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Abstract

We present a visual odometry system for short term self localization. It targets autonomous planetary
exploration in an unknown rough environment. The singularity of the method is to estimate long elementary
displacements at low frequency, 0.1Hz against more than 1Hz usually. Our algorithm is evaluated in a Mars-
like visual environment, on short and long trajectories, as a whole and step by step. We provide preliminary
characteristics of its performances that can be used to design an autonomous locomotion system.
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1. INTRODUCTION

To navigate reliably in autonomy, a mobile robot must know exactly where it is. Self localization in an unknown rough
environment is then a key and challenging issue in mobile robotics targeting planetary exploration. We believe that visual
odometry is a promising solution to the short term self localization problem in these conditions. This image processing
technology computes elementary displacements between consecutive frames, that are next, integrated to localize the rover.

We present a visual motion estimation (VME) system, first initiated by the LAAS [1], that estimates elementary displace-
ments of approximately 200mm~128px. The proposed method estimates rover motion between consecutive 3D point
clouds, derived from consecutive stereoscopic views. The matching of 3D points is achieved such that geometrical con-
straints are preserved among selected matching points. Its performances are tightly linked to the 3D reconstruction and
input rotational motion accuracies. Input ego-motion from wheel odometry is optionally used to reduce searching areas.
The algorithm outputs either the complete 6D localization of the rover or only its 3D position completed by the orientation
supplied by an external sensor.

Preliminary experiments target the evaluation of the system for an ExoMars like mission. It is important to give its step
by step or as a whole characteristics. Externally measured localizations of each acquisition are essential for this purpose.
Thus, we set up an high precision measurement method that provides the orientation of cameras with 0.05° accuracy
and there position with 0.5mm accuracy. Preliminary experiments run in a Mars-like visual environment on the place of
Serom at CNES, prove the efficiency of the method in various situations. On our data set, the system is able to localize
the rover with a relative error inferior to 5%, from 122 stereoscopic views acquired on an 27m trajectory. We identify
two major issues we will propose to solve. The first affects performances and arises from the possible presence of strong
static or moving shadows. The second affects the execution time and arises from the high computational requirements of
the matching.



The paper is organized as follows. We, first, present related work. Next, we describe the visual odometry problem
and our implementation. We focus on landmark detection, matching of corners and motion estimation. We propose
alternatives for each task, to improve system speed and accuracy. Next, we present the evaluation environment, including
the measurement method of reference localizations, the description of the stereoscopic system and data sets. We continue
by presenting the evaluation result. Finally, we conclude with some preliminary recommendations for an ExoMars like
mission.

2. RELATED WORK

As far as we know, the idea of estimating camera motion from a sequence of images appeared in early *80s [2], and is now
a very active field since camera quality and computation power have greatly improved. This technology is, in particular,
very attractive to solve the problem of self localization of rovers targeting autonomous planetary exploration [3, 4]. Most
solutions found in the literature assume small displacements in pixels between acquisitions, or relatively good initial
estimates. It facilitates image feature tracking or matching in 2D or 3D, but imply high frequency processing [5]. In this
way, our work differs by focusing on large displacements. The proposed method is related to the work presented in [0].
Yet, it mainly differs on two points. Firstly, they compute an initial set of matching landmarks using a visual similarity
measure, whereas we use only geometrical constraints considering good attitude measurements are provided. Secondly,
we introduce a different matching score that is more precise and flexible to select matching landmarks.

A recent challenge is now to improve long term localization with SLAM methods [7]. These systems have the ability to
recognize visited places and consequently to adjust model parameters. We don’t present such a system that requires more
memory and computation time. Nevertheless, we experiment our method on long term trajectories to evaluate its limits,
inherent to dead reckoning.

3. VISUAL ODOMETRY IMPLEMENTATION

Visual odometry principle is to integrate elementary ego-motion estimates of a set of cameras (usually one or two). Camera
ego-motion estimation is achieved by detecting and tracking visual landmarks, which the 2D and 3D characterization
allows to measure the displacement. The proposed visual odometry system relies on a calibrated stereoscopic bench. This
configuration has the advantage of providing an accurate 3D euclidean reconstruction of landmarks for each acquisition
pair. This simplifies the motion estimation problem since the 3D characterization of landmarks and the camera motion
are not simultaneously estimated.

The ego-motion estimation is decomposed in four steps : image acquisition and rectification, landmark detection and
characterization, feature matching and motion estimation. An overview of the method is presented in Fig. 1(a).

,,,,,,,,,,,, LS timeline
; :

Right acquisition Left acquisition

Rectification Rectification

| — |

Disparities computation Landmark detection
\— 3D reconstruction —|>

3D points from the l
previous acquisition
Motion estimation
Previous localization é
(a) Odometry Principle. The paper focuses (b) Acquisition system.

on gray boxes.



3.1. Landmark reconstruction

3.1.1.  Acquisition and rectification

We assume that image pairs are acquired at time instant ( — 1) and (#) such that for a nominal displacement, half of images
are overlapping. Images are first sub sampled to get a reasonable working size. Next, they are rectified to make the two
view geometric constraint simple as depicted in Fig. 1(c). Applied correction maps are provided by the calibration, not
described in this paper. We will retain that it computes dense correction maps to make the two view geometric constraint
simple, i.e. pinhole projection model and rectilinear stereo rig. Projection and reconstruction formulas are, then, very
simple on rectified images. Let p;(u, v) be the projection of M(X, Y, Z) on the left sensor. Let d be the disparity such that
p-(u + d,v) is the projection of M on the right sensor, baseline the distance between optical centers and wpix the pixel
size and f the focal length. We have :

_ baseline.f _ wpix _ wpix

3.1.2. Landmark detection and reconstruction

Landmarks are extracted on left images at (r— 1) and (7). The type of available landmarks is mainly limited to corners in an
unknown rough environment. Many corner detectors are proposed in the literature. The recent SIFT feature [8] has been
proved very efficient but it is very time consuming and is therefore not appropriate. The well known Harris’ detector [9]
has, finally, retained our attention for its efficiency and simplicity.

We propose to modify the Harris’ detector to get a better corner distribution. Indeed, areas with high contrasts tend to
have a strong response. The risk is, then, to have many points gathered in the same area. To deal with this inconvenient,
Harris’ scores are normalized in their close neighborhood, insuring a good distribution while preserving a discriminative
response. This is important, since the matching algorithm uses only best Harris’ corners to reduce computation time, as
we will see next. In the perspective to reduce computation time, landmarks are selected only in estimated overlapping
areas. This approach requires, then, an initial estimation of the motion.

Once corners are extracted in previous and current left images, the stereoscopic configuration allows to compute their 3D
coordinates in stereoscopic bench frames, respectively at time instant (# — 1) and (7). Without giving all details, the idea is
to identify similar points in the left and right views by correlating image patches. A correlation score is very well adapted
in this case, since we are working on rectified images.

3.2. Matching

The matching aims at identifying similar landmarks in left images at (r — 1) and (¢). This step is crucial for motion estima-
tion. Most solutions compare image features around landmarks. However, they assume small changes or heterogeneous
environments which is not the case here. We propose to match points that are geometrically compatible, knowing the
rotational motion R provided by an external sensor. Let £, and L. be the set of landmarks in respectively the previous
left frame at (r — 1) and the current left frame at (¢).

3.2.1. Principle

The algorithm relies on the observation that length and angles are preserved in the euclidean space. Thus, given two pairs
of matching points M' (M}, M}) € L, x L. and M*(M2, M?) € L, x L, we have two constraints :
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These constraints allow to compute a matching score as follows :
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where ¢, and €, are thresholds depending on the 3D reconstruction and the input rotational motion accuracies. A first
iteration, very time consuming, gives a set of potential matches composed of points with the highest matching score.
However, this step gives many mismatches and a consistency checking step is required. Its objective is to find a large
subset of potential matches that are mutually consistent. This is achieved by iteratively removing matches with the
smallest consistency score. The consistency score, S ¢(.), is similar to the matching score, where the sum is conducted on
remaining matches. The algorithm stops when the consistency score of all remaining matches equals their number.

SeMy = Y f(M,M], M:M)) (©6)
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The algorithm is denoted matching from binary scores or abbreviated fb-matching.

3.2.2. Improvement

Previously proposed comparison function f(.) is limited by its binary formulation. One direct limitation is the incapacity
to differentiate many potential matches having exactly the same score. We, thus, introduce a different comparison function
f’(.) that provides a continuous matching score :
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This formulation has also the advantage of being more flexible. It is easy to add new constraints such as visual similarities
or vector length weighting. This method is denoted matching from continuous scores or abbreviated fc-matching.

3.2.3.  Optimization

The matching algorithm is particularly time consuming since the number of comparison explodes with the number of
landmarks O(n*). Even with some filtering on minimal point distances, the complexity remains very high. However, only
Harris’ corners with the highest response are sufficient, in most cases, to get a good motion estimate. We propose a new
approach that iteratively increases the number of landmarks, until enough points are matched.

Let order Harris’ corners by decreasing detection score in the previous image. We, then, create the landmark subsets of
equal size : Lll, with first corners, Lf,, e L; with last corners. This decomposition is also applied on corners in the
current image. The algorithm, depicted in Fig. 1(d), iteratively runs following steps : add new corners, update matching
scores of previous and new potential matches by comparing subsets, find a consistent subset of matches (not represented
in the figure), continue if the subset of matches is too small. This method is denoted fast matching.

3.3. Motion estimation

We have now same landmarks identified and localized in previous and current images. Two options are offered at this
stage : either the 6D ego-motion is estimated (translation and rotation) or only the translation that, then, completes the
input rotation. We use the well known linear solution proposed in [10] to find the optimal 6D rigid transformation (R|T),
that minimizes the following energy :

ERIT) = )" IM, - (R.M, + T)| (8)
M

This method is called 6D-VME. In the case, we are confident in the input attitude provided by an external system, we
estimate only the translation part (3D-VME) that equals :

T =) (M,~RM) /M| ©)
M
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(c) Acquisition model (rectilinear rig). (d) Iterative matching. Only matches are represented. The
algorithm inspects all combinations in practice.

This first estimate allows to update the overlapping areas and optionally run an ICP-like [ 1 1] motion estimation algorithm
to refine the result. Once the elementary motion is computed, it can be integrated to the previous localization to get the
current one. Here, a simple integration is done, but we could consider a Kalman filter.

4. ACQUISITION CAMPAIGN

4.1. Reference localization

Precise localization of the stereo bench at each acquisition is a key measurement to evaluate in details visual odometry
implementations. We have designed a localized reference frame linked to the stereo bench. It is composed of four targets
which positions, measured by a laser tracker, determine its localization 1(b). A preliminary alignment step computes the
rigid transformation from this frame to the stereo bench frame. We expect a localization accuracy of the stereo bench of
0.05° in orientation and 0.5mm in position. This guarantees a good evaluation of the algorithm at each elementary step
and as a whole. It also provides a reliable information that is used to tune algorithm parameters.

4.2. Acquisition environment

Acquisitions were done on the place of Serom at CNES (the french space agency). It is a testing ground that models the
surface we expect to encounter on Mars. We planned trajectories on the area composed of small grain 1(b).

The stereoscopic bench is mounted on a tripod at this stage of the study. It was placed at 800mm height looking 70° down.
The focal length is 8mm and the baseline length is SOmm. The length of elementary displacements is between 150mm
and 250mm, i.e. 40% to 60% image overlapping. Sensors are composed of 1280 by 1024 cells on a surface of 7.68mm
by 6.144mm. Images are subsampled by 4 to get working images of 320 by 256 pixels. We recorded three trajectories
of respectively 6m, 10m and 3.5m. The last one is composed of two acquisitions by step. A strong shadow is artificially
projected on the scene of second acquisitions. We can, then, build three scenarios from it : without shadows, with shadows
and mix of both. The weather was cloudy. This is an advantage to tune exposure parameters. Yet, a sunny weather is
expected to provide better landmarks given by high contrast.

5. EVALUATION

The evaluation aims at answering three questions. First, what is the accuracy we can expect from such a visual odometry
system in an unknown rough environment ? Here, we are interested in short term (around 2m) and long term trajectories
(around 100m). Next, what is the robustness of the method with respect to localization errors ? What are the performance
differences between proposed options ? We now present evaluation criteria, the noise model, next experiments.



5.1. Criteria

The performance evaluation implies two criteria. First, overall performances in position are presented. Next, the usage of
system resources is provided. Different system configurations are compared in the presence of various noise levels.

Overall performances are evaluated by providing the relative error in position. In this paper, we focus on the accuracy of
short and long term localizations. We then evaluate system performances for trajectories of 2m length. It represents the
distance between two path forward planning operations. In the long term scenario, we aim at localizing the rover during a
one day trip, i.e. 100m. The localization is optionally updated in orientation by an external sensor. Long term trajectories
are artificially constructed by integrating existing elementary motions. In order to avoid loops and forward/backward
motions, we conduct path integration to get a rectilinear trajectory. This approach allows to have long trajectories, yet the
reference localization looses accuracy due to dead reckoning.

The consumption of system resources is measured on an Intel Pentium 4, 3.20GHz, 1Go RAM, Linux 2.6.17-5mdv, KDE
3.5.4. We will extrapolate figures to give an approximate idea of the time consumption on Leon. This is the machine type
that should be loaded on ExoMars.

5.2. Noise model

We introduce noise in input localizations to simulate the noisy outputs of the attitude sensor and wheel odometry. Indeed,
the proposed implementation uses an initial guess of the elementary displacement, first to compute overlapping areas in
previous and current images, next to match landmarks. Moreover, one option is to estimate with visual odometry, only
the translation, and keeping the rotation provided by another system.

Noise in position, n;, is a constant in percent that introduces a constant relative error in translation. Let T be the translation
between two acquisitions, then 7" = 1+ nl)f. It models wheel sliding in the motion direction. Typical values are around
10% and extreme values reach 50%. The impact of this error is the imprecise computation of overlapping areas that may
result in matching difficulties. One solution is to ignore the translation component of the input and work on whole images.
It will work if overlapping areas are of 40% at least.

Noise in orientation from an attitude sensor is more complex to establish a model. We assume that three parameters
are sufficient to characterize the error : an instantaneous measurement error 8,,, a bias error 6, that evolves every 100s
(" displacement of 2m at 0.02m/s) : N(0, o), and a bias stability 6, similar to random walk, that evolves every 10s (*
displacement of 200mm at 0.02m/s) : N(0, o). Att =1 x 100s + J; X 10s and assuming a rotation around a fix axis, the

error is, then :
1 Ji J
0= 0+ Y > O+ Y05 (10)
[ k

This model assumes the attitude is obtained by integration of the angular velocity and the bias is regularly estimated. In
experiments, this model is generalized to rotations around three axis attached to the sensor. We have retained o, = 0.1°,
op = 0.01° and o = 0.01° as parameters of noise of small amplitude. These values are based on expected performances
of the IMU : gyroscopic bias stability and bias accuracy of 0.002°/s with a 10sec averaging time. We also consider noise
of moderate amplitude with proposed values multiplied by two. Thus, we take into account the uncertainty on noise model
and variations of rover speed. The noise has a weak impact on short term localization, but it becomes more important on
long trajectories without a regular global calibration as we will see in experiments. This model then completed by a short
or long term calibration thanks to absolute references such as gravity and sun.

5.3. Experiments

Errors inherent to the perception chain and the detection of Harris’ corners are present. They result in unavoidable 3D
reconstruction uncertainties of matched landmarks. In this paper, we want to evaluate the system capacity to select
best matches, yet we want to give an idea of ideal performances that could be targeted. For this purpose, we take as
reference experiment the algorithm that matches landmarks by a 3D closest search of registered corners. The registration
is achievable since we have a step by step accurate localization of the stereoscopic bench. This reference experiment is
denoted 3D matching from truth. Its performances are limited by the actual perception chain.

Fig. 1 shows VME performances on trajectories of 2m for each trial. Proposed matching options reveal efficient, allowing
a gain in accuracy. 3D-VME seems the best choice at proposed noise levels. Translation noise was set to 10%. The
current algorithm encounters difficulties over 20% since computed overlapping areas are not truly overlapping.
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Figure 1. Short term (2m) VME performances.

Fig. 2 shows VME performances on trajectories of 100m. Two scenarios are proposed. In the first one, we let the attitude
sensor drift. In the second one, the attitude sensor is calibrated every 2m. As expected, localization accuracy is weak if
we don’t have a regular access to an absolute reference. In this latter case, its is preferable to estimate only the translation
between acquisitions. This choice is confirmed by the step by step evaluation of the error in orientation of 6D-VME. The
precision of VME in orientation is poor compared to what can be expected from an attitude sensor. We have a standard
deviation of 0.2° in pitch and yaw, and 0.1° in roll (around optical axis). Mean values are small, close to 0.01°. The
distribution of the translation error of 3D-VME can be modeled by a Gaussian centered around 2mm with a standard
deviation of Imm. Now, these values are specific to the presented experiments.

Sorted error at 100m Sorted error at 100m
9 0.75
8
7 0.7
g = g o
g 4t —— 5 06
a 3t 4 055}
f // L
1 0.5
0 0.45
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Sorted Trials Sorted Trials
Tast fo-matching, small noise, =——1 Tast fo-matching, small noise, =1
Idem, 3D-VME, Idem, 3D-VME,
Fast fc-matching, moderate noise, Fast fc-matching, moderate noise,
Idem, 3D-VME Idem, 3D-VME
(a) No calibration (b) Orientation calibration every 2m

Figure 2. Long term (100m) VME performances.

5.4. Resources

Memory requirements fluctuate around 10MB for the perception chain (down sampling, rectification and stereoscopy) and
around 7MB for the VME algorithm. The table 1 shows the execution time of tasks necessary to visual motion estimation.
Times on Linux are obtained from experiment runs, while times on Leon are extrapolated. The CNES provided reference
times on Linux and Leon of the navigation chain (perception, building of the digital elevation model). The critical sub-
systems are the stereo and the matching, all the more so FPGA implementation of the stereo and landmark detection is

possible [12]. Fast matching leads to an important saving of computation time, however it may fluctuates with matching
difficulties.

6. CONCLUSION

We presented a visual odometry system and its localization accuracy for a given configuration of the stereoscopic bench.
The major weakness of VME is the orientation estimation. So, it is more appropriate to use the orientation provided by
an external sensor at proposed noise levels. Localization accuracy is very good on long trajectories (one day trip) as far as
a regular calibration thanks to absolute references, i.e. gravity or sun, is done. Otherwise, the localization accuracy is at
the limit of the expected accuracy (5%) for the ExoMars mission. In addition, further experiments showed that a regular
calibration allows to limit the effect of the instantaneous noise 6,,.



Table 1. Execution time of VME components. Gray cell points out the reference value used to extrapolate execution time
on Leon. Gray values are extrapolated. They do not take into account memory access latencies on Leon.

l System [ Sub-system [ Time on Linux (ms) [ Time on Leon (ms) ‘
| Navigation | | 403 | 9340 |
Perception | Down sampling by 4 10
Rectification 21
Stereo 270
VME Landmarks 50
Geom. Match. 200
Fast fc-Matching 100
Totals 554 or 454 12841 or 10524

The work plan is for now to better characterize the localization accuracy of VME with respect to configurations compatible
with the ExoMars mission. The robustness of the proposed method needs also to be confirmed on more acquisitions and
in motion.
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