
The Resilience Concept Validation by HiPeRCAR

 Pasquale A. Marra (1) (pasquale.marra@thalesaleniaspace.com)
 Daniel Akuatse (2) (daniel.akautse@syderal.ch)
 Emily Crudo (3) (emily.crudo@galileoavionica.it)
 Patrizia Bologna (3) (patrizia.bologna@galileoavionica.it)
 Sergio Montenegro (4) (Sergio.Montenegro@dlr.de)
 Raffaele Vitulli (5) (raffaele.vitulli@esa.int)

(1) Thales Alenia Space Italia, SS Padana Superiore, 290 - 20090 Vimodrone (MI), Italy
(2) Syderal S.A., Neuenburgstrasse 7 - 3238-Gals (BE), Switzerland
(3) SELEX - Galileo Avionica SpA, Via Montefeltro, 8 - 20156 Milano, Italy
(4) FIRST, Kekuléstraße 7 - 12489 Berlin, Germany
(5) ESA/ESTEC, Keplerlaan 1, Postbus 299 - 2200 AG Noordwijk, The Netherlands

ABSTRACT

The ESA-funded project ‘HiPeRCAR’ presents a
possible implementation of resilient system, like the
one designed at Thales Alenia Space Italia.
HiPeRCAR combines reliability and performance in a
complex system able to react to failure events which
can disturb a nominal work-plan.
The HiPeRCAR system was already presented at
previous DASIA editions; the present paper completes
those presentations with a critical analysis of the test
results achieved with a real implementation running in
a possible Space scenario.

1. INTRODUCTION

Present-day robotic controllers require high degree of
processing power together with reliability and
autonomy in order to cope with the needs of the new
Space Missions.

HiPeRCAR interprets the ESA “MOSREM” concept
[1], which places radiation-hardened nodes as front-end
of a pool of high-performance shear nodes based on
industrial processors.

So, a hybrid system has been designed where a reliable
computer improves its processing capability by the
help of high-performance computers: the front-end
computer ensures the reliability, while the back-end
computers provide the wanted processing power [2].
Reliability is ensured by the radiation-hardened
technology, instead power-processing is provided by
commercial computers (Fig 1).

The modular design eases the extension of the system:
other nodes can be added for implementing redundant
architectures or for controlling specific devices. The
scalable and open architecture allows face the needs of
different Missions and to fit with the financial
resources of different Missions.

Fig. 1 – HiPeRCAR Conceptual System

By mixing Space technology and industrial technology,
HiPeRCAR gives an answer to robotic or scientific
applications requiring massive computations, or Space
missions requiring Autonomy.

1.1 The HiPeRCAR Project

A consortium of European companies lead by Thales
Alenia Space Italia designed such a system, trying to
demonstrate that the resilience goal can be achieved.

The project requirements (ESA contract ITT/1-
4607/04/NL/AG) impose also some challenging
constraints as:
- use of European technology
- use of COTS (as alternative to developed) products
- use of open-source Software
- design at minimum cost.

A first design phase provided the major features of a
possible system for Space; its natural role is as payload
controller. The architecture of HiPeRCAR system was
presented at DASIA 2006 [3].

mailto:emily.crudo@galileoavionica.it
mailto:patrizia.bologna@galileoavionica.it

Then, the project continued realising a target model
that emulates a Space system. Also a SW Simulator of
this target has been realised in order to assess the
Software architecture of this resilient system. The
Simulator allowed to design the robotic tasks and to
confirm the architectural design [DASIA 2007 [5].

Now, the present paper deals with the third phase of the
project that is it shows the results measured on the
target. So, it is possible to do a critical analysis of the
design and to confirm the resilient architecture.

2. HiPeRCAR TARGET DEMONSTRATOR

The hardware design is kept intentionally at low
expenses considering as requirements only the major
functionalities of a Space system.

Fig. 2-1 – HiPeRCAR TARGET

The elements of the HiPeRCAR system are:

 Master node
The rad-hard computer is made of a LEON processor.
Here, it is substituted by a cheaper PowerPC processor
(the ‘PPC405’ commercial board by ESD Electronic
has been adopted for the full system). The board
reliability could be improved at Military qualification
degree.
The Command & Control bus (MIL-Std-1553B)
towards Ground (POC) is substituted by an
Ethernet/UDP link. The Robotic Control Bus (CAN)
and Servo-Control-Board (SBC) are here emulated.
Master node runs the major HiPeRCAR Software.

 Solid-State Mass Memory (MM)
A second PPC board substitutes the Solid State Mass-
Memory (Worker3 in the figure 2-1) with its own
RAM. A simplified file-storage system allows to save
periodically a fixed amount of data for reconstructing
the context environment of the Worker nodes.

 Two Worker Nodes
Two PPC405 boards provide the required high
processing capability (greater than 300 MIPS) with
acceptable power consumption (20 W).

 SpaceWire Terminal Interface
A SpaceWire FPGA on each node provides a full mesh
of 30Mbps point-to-point links. The SpW FPGA

(ECSS-E50-12A compliant) has been developed just
for the HiPeRCAR Project.
No need of router exists in this minimum system.

Fig. 2-2 – Logical Scheme of HiPeRCAR Target

Tests have been performed on HiPeRCAR Target,
connected via UDP to POC which sends commands
and receives telemetry. DREAMS program on POC
computer allows the representation of data by means of
a post-processing Matlab program.

3. RESILIENCE IN HiPeRCAR

The concept: “Resilience” permits a system to react to
possible damages by reallocating the faulty tasks in
optimal mode.
HiPeRCAR system implements by a personal design
this concept.

Basic assumptions:
a) The wanted power is given by commercial-grade
computers.

b) Failures (due to cosmic radiations) apply to the
weakest nodes, i.e. the Worker Nodes based on
commercial computers. They produce temporary of
definitively degradation of the affected node. Rad-hard
nodes (Master and MM) are failure-protected.

Objective: HiPeRCAR guarantees that, despite of
failures of the Worker nodes, the system provides
continuity of the services and resumes the original
performance in minimum time.

HiPeRCAR system tolerates a reduction of the
performance but not stopping of service. It has to
autonomously resume the nominal performance as
soon the failure effect ends. If the failed node cannot be
recovered, the system will assign the affected jobs to
other available nodes or in worst-case the Master will
carry out by those jobs with the available resources.

3.1 Resilience Strategy

In case of node failure, shutdown and reboot take a
long time unacceptable for the continuity of the
service. Therefore, a safe control relays on tasks which

run permanently on the rad-hard Master that never
stops.
In order to get this objective, the HiPeRCAR Software
maintains a double version of the robotic tasks running
simultaneously on Master and Worker Nodes.

Worker nodes run the full operational version, the
Nominal one, while Master node carries out a reduced,
or Basic, version of the same task.
Master provides by alone a minimum control of the
robotic devices in any case; so, if the result of the
Nominal task is missing, Master guarantees autonomy
and reliability.
In fact, if a Worker fails just its contribution goes lost,
i.e. the advanced commands are missing, but the basic
controller stays operable. An external observer does
not detect discontinuity in the service.

3.2 Resilience Design

The whole process is managed by the Master Node.
Master performs a continuous monitoring on Workers:
the progress of their tasks is under control (Fault
Detection). The robotic task is made by the cooperation
of Master and Worker (Nominal Mode), but the
presence of the latter is not an absolute need. When the
Worker contribution is missing, the system goes
instantaneously from Nominal Mode to Basic Mode
(robustness action).

In Basic mode, Master carries out a simplified version
of the robotic task implemented nominally by the
Worker avoiding the interruption of the service. In the
meantime, Master tries to reboot the faulty Worker. If
this does not help, the faulty Worker is turned off
definitely and a spare Worker is activated, if available.

Ended the node fault recovery, the Configuration agent
reallocates the advanced robotic tasks on the Worker
returned to its operational status (resilience action). If
this fails, the system stays in the basic mode (graceful-
degradation action).
In any case, there is no interruption of service.

3.3 Control-Task Design

Each robotic service is a control task devised as made
of two internal stages: “Nominal” and “Basic” mode.

Nominal Mode foresees complex and resource-
intensive computations provided by powerful Worker
nodes and network. The outputs of the Nominal tasks
are achieved by the cooperation of Worker and Master
Nodes.

Basic Mode performs only safe operations. Its design
is simple, resources economical, in charge to Master

Node. While running in basic mode, the system
provides service at low performance.

Once the above tools are available in HiPeRCAR
system, splitting a given robotic function into Basic
and Nominal mode is the major challenge of the
Project. There are no general rules to split a robotic
task into complementary parties; this design activity is
done on a case-by-case basis: PASTEUR and
EUROBOT missions provide a suitable scenario to
carry out this exercise.

The robotic control tasks execute on the basis of a
time-slice, named ‘tick’. This is the task SW-cycle or
the atomic unit on which the task must be completed.
Faster is the CPU, shorter can be the tick unit. Here,
the robotic application uses a 20 ms tick as suitable
SW-cycle for this kind of applications.

The HiPeRCAR system operates by means of the
efficient and transparent services provided by the
Middleware Communication Manager, in charge of
distributing messages among tasks everywhere located
over the network. The inter-nodes communications is
supported by a high-speed SpaceWire network.

Middleware runs on BOSS, the real-time kernel [4],
which makes a virtual hardware abstraction allocating
SW tasks everywhere on the system net.

Workers periodically save their context environment
into a dedicated area of the Mass Memory. Storing
helps to recover an interrupted status; in fact, Worker
retrieves the last status from MM at node reboot or task
moving.

4. PASTEUR TEST SCENARIO

‘Pasteur’, the driller system of Exomars mission is a
suitable study-case with its operative scenario. The
Pasteur test-case has been took from the Test Plan [6].

The Mission Application runs on top of the
Middleware Framework which implements al the basic
(mission-independent) services (like 1553-
communications to/from POC, TC&TM, Operative
Modes, CAN robotic Bus, FDIR).

The Pasteur application is envisaged as made of four
control tasks: (1) Drill Control Task, in charge the
handling of drill mechanisms; (2) SPDS&Microscope
Control Task for handling the Sample Preparation and
Distribution System and Microscope; (3) Data
Acquisition Control Task, for handling the acquisition
and storing of mission data; (4) Mission Autonomy
task, for handling mission plan.

Each control-task is designed by three main
components: the Basic task running on Master, the
Nominal task running on Worker, the Nominal Context
Descriptor handled by MM.

The kind of implementation has its fundamental on
some basic concepts:
1. Basic and Nominal related algorithms must have the

same duration.
2. Nominal control-tasks have no-memory of the

previous activities. In case of failure, Nominal task
can not know if/when/how-long it was not active.
So, Nominal activity shall not depend on previous
activities.

3. Nominal control-tasks execute without performing
consistency check. Nominal can not perform checks
on any part, either HW or SW.

4. Context information should not contain status
information, because Nominal can not use it.

The paper considers one case only for sake of clarity.
The Drill-Control-Task is examined just to catch the
HiPeRCAR features.

5. DRILL-CONTROL DESIGN

Drill-Control is a task in charge of handling the drill
mechanisms.

Three main algorithms have been implemented:
Position-Control for translation mechanism; Speed-
Control for drill rotation mechanism; Controlled-Stop
for drill rotation mechanism.

Nominal and Basic tasks run different Position-Control
and Speed-Control algorithms (see Fig.5-1), being the
Nominal more accurate than the Basic ones; a complex
polynomial expression in Nominal is simplified by a
linear expression in Basic Mode. The Controlled-Stop
algorithm, since very simple, uses the same linear
expression for both Basic and Nominal Modes.

Relations between Basic and Nominal are achieved by
an intensive communication based on standardised
messages.

Two kinds of messages are exchanged between Basic
and Nominal tasks (ExecuteTrajectoryPlanning and
ExecuteTrajectoryStep). Maser starts the
communication with a message with and waits for the
relevant reply from Nominal.
Deviations from this protocol activates the Basic
generation of setpoints to be issued on the robotic
control bus.
Relationship Basic/Nominal requires an intensive
communications because it is necessary to refresh at

each SW-cycle the actual position of drill mechanisms
since “no assumptions have to be done on the previous
status of Nominal”.
The message exchange is supported by the high-
throughput SpaceWire network.

Full algorithm
implemented by

Nominal

Reduced algorithm
implemented by

Basic

Position Control algorithm

Speed Control algorithm

Controlled Stop, (red line, applied to speed-control)
Fig.5.1 – Drill Control Tasks

The design of Basic Mode is based on four steps:

Start_infinite_loop
step1: check if a new drill-control command is received

by POC. If so:
- check if the command is allowed wrt the current

drill status
- check the correctness of the command
- prepare the message ExecuteTrajectoryPlanning

towards Nominal
step2: Send message ExecuteTrajectoryPlanning or

ExecuteTrajectoryStep to Nominal then evaluate the
setpoint to be used as back-up solution if Nominal
does not reply.

step3: Wait for next cycle clock time (tick)
step4: if a message has been sent to Nominal, check if

a message-reply is arrived from Nominal and send
the setpoints to external drivers.

End_infinite_loop

time

speed

time

speed

time

time

position

speed

time

speed

speed

time

position

time speed

time

After sending the message to Nominal (step2) and
before checking if the answer is arrived (step4), Basic
is in step3 waiting for next cycle. During this waiting
time, Nominal shall plan the new trajectory or
evaluates next setpoint. Nominal shall plan the new
trajectory within 20 ticks, and shall provide the setpoint
in 1 tick.

Resilience in “Drill Control Task”
When a failure happens, according to step failed,
Pasteur system reacts in this way:
- if the Nominal has a failure while Basic sends the
ExecuteTrajectoryPlanning message (step2): the Basic
sends the ExecuteTrajectoryPlanning for as a
maximum 20 times, one message every tick; if no
answer is received, the Basic will execute the trajectory
planned by itself and does not contact Nominal for the
whole duration of actual trajectory.
- if the Nominal has a failure while a movement is in
progress (step3): the Basic, every tick, sends the
ExecuteTrajectoryStep; if no answer is received within
1 tick, the Basic will send to the drivers the setpoints
evaluated by itself (the backup setpoints). In the next
ticks, Basic will send again to Nominal the
ExecuteTrajectoryStep with the actual status: if answer
is received, it will send to the drivers the setpoint
provided by Nominal; otherwise, Basic will use the
setpoints generated by it.

Once the Nominal is activated, again the TaskManager
sends to Nominal the context. By using context and the
actual status information sent by Basic, Nominal can
properly continue its activity.

The Mission under test plans issuing by POC of the
following commands:
- start acquisition
- drive on drill
- drill rotation 50 [rpm], acceleration time 2[s]
- controlled stop
- drive off drill
- stop acquisition
- download file DrillRotB

The off-line post-processor translates the generated
telemetry data contained in the file DrillRotB into
Matlab format to have an intuitive representation of the
system behaviour.

6. TEST DESIGN

Firstly a reference test-case is generated by executing
the mission plan without inducing failures. The Fig. 6-
1 shows how Nominal Mode will perform for an
undisturbed implementation of Speed-Control and the
Controlled-Stop algorithms.

The outputs of the system are just the ones produced by
Normal Mode running on Worker Node.

 Fig 6-1: Drill rotational speed evaluated by Nominal

A second reference test-case for the same tasks is
executed by Basic Mode only, that is de-activating the
Nominal Drill Control and without failures induced.
By this way, the outputs of the system are just the ones
produced by Basic Mode running on Master Node.

Fig 6-2: Drill rotational speed as evaluated by Basic

Fig. 6-2 points out the simplified behaviour achieved
by Basic Mode.
Some previous tests allowed to get some measurements
as the latency of task switching: FDIR spends around
20 ticks to confirm that Worker is gone out and 16 tick
to reactivate a task on another active node.

Finally, we have in our hands the means to evaluate the
system behaviour.
The test starts up all the nodes: Master, Worker1,
Worker2 and MM. During the trajectory execution,
Worker1 (blue line) and then Worker2 (green line) are
both powered on.
The Drill-rot-speed is assigned to Worker2.

Fig 6-3: Drill rotational speed with injected failure

6.1 Results Analysis

The Fig. 6-3 allow to point out:
At start, both Workers are up.
Worker2 starts executing the task as per Fig 6.1. At
tick 21, Worker2 goes in failure; Basic set-points are
immediately provided (robustness action). The
discontinuity on the plot is due to the application of
Basic profile (see fig 6.2).

At tick 51, the system declares Worker2 off. The FDIR
task spends 24 ticks to detect that Worker2 is gone off.
2 ticks are required to migrate the task onto the active
Worker1; (some tests show that 20 ticks for FDIR and
1 tick for task migration are enough).
The latency of the system can be assumed of 20-25
ticks. But over this time, system stays always available.

From now on, Master performs the drill-rot-speed task
through Worker1 (resilience action). The plot shows at
tick 53 the discontinuity due to this switch.

Worker1 goes in troubles at tick 68 and its Nominal
task does not respond: the system takes about 20 ticks
to detect that a node is off; in fact, its shut down is
detected at tick 88. Again, Basic intervenes
immediately providing its own computed setpoints.
The slope of the plot shows the use of the Basic curve
of fig 6.2.

Deceleration phase: on this phase there is no
discontinuity in the setpoint generated, because in the
deceleration phase the same linear controlled-stop
algorithm is implemented in Basic and Nominal.

Worker2 becomes active at tick 175, and Drill Control
task migrates back to the default node (i.e. Worker2);
no discontinuity is generated.

This test case does not show the graceful degradation,
as never both the Workers are off.

7. CONCLUSIVE CONSIDERATIONS

The validation phase confirms the achievement of the
main objectives of the HiPeRCAR Project.
HiPeRCAR, by means of all its components Hardware
and Software (see Fig. 1), shows that the
Basic/Nominal strategy guarantees availability and
resilience able to face failures on the weak part.

In particular, HiPeRCAR shows the following features:
Availability: no-stop of the robotic tasks thanks to the
prompt application of the reduced service version.
When Nominal does not give its contribution, Basic
provides by alone the outputs: no-loosing of setpoints
towards drivers.
The ‘robustness action’ avoids the out of the service.
The reduction of performance achieved in this test-case
is due to the simplification of Basic mode; a more
sophisticated implementation of the Basic algorithms
could help by smoothing the discontinuity points.

Readiness: The transition Nominal-to-Basic is
immediate, since Basic is designed to compute in
advance its outputs before receiving the Nominal
outputs.
The transition Basic-to-Nominal requires 1 or 2 ticks
(20 ms in our case) when another node is available.

Resilience: When a failure is detected, the system
restores the service in 1 or 2 ticks on another active
node.
When possible, the system spends about 20 ticks to re-
start (power-off/power-on) the service on the same
node. A 50-Hz system restores the full capability in
400 ms.
If the resilient action is not successful, because of the
permanence of the faulty status, the system continues
the job in degraded mode (‘graceful degradation
action’).

The validation test campaign provides the results of
several test-cases, which allows to get a fine picture of
the system performance and of the algorithm design
[6].

But, the test campaign highlighted also some topics
that could request to continue the study on the future:
- Task downgrading from Nominal to Basic is a very

delicate design, subject of optimisation;
- More sophisticated Basic algorithms lead to reduce

discontinuity and phase-inversion in the control
behaviour (‘negative’ speeds are not admitted by a
real Controller);

- SSMM: saving/restoring rich context-environments
greatly increases the current ‘stateless’ design of
Worker nodes. Missing information on last status
overloads Master Node which has to update
continuously workers with their last status

- Powerful computer boards allows overloading of
Worker nodes that can maintain more Control Tasks
in dormant-state

- Powerful Master computer allows to manage more
Worker Nodes by running their Basic modes.

- Master Node is charged of too many tasks in the
current design; FDIR can take great advantage by
distributing outside some tasks; e.g. the Robotic Bus
Controller can be allocated to a real CAN-controller
(SBC) like the ‘RTI’ (available ESA-project).

- Master Node implementation based on Leon
Processor.

- The system architecture can be extended by
introducing a SpaceWire router to support more
Nodes in the loop.

These points and other ones could be study-cases for
the continuation of the HiPeRCAR project.

REFERENCES

[1] D. Jameux, “Application of the Payload Data
Processing and Storage System to MOSREM (Multi-
processor On-board System for Robotic Exploration
Missions)” - proceedings of DASIA 2003

[2] Guy Estaves, Alcatel Alenia Space –
“SuperComputers for Space Applications”- SDSS
2005, 17-20 October 2005, ESTEC, Noordwijk

[3] P.A. Marra, S. Montenegro, E. Crudo, F. Fusco, D.
Akautse, R. Vitulli – “HiPeRCAR: the High
Performance Resilient Computer for Autonomous
Robotics” - DASIA 2006, 22-25 May – Berlin

[4] R. Vitulli, S. Montenegro, “High Performance Ultra
High Dependable Architecture for Autonomous
Robotics in Space” - ASTRA 2006, 17-20 October
2005, ESTEC, Noordwijk.

[5] P.A. Marra, S. Montenegro, E. Crudo, F. Fusco, D.
Akautse, R. Vitulli – “Assessment of the Resilience
Concept by means of the HiPeRCAR Simulator” -
DASIA 2007 29th May - 1st June 2007 Naples, Italy

[6] “HIPERCAR – Target Demonstrator Test Report”-
HI-AASIM-TR-0002 - Thales Alenia Space Italia -
(Milan)

	1. Basic and Nominal related algorithms must have the same duration.
	2. Nominal control-tasks have no-memory of the previous activities. In case of failure, Nominal task can not know if/when/how-long it was not active. So, Nominal activity shall not depend on previous activities.
	3. Nominal control-tasks execute without performing consistency check. Nominal can not perform checks on any part, either HW or SW.
	4. Context information should not contain status information, because Nominal can not use it.

