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ABSTRACT 
 
The ESA-funded project ‘HiPeRCAR’ presents a 
possible implementation of resilient system, like the 
one designed at Thales Alenia Space Italia. 
HiPeRCAR combines reliability and performance in a 
complex system able to react to failure events which 
can disturb a nominal work-plan. 
The HiPeRCAR system was already presented at 
previous DASIA editions; the present paper completes 
those presentations with a critical analysis of the test 
results achieved with a real implementation running in 
a possible Space scenario. 
 
 
1. INTRODUCTION 
 
Present-day robotic controllers require high degree of 
processing power together with reliability and 
autonomy in order to cope with the needs of the new 
Space Missions.  
 
HiPeRCAR interprets the ESA “MOSREM” concept 
[1], which places radiation-hardened nodes as front-end 
of a pool of high-performance shear nodes based on 
industrial processors.   
 
So, a hybrid system has been designed where a reliable 
computer improves its processing capability by the 
help of high-performance computers: the front-end 
computer ensures the reliability, while the back-end 
computers provide the wanted processing power [2]. 
Reliability is ensured by the radiation-hardened 
technology, instead power-processing is provided by 
commercial computers (Fig 1).  
 
The modular design eases the extension of the system: 
other nodes can be added for implementing redundant 
architectures or for controlling specific devices. The 
scalable and open architecture allows face the needs of 
different Missions and to fit with the financial 
resources of different Missions.  
 

 
Fig. 1 – HiPeRCAR Conceptual System 

 
 
By mixing Space technology and industrial technology, 
HiPeRCAR gives an answer to robotic or scientific 
applications requiring massive computations, or Space 
missions requiring Autonomy. 
 
1.1 The HiPeRCAR Project 
 
A consortium of European companies lead by Thales 
Alenia Space Italia designed such a system, trying to 
demonstrate that the resilience goal can be achieved.  
 
The project requirements (ESA contract ITT/1-
4607/04/NL/AG) impose also some challenging 
constraints as: 
- use of European technology 
- use of COTS (as alternative to developed) products 
- use of open-source Software 
- design at minimum cost. 
 
A first design phase provided the major features of a 
possible system for Space; its natural role is as payload 
controller. The architecture of HiPeRCAR system was 
presented at DASIA 2006 [3]. 
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Then, the project continued realising a target model 
that emulates a Space system. Also a SW Simulator of 
this target has been realised in order to assess the 
Software architecture of this resilient system. The 
Simulator allowed to design the robotic tasks and to 
confirm the architectural design [DASIA 2007 [5]. 
 
Now, the present paper deals with the third phase of the 
project that is it shows the results measured on the 
target. So, it is possible to do a critical analysis of the 
design and to confirm the resilient architecture. 
 
2.  HiPeRCAR TARGET DEMONSTRATOR 
 
The hardware design is kept intentionally at low 
expenses considering as requirements only the major 
functionalities of a Space system. 
 

 
Fig. 2-1 – HiPeRCAR TARGET 

 
The elements of the HiPeRCAR system are: 
 

 Master node 
The rad-hard computer is made of a LEON processor. 
Here, it is substituted by a cheaper PowerPC processor 
(the ‘PPC405’ commercial board by ESD Electronic 
has been adopted for the full system). The board 
reliability could be improved at Military qualification 
degree.  
The Command & Control bus (MIL-Std-1553B) 
towards Ground (POC) is substituted by an 
Ethernet/UDP link. The Robotic Control Bus (CAN) 
and Servo-Control-Board (SBC) are here emulated. 
Master node runs the major HiPeRCAR Software. 
 

 Solid-State Mass Memory (MM) 
A second PPC board substitutes the Solid State Mass-
Memory (Worker3 in the figure 2-1) with its own 
RAM. A simplified file-storage system allows to save 
periodically a fixed amount of data for reconstructing 
the context environment of the Worker nodes. 
 

 Two Worker Nodes 
Two PPC405 boards provide the required high 
processing capability (greater than 300 MIPS) with 
acceptable power consumption (20 W). 
 

 SpaceWire Terminal Interface 
A SpaceWire FPGA on each node provides a full mesh 
of 30Mbps point-to-point links. The SpW FPGA 

(ECSS-E50-12A compliant) has been developed just 
for the HiPeRCAR Project. 
No need of router exists in this minimum system. 
 

 
Fig. 2-2 – Logical Scheme of HiPeRCAR Target 

 
Tests have been performed on HiPeRCAR Target, 
connected via UDP to POC which sends commands 
and receives telemetry. DREAMS program on POC 
computer allows the representation of data by means of 
a post-processing  Matlab program. 
 
3. RESILIENCE IN HiPeRCAR 
 
The concept: “Resilience” permits a system to react to 
possible damages by reallocating the faulty tasks in 
optimal mode.  
HiPeRCAR system implements by a personal design 
this concept. 
  
Basic assumptions:  
a) The wanted power is given by commercial-grade 
computers. 
 
b) Failures (due to cosmic radiations) apply to the 
weakest nodes, i.e. the Worker Nodes based on 
commercial computers. They produce temporary of 
definitively degradation of the affected node. Rad-hard 
nodes (Master and MM) are failure-protected. 
 
Objective: HiPeRCAR guarantees that, despite of 
failures of the Worker nodes, the system provides 
continuity of the services and resumes the original 
performance in minimum time. 
 
HiPeRCAR system tolerates a reduction of the 
performance but not stopping of service. It has to 
autonomously resume the nominal performance as 
soon the failure effect ends. If the failed node cannot be 
recovered, the system will assign the affected jobs to 
other available nodes or in worst-case the Master will 
carry out by those jobs with the available resources. 
 
3.1 Resilience Strategy 
 
In case of node failure, shutdown and reboot take a 
long time unacceptable for the continuity of the 
service.  Therefore, a safe control relays on tasks which 



run permanently on the rad-hard Master that never 
stops.  
In order to get this objective, the HiPeRCAR Software 
maintains a double version of the robotic tasks running 
simultaneously on Master and Worker Nodes. 
 
Worker nodes run the full operational version, the 
Nominal one, while Master node carries out a reduced, 
or Basic, version of the same task. 
Master provides by alone a minimum control of the 
robotic devices in any case; so, if the result of the 
Nominal task is missing, Master guarantees autonomy 
and reliability. 
In fact, if a Worker fails just its contribution goes lost, 
i.e. the advanced commands are missing, but the basic 
controller stays operable. An external observer does 
not detect discontinuity in the service.  
 
3.2 Resilience Design 
 
The whole process is managed by the Master Node. 
Master performs a continuous monitoring on Workers: 
the progress of their tasks is under control (Fault 
Detection). The robotic task is made by the cooperation 
of Master and Worker (Nominal Mode), but the 
presence of the latter is not an absolute need. When the 
Worker contribution is missing, the system goes 
instantaneously from Nominal Mode to Basic Mode 
(robustness action). 
 
In Basic mode, Master carries out a simplified version 
of the robotic task implemented nominally by the 
Worker avoiding the interruption of the service. In the 
meantime, Master tries to reboot the faulty Worker. If 
this does not help, the faulty Worker is turned off 
definitely and a spare Worker is activated, if available.  
 
Ended the node fault recovery, the Configuration agent 
reallocates the advanced robotic tasks on the Worker 
returned to its operational status (resilience action). If 
this fails, the system stays in the basic mode (graceful-
degradation action).  
In any case, there is no interruption of service. 
 
3.3  Control-Task Design 
 
Each robotic service is a control task devised as made 
of two internal stages: “Nominal” and “Basic” mode.  
 
Nominal Mode foresees complex and resource-
intensive computations provided by powerful Worker 
nodes and network. The outputs of the Nominal tasks 
are achieved by the cooperation of Worker and Master 
Nodes.    
 
Basic Mode performs only safe operations.  Its design 
is simple, resources economical, in charge to Master 

Node.  While running in basic mode, the system 
provides service at low performance. 
 
Once the above tools are available in HiPeRCAR 
system, splitting a given robotic function into Basic 
and Nominal mode is the major challenge of the 
Project. There are no general rules to split a robotic 
task into complementary parties; this design activity is 
done on a case-by-case basis: PASTEUR and 
EUROBOT missions provide a suitable scenario to 
carry out this exercise. 
 
The robotic control tasks execute on the basis of a 
time-slice, named ‘tick’. This is the task SW-cycle or 
the atomic unit on which the task must be completed. 
Faster is the CPU, shorter can be the tick unit. Here, 
the robotic application uses a 20 ms tick as suitable 
SW-cycle for this kind of applications. 
 
The HiPeRCAR system operates by means of the 
efficient and transparent services provided by the 
Middleware Communication Manager, in charge of 
distributing messages among tasks everywhere located 
over the network. The inter-nodes communications is 
supported by a high-speed SpaceWire network. 
 
Middleware runs on BOSS, the real-time kernel [4], 
which makes a virtual hardware abstraction allocating 
SW tasks everywhere on the system net. 
 
Workers periodically save their context environment 
into a dedicated area of the Mass Memory. Storing 
helps to recover an interrupted status; in fact, Worker 
retrieves the last status from MM at node reboot or task 
moving. 
 
 
4.   PASTEUR TEST SCENARIO  
 
‘Pasteur’, the driller system of Exomars mission is a 
suitable study-case with its operative scenario. The 
Pasteur test-case has been took from the Test Plan [6].  
 
The Mission Application runs on top of the 
Middleware Framework which implements al the basic 
(mission-independent) services (like 1553-
communications to/from POC, TC&TM, Operative 
Modes, CAN robotic Bus, FDIR). 
 
The Pasteur application is envisaged as made of four 
control tasks: (1) Drill Control Task, in charge the 
handling of drill mechanisms; (2) SPDS&Microscope 
Control Task for handling the Sample Preparation and 
Distribution System and Microscope; (3) Data 
Acquisition Control Task, for handling the acquisition 
and storing of mission data; (4) Mission Autonomy 
task, for handling mission plan. 



Each control-task is designed by three main 
components: the Basic task running on Master, the 
Nominal task running on Worker, the Nominal Context 
Descriptor handled by MM. 
 
The kind of implementation has its fundamental on 
some basic concepts: 
1. Basic and Nominal related algorithms must have the 

same duration. 
2. Nominal control-tasks have no-memory of the 

previous activities. In case of failure, Nominal task 
can not know if/when/how-long it was not active. 
So, Nominal activity shall not depend on previous 
activities. 

3. Nominal control-tasks execute without performing 
consistency check. Nominal can not perform checks 
on any part, either HW or SW. 

4. Context information should not contain status 
information, because Nominal can not use it.  

 
The paper considers one case only for sake of clarity. 
The Drill-Control-Task is examined just to catch the 
HiPeRCAR features. 
 
 
5.  DRILL-CONTROL DESIGN  
 
Drill-Control is a task in charge of handling the drill 
mechanisms.  
 
Three main algorithms have been implemented: 
Position-Control for translation mechanism; Speed-
Control for drill rotation mechanism; Controlled-Stop 
for drill rotation mechanism.  
 
Nominal and Basic tasks run different Position-Control 
and Speed-Control algorithms (see Fig.5-1), being the 
Nominal more accurate than the Basic ones; a complex 
polynomial expression in Nominal is simplified by a 
linear expression in Basic Mode. The Controlled-Stop 
algorithm, since very simple, uses the same linear 
expression for both Basic and Nominal Modes.  
 
Relations between Basic and Nominal are achieved by 
an intensive communication based on standardised 
messages. 
 
Two kinds of messages are exchanged between Basic 
and Nominal tasks (ExecuteTrajectoryPlanning and 
ExecuteTrajectoryStep). Maser starts the 
communication with a message with and waits for the 
relevant reply from Nominal. 
Deviations from this protocol activates the Basic 
generation of setpoints to be issued on the robotic 
control bus. 
Relationship Basic/Nominal requires an intensive 
communications because it is necessary to refresh at 

each SW-cycle the actual position of drill mechanisms 
since “no assumptions have to be done on the previous 
status of Nominal”. 
The message exchange is supported by the high-
throughput SpaceWire network. 
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Controlled Stop, (red line, applied to speed-control) 
Fig.5.1 – Drill Control Tasks 

 
The design of Basic Mode is based on four steps: 
 
Start_infinite_loop 
step1: check if a new drill-control command is received 

by POC.     If so: 
- check if the command is allowed wrt the current 

drill status 
- check the correctness of the command 
- prepare the message ExecuteTrajectoryPlanning 

towards Nominal 
step2: Send message ExecuteTrajectoryPlanning or 

ExecuteTrajectoryStep to Nominal then evaluate the 
setpoint to be used as back-up solution if Nominal 
does not reply. 

step3: Wait for next cycle clock time (tick) 
step4:  if a message has been sent to Nominal, check if 

a message-reply is arrived from Nominal and send 
the setpoints to external drivers. 

End_infinite_loop 
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After sending the message to Nominal (step2) and 
before checking if the answer is arrived (step4), Basic 
is in step3 waiting for next cycle. During this waiting 
time, Nominal shall plan the new trajectory or 
evaluates next setpoint. Nominal shall plan the new 
trajectory within 20 ticks, and shall provide the setpoint 
in 1 tick. 
 
Resilience in “Drill Control Task” 
When a failure happens, according to step failed, 
Pasteur system reacts in this way: 
- if the Nominal has a failure while Basic sends the 
ExecuteTrajectoryPlanning message (step2): the Basic 
sends the ExecuteTrajectoryPlanning for as a 
maximum 20 times, one message every tick; if no 
answer is received, the Basic will execute the trajectory 
planned by itself and does not contact  Nominal for the 
whole duration of actual trajectory. 
- if the Nominal has a failure while a movement is in 
progress (step3): the Basic, every tick, sends the 
ExecuteTrajectoryStep; if no answer is received within 
1 tick, the Basic will send to the drivers the setpoints 
evaluated by itself (the backup setpoints). In the next 
ticks, Basic will send again to Nominal the 
ExecuteTrajectoryStep with the actual status: if answer 
is received, it will send to the drivers the setpoint 
provided by Nominal; otherwise, Basic will use the 
setpoints generated by it. 
 
Once the Nominal is activated, again the TaskManager 
sends to Nominal the context. By using context and the 
actual status information sent by Basic, Nominal can 
properly continue its activity. 
 
The Mission under test plans issuing by POC of the 
following commands: 
- start acquisition 
- drive on drill 
- drill rotation 50 [rpm], acceleration time 2[s] 
- controlled stop 
- drive off drill 
- stop acquisition 
- download file DrillRotB 
 
The off-line post-processor translates the generated 
telemetry data contained in the file DrillRotB into 
Matlab format to have an intuitive representation of the 
system behaviour. 
 
6.  TEST DESIGN 
 
Firstly a reference test-case is generated by executing 
the mission plan without inducing failures. The Fig. 6-
1 shows how Nominal Mode will perform for an 
undisturbed implementation of Speed-Control and the 
Controlled-Stop algorithms. 

The outputs of the system are just the ones produced by 
Normal Mode running on Worker Node. 
 

 Fig 6-1: Drill rotational speed evaluated by Nominal 
 
A second reference test-case for the same tasks is 
executed by Basic Mode only, that is de-activating the 
Nominal Drill Control and without failures induced.  
By this way, the outputs of the system are just the ones 
produced by Basic Mode running on Master Node. 
 
 

 
Fig 6-2: Drill rotational speed as evaluated by Basic 

 
Fig. 6-2 points out the simplified behaviour achieved 
by Basic Mode. 
Some previous tests allowed to get some measurements 
as the latency of task switching: FDIR spends around 
20 ticks to confirm that Worker is gone out and 16 tick 
to reactivate a task on another active node. 
 
Finally, we have in our hands the means to evaluate the 
system behaviour.  
The test starts up all the nodes: Master, Worker1, 
Worker2 and MM.  During the trajectory execution, 
Worker1 (blue line) and then Worker2 (green line) are 
both powered on.  
The Drill-rot-speed is assigned to Worker2. 



 
Fig 6-3: Drill rotational speed with injected failure 

 
 
6.1 Results Analysis 
 
The Fig. 6-3 allow to point out: 
At start, both Workers are up. 
Worker2 starts executing the task as per Fig 6.1.  At 
tick 21, Worker2 goes in failure; Basic set-points are 
immediately provided (robustness action).  The 
discontinuity on the plot is due to the application of 
Basic profile (see fig 6.2). 
 
At tick 51, the system declares Worker2 off. The FDIR 
task spends 24 ticks to detect that Worker2 is gone off. 
2 ticks are required to migrate the task onto the active 
Worker1; (some tests show that 20 ticks for FDIR and 
1 tick for task migration are enough).  
The latency of the system can be assumed of 20-25 
ticks. But over this time, system stays always available. 
 
From now on, Master performs the drill-rot-speed task 
through Worker1 (resilience action). The plot shows at 
tick 53 the discontinuity due to this switch.  
 
Worker1 goes in troubles at tick 68 and its Nominal 
task does not respond: the system takes about 20 ticks 
to detect that a node is off; in fact, its shut down is 
detected at tick 88. Again, Basic intervenes 
immediately providing its own computed setpoints. 
The slope of the plot shows the use of the Basic curve 
of fig 6.2.  
 
Deceleration phase: on this phase there is no 
discontinuity in the setpoint generated, because in the 
deceleration phase the same linear controlled-stop 
algorithm is implemented in Basic and Nominal. 
 
Worker2 becomes active at tick 175, and Drill Control 
task migrates back to the default node (i.e. Worker2); 
no discontinuity is generated. 
 

This test case does not show the graceful degradation, 
as never both the Workers are off. 
 
 
7. CONCLUSIVE CONSIDERATIONS 
 
The validation phase confirms the achievement of the 
main objectives of the HiPeRCAR Project.  
HiPeRCAR, by means of all its components Hardware 
and Software (see Fig. 1), shows that the 
Basic/Nominal strategy guarantees availability and 
resilience able to face failures on the weak part. 
 
In particular, HiPeRCAR shows the following features: 
Availability: no-stop of the robotic tasks thanks to the 
prompt application of the reduced service version. 
When Nominal does not give its contribution, Basic 
provides by alone the outputs: no-loosing of setpoints 
towards drivers.  
The ‘robustness action’ avoids the out of the service. 
The reduction of performance achieved in this test-case 
is due to the simplification of Basic mode; a more 
sophisticated implementation of the Basic algorithms 
could help by smoothing the discontinuity points. 
 
Readiness: The transition Nominal-to-Basic is 
immediate, since Basic is designed to compute in 
advance its outputs before receiving the Nominal 
outputs. 
The transition Basic-to-Nominal requires 1 or 2 ticks 
(20 ms in our case) when another node is available. 
 
Resilience: When a failure is detected, the system 
restores the service in 1 or 2 ticks on another active 
node. 
When possible, the system spends about 20 ticks to re-
start (power-off/power-on) the service on the same 
node.  A 50-Hz system restores the full capability in 
400 ms.  
If the resilient action is not successful, because of the 
permanence of the faulty status, the system continues 
the job in degraded mode (‘graceful degradation 
action’).  
 
The validation test campaign provides the results of 
several test-cases, which allows to get a fine picture of 
the system performance and of the algorithm design 
[6].  
 
But, the test campaign highlighted also some topics 
that could request to continue the study on the future:  
- Task downgrading from Nominal to Basic is a very 

delicate design, subject of optimisation; 
- More sophisticated Basic algorithms lead to reduce 

discontinuity and phase-inversion in the control 
behaviour (‘negative’ speeds are not admitted by a 
real Controller); 



- SSMM: saving/restoring rich context-environments 
greatly increases the current ‘stateless’ design of 
Worker nodes. Missing information on last status 
overloads Master Node which has to update 
continuously workers with their last status 

- Powerful computer boards allows overloading of 
Worker nodes that can maintain more Control Tasks 
in dormant-state  

- Powerful Master computer allows to manage more 
Worker Nodes by running their Basic modes. 

- Master Node is charged of too many tasks in the 
current design; FDIR can take great advantage by 
distributing outside some tasks; e.g. the Robotic Bus 
Controller can be allocated to a real CAN-controller 
(SBC) like the ‘RTI’ (available ESA-project). 

- Master Node implementation based on Leon 
Processor. 

- The system architecture can be extended by 
introducing a SpaceWire router to support more 
Nodes in the loop. 

 
These points and other ones could be study-cases for 
the continuation of the HiPeRCAR project. 
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