerge from 4D onwards, involving fixed planes and hyperplanes, for instance, instead of 
just fixed points (rotation centres) and fixed lines (rotation axes). 

The intention now is to progressively explore these more complex scenarios, and to produce a series of papers which it 
is hoped will eventually enable the creation of a novel modelling methodology providing a different view of kinematic 
behaviour from that afforded by current techniques. 

CONCLUSION 

A Graph Theoretical analysis provides a representation of some aspects of kinematic system reliability and robustness. 
The examples used here have been relatively simple ones so that the key features of the approach can be easily 
discussed. However, the Graph Theoretical treatment described is applicable to any manipulator system, and also, in 
particular, to planetary exploration vehicle locomotion sub-systems.  

In practice, even comparatively small (in terms of numbers of links and joints) kinematic systems generate large 
adjacency matrices and constraints matrices (with correspondingly large determinants), whose analysis and expansion 
must (realistically) be automated and computerised. 

In order for the approach to yield significant benefit, the kinematic systems under consideration need also to embody 
the necessary clutch / declutch mechanisms to permit the connection / disconnection of joints, so that some states may 
be utilised for partial recovery from faults, and so that the number of available paths to recovery may be optimised. 
Typical systems that might exhibit such a capability are: the Mobile Servicing System (MSS) of the International Space 
Station (ISS); the Space Station Remote Manipulator System (SSRMS – ‘Canadarm 2’); the Mobile Remote Servicer 
Base System (MBS); and the Special Purpose Dextrous Manipulator (SPDM – ‘Dextre’) elements of the MSS. Each of 
these embodies the necessary grapple capabilities to allow system reconfigurations [8]. Additionally, the basic 
functionality of the SSRMS incorporates the ability for sub-elements of the arm to be locked or otherwise controlled in 
order to enable particular behaviours. Thus, the necessary physical capabilities to reproduce in reality fault-robust 
strategies developed using the analysis introduced in the previous sections already exist. 
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