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ABSTRACT 
 
In this paper we summarize some of our research efforts in the area of high performance simulation to support advanced 
teleoperation. Simulation of rigid bodies has always been used in conjunction of teleoperation system, however 
simulation of deformable bodies is not available yet, since it presents a new set of challenges. In particular, we address 
the problems related to object modeling to achieve force feedback, and the computation infrastructure necessary to carry 
out the force computation at real time frequency. We describe the results achieved by combining mesh-based models 
with GPU-based computation. The result is a very realistic and performing simulator that combines rigid and 
deformable objects into a single computational framework. Furthermore, planning in a deformable environment must 
account for the dynamic properties of the object together with classical algorithms. The simulator and planner are 
embedded into our CORBA-based teleoperation system that allows an easily integration of different hardware and 
software functions. Examples showing the capabilities and performance of the complete system are given for the 
context of robot-assisted surgery, which presents a number of similarities to robots for space applications.  
 
INTRODUCTION 
 
In the next future, new manned exploration missions are planned, especially to the Moon, where a human outpost may 
be established. The work to build such an outpost will be probably carried out by various types of robotic devices. It is 
very unlikely that planetary construction robots can be endowed of full autonomy, because of the many uncertainties of 
the environment and the difficulties in autonomously controlling a complex task. Teleoperation will probably be the 
primary commanding mode of the robots. However, considering time delay and uncertainties, the operators will have a 
difficult time to precisely controlling the robot motions, and may run the risk of damaging some of the equipment. Thus 
the need of providing the operators with commanding help, in the form of visual and haptic aids, that could help them 
move safely the robots. Furthermore, some of the elements that teleoperation will have to deal with, may be made of 
flexible materials, such as inflatable structures, astronauts suites, and protective covers, whose position and properties 
are difficult to estimate and predict. In the past, simulations with “phantom robots”, i.e. moving without time delay, 
have been used as aids to teleoperation, but they did not include deformable parts. In fact, flexible materials and 
deformable bodies are rather difficult to model and, in particular, they need specific methods for the computation of 
contact forces that are required in haptic simulations.  
 
Two main classes of deformable models have gained importance due to their good characteristics: Finite Element 
Models (FEM) and mass spring models (MSM). FEM’s are very easy to calibrate, since they represent the discretization 
of a function over a domain, and therefore it is possible to use the characteristic equation of the material to define their 
behavior. They can be computationally fast, but the velocity comes at the cost of the interaction types that can be 
simulated behavior, in fact they usually do not allow topology changes in the mesh. Although less precise and more 
difficult to calibrate, mass spring models allow changes in their topology at almost no cost, and they are suitable for the 
implementation on graphic processing unit. Given the topology, a mass spring model is univocally identified by the 
value of the mass associated to each node of the mesh and by the elastic coefficient assigned to each edge. However, a 
good model is not sufficient for a realistic simulation unless a suitable computation engine is used, especially when 
bilateral teleoperation is involved. Force feedback joysticks usually have six degrees of freedom, allowing a free and 
natural control over remote and/or virtual tools, but require the simulation to be updated at least 1000 times per second 
to allow the natural perception of forces acting on the tools. Since even high-end computers have inadequate 
performance with high complexity models, implementation usually takes advantage of preprocessing, client/server 
architectures or parallel vector processors. A recently growing research area is general purpose programming on 
graphics hardware, taking advantage of the computational power of Graphics Processing Units (GPU’s).  Furthermore, 
a deformable environment presents planning problems that are not found in rigid environments and therefore not 
addressed in the literature. Humans have difficulties too in dealing with such environments, since motion is based on 
the continuous interaction with the environment and on the satisfaction of kino-dynamic constraints that depend on the 
nature of the deformable material. Thus, planning help is necessary to the human operator to perform motions that 
classical planners would rule out and still move the tool in a way that is safe for the environment. 
 



In this paper we describe the advances made in simulation of deformable objects due to the combined use of precise 
model and fast computation hardware, and their application to high fidelity bilateral teleoperation. Furthermore, we also 
present our first steps into planning in deformable environments, for safe motions without damages to the environment. 
These new features in fact enable fast design and testing of difficult procedures due to the combination of planning and 
haptic feedback. The availability of a modular and easily configurable teleoperation system, based on our Penelope 
integration framework, allows easy integration of the features described above in a real set up. The paper summarizes 
some of the experiments carried out to verify our system, and describes our future plans to develop simulation-assisted 
teleoperation. 
 
 
PRIOR WORK ON TELEOPERATION IN DEFORMABLE ENVIRONMENTS 
 
The main classes of deformable models used in simulation are: Finite Element Models (FEM) [1] and Mass Spring 
Models (MSM) [2].  Because of the need to account for changes in object topology, i.e. cuts and ruptures, FEM models 
cannot be used in real time simulations, and MSM are normally used, provided that their physical properties can be 
estimated correctly. Two categories of methods are available for the estimation of MSM parameters that guarantee a 
realistic behavior. The first category is composed by methods that use some known property of the tissue to model [3]. 
The second class is composed by methods that use a minimization procedure to find the model that shows the closest 
behavior to that of the tissue to be modeled. To the first category, belong papers such as [4] describing a method to 
assign a value to each mass point; [5] proposing a 2D method to instantiate a triangular mass spring model;  [6] using 
the linear system associated with a FEM to identify the tensor related to each node and to each edge of the model; and 
[7] deriving a formula to calculate the damping coefficient for different mesh resolution. All these methods can be very 
fast, but they are not very suitable to identify parameters for personalized models. The use of the second class of 
methods for MSM calibration leads to a minimization problem solved in [4] with simulated annealing technique, in [8] 
with neural networks, and in  [9] and [10] with genetic algorithms. A few simulators that use deformable models to give 
realistic visual and haptic feedback have been developed.  The best-known simulators are the AISIM project at INRIA 
[11], the Touch Lab by MIT [12], and the commercial product VEST System One [13].  
 
From the implementation point of view, simulators have been developed using graphical cards and by allocating masses 
on a 2D texture and springs on a stack of 2D textures where each element stores a spring connected to a mass stored on 
the same position [14]. Since spring valence is not constant over the model, it is necessary to store invalid elements that 
leave the result buffers unaltered, thus reducing the computational efficiency of the approach. In [15], the physical 
simulation is not applied to the set of masses, but to a cubic grid of points interconnected to the 26 nearest ones. Since 
some of these points are external of the body’s volume, the efficiency of the method is somewhat reduced. Many 
different implementations of deformable object simulations use FEM [16]. Recent methods take advantage of the 
computer GPU for the necessary matrix multiplications. However, computational time does not reach the minimal 
frequency of 1 KHz for haptics rendering. Some of the best-known general methods are GJK [17], CInDeR [18] and 
CULLIDE [19]. In [20] and [21] collision detection is implemented on the GPU using depth-buffers and the OpenGL 
SELECTION rendering mode.  
 
Motion planning among deformable objects is still an unexplored research area. One main difficulty is to model 
deformations that accurately represent the object physical properties, while preserving the efficiency of the planner. In 
fact, a planner that uses a physically correct deformation model can be very slow [22] and a planner that uses only 
geometric deformations can compute unnatural motions [23].  Workspaces studied in most standard planning 
algorithms, generally include only static and rigid obstacles. Dynamic workspaces have been addressed, for example, in 
[24], [25], but in these cases, environment dynamics is meant to represent velocities and accelerations of rigid bodies, 
and not their deformation. Framework such as Probabilistic Roadmap Planner and Rapidly-Exploring Random Tree 
(RRT), [23], [26], describing path computation in totally dynamic and deformable environments, or [22], [27], for 
planning with physically correct deformations models, are not suitable as general approaches, because their main goal is 
avoiding the deformable objects, whereas better solutions may involve deforming the object to get access to the desired 
goal. Moreover the expensive computations needed for solving mechanical models and generating collision detection 
data structures are too time consuming for a general environment, and in fact they are applied only to simple objects, 
such as metal sheets or pipe-like robots. The objective of our work is to compute a safe trajectory that deforms the 
obstacles, when it is not feasible to avoid all the obstacles.  The environment of our studies is a workspace filled with 
deformable object where we have to move rigid instruments, to simulate for example the scenario of the Minimally 
Invasive Robotic Surgery (MIRS). The trajectories needed are in general quite simple (almost linear), but they have to 
find room between colliding objects, therefore collision free trajectories are unfeasible and it is not possible to use 
classical techniques.  
 



The paper is organized as following. In the next Section, we first briefly describe the modeling algorithm used for 
deformable bodies, and we focus on the calibration aspects of the model. Then, in the following Section, we address the 
difficulties of generating haptic feedback in real time, and we describe our current solution, based on the computer 
Graphic Processing Unit. Finally, the last Section describes a planning aid that can compute an instrument trajectory by 
deforming the obstacle body, provided that a given safety threshold is not passed. Finally a brief summary and our 
future plans conclude the paper. 
 
MODELING DEFORMABLE OBJECTS 
 
The modeling process of a deformable object requires the definition of a suitable internal topology of masses and 
springs to support the computation of realistic deformations and contact forces. From the surface model we can build a 
volumetric mesh by populating its interior with points and establish the connections between them. The points with 
their edges will form the tetrahedral elements of the mesh. We developed an algorithm that produces a smooth 
distribution of mesh points in order to obtain later a well-constrained mass-spring system [28]. Once the element 
distribution has been defined, the calibration of spring and masses has to be carried out [29]. 
 

A. Getting a surface model from tomographic images

We use data from tomographic images, and we extract an

isosurface together with outbound normals, using the March-

ing Cubes algorithm [20]. This step was made with the aim of

Amira software [21]. In particular the isosurface is formed by

a triangular mesh representing the surface of the object, for a

given isovalue. We save the surface normals in order to obtain

the information about outer and inner parts of the surface.

B. Creation of tetrahedral mesh

From the surface model we can build a volumetric mesh by

populating its interior with points and establish the connections

between them. The points with their edges will form the

tetrahedral elements of the mesh. We need an algorithm that

produces a smooth distribution of mesh points in order to

obtain later a well-constrained mass-spring system.

We use the Persson’s algorithm [19] to create a tetrahedral

mesh. This methods simulates physical behavior such as

attraction or repulsion during the mesh generation step thanks

to a physical analogy of the mesh with a mass-spring structure.

Assuming an appropriate force-displacement function for the

springs, the mass-spring system is solved for equilibrium at

each iteration. The forces move the nodes, and iteratively

the Delaunay tetrahedralization algorithm adjusts the topology,

deciding edges of the mesh.

The object geometry is defined with a signed distance

function d(x, y, z), negative inside the surface of the object.
We extend this definition to the case of isosurfaces. The initial

mesh point distribution is defined with a distribution function

h(x, y, z), which could be dependent on d(x, y, z).
The modifications made to adapt [19] to our needs are as

follows:

1) Signed distance function: In the case of an isosurface we

need only the set of surface points, each having its coordinates

and outbound normal, obtaining a patch. In this case we have

a distance function d(x, y, z) giving the signed distance of a
mesh point from the surface, that means the distance from the

nearest surface point.

We implemented an heuristic method to compute d(x, y, z),
discretizing in cells the volume where surface and mesh points

lie. Starting from the cell containing the mesh point, we

proceed widening the search region until some surface points

are found. Then we take the one with minimum distance.

In order to determine the sign of distance we have to

check if the mesh point is inside or outside the surface,

consisting of a list of points and a list of triangles determining

their connections. Taking outbound normals of surface points

could not give the correct results in case of short curvature

surface. Therefore we take the triangle normals of triangle

containing the nearest surface point. Finally we compute the

dot product between the triangle outbound normal applied on

the nearest surface point and the vector form the mesh point

and the surface point. If that dot product is negative for all

the triangles, then the mesh point is inside the surface and the

distance has also negative sign, otherwise it is positive. It has

to be noted that triangle normals can be preprocessed.

Fig. 3. Tetrahedral mesh of a liver section; the right part (the surface is in
red) shows the different size of tetrahedra in the case of equation 2.

In algorithm 1 the entire process is shown.

2) Edge length function: From [19], we are supposed to

need smaller edge near the surface and longer inside. In the

case of a signed distance function defined by an implicit

function d(x, y, z), we can reach the following control function

h(x, y, z) = Ce−d(x,y,z) (2)

where C is a generic constant. Thanks to this function we

can define a structure having, for example, shorter edges

near the surface and longer edges deep inside the mesh. This

case is useful for improve speed (smaller system to compute,

localization of deformation) without affect precision during

simulation, and it’s the one we used in our models.

We could have h(x, y, z) dependent on surface curvature. It
could be approximated by the gradient of direction to nearest

surface point:

κ = ∇ ∇d(x, y, z)
|∇d(x, y, z)| (3)

and the edge-length function became

h(x, y, z) = C · e−κ (4)

We could use this formulation in case of high curvature surface

to have an higher level of detail only where it’s needed.

3) Fixed points: We want also the possibility to define fixed

mesh points, which will not be optimized during the algorithm

execution. This choice allows to connect two meshes created

in succession sharing a portion of the surface. In this case we

change the sign of the interface points.

4) Quality measure: A measure commonly used to estab-

lish the quality of mesh elements is the ratio between the

insphere radius (i.e. the radius of maximum inscribed sphere)

and the circumsphere radius (i.e. the radius of minimum

circumscribed sphere) :

q = 3
rin

rcirc
(5)

We use this quality measure to determine an exit condition

from the refinement cycle: when a minimum quality is reached

for every tetrahedron, we let the meshing algorithm terminate.

 
 

Figure 1: Examples of mesh generation for a deformable object (human liver). 
 
Mass Calibration  
 
As discussed in [28], the mesh formation process starts with the acquisition of the object surface, either by scanning or 
by known models. The model can consist of meshes with different level of details by simply specifying the max number 
of elements wanted. We decided to use meshes of 32000, 16000, 11000, 6000 and 1500 tetrahedral. In a biological 
model, i.e. the liver shown in Figure 1, the 32000 tetrahedral mesh (left) is very detailed the 1500 elements model 
(right) is significantly coarser; nevertheless all the tests carried out gave results in accordance to data found in medical 
literature. For the human liver it is known that its weight ranges between 1.2 and 1.5 kilograms and the density should 
lie in the interval [1040,1060] Kg/m3 , with a mean value of 1050 Kg/m3. During various test of model generation, the 
total mass of the reconstructed liver was within the correct interval, whereas the local density of the tissue dropped at 
times below the minimum value. The simple interpolation functions used in our method guarantee a reduced 
computational time. If the method is associated with a mesh generation procedure that refines the mesh where the 
discontinuities in the material are higher, it also allows a correct instantiation of the model masses. 
 
Spring Calibration 
 
The spring mesh forming the object model is calibrated using a genetic algorithm. Genetic algorithms are adaptive 
methods that can be used to solve search and minimization problems. If they are properly set up they offer good 
characteristics of exploration and exploitation of the search space. The measure to be minimized is the difference in the 
behavior of the simulated model and the desired one. The desired behavior is defined through a set of data that relate 
forces applied to some point of the model and the corresponding deformations. To test the correctness of the spring 
calibration method we created a reference model to generate the deformation measures, and then recomputed them from 
its topology, mass values and displacement measures using the developed spring calibration algorithm. In these tests we 
chose to use a mesh with a reduced number of tetrahedral due to the time requirements of the algorithm. The model 
used for the test is a cube with 1 cm edge made of 120 nodes, 377 tetrahedra and 590 springs. The mass values were 
instantiated considering a homogeneous density of 1040 Kg/m3 and the spring constants were calculated in accordance 
to Equations 6 and 7 with a homogeneous Young modulus of 3.6 P a. The bottom face of the cube was considered 
attached to the ground and a force of 0.001 N was sequentially applied to the central node of each face for 0.2 seconds 
to obtain 200 sample points. Since the deformations used in the calibration should be representative of the deformations 
that should be simulated by the model, we restrict our test to punctual compression. Snapshots of the deformations are 
shown in Figure 2. We suppose to know only the position and the speed of the contact point and to completely ignore 



any other information about the deformation since eventually we would like to use in vivo experimental data.  
 

wanted. We decided to use meshes of 32000, 16000, 11000,
6000 and 1500 tetrahedra. While the 32000 tetrahedra mesh
is very detailed the 1500 elements one is significantly
coarser, nevertheless all the tests gave results in accordance
to medical literature data.

For the human liver it is known that its weight ranges
between 1.2 and 1.5 kilograms and the density should lie in
the interval [1040,1060] Kg/m3, with a mean value of 1050
Kg/m3. During all tests, the total mass of the reconstructed
models was inside the correct interval, whereas, sometimes
the local density of the tissue dropped under the minimum
value.

In Table IV-A we show the data we obtained in the worst
test performed. The minimum density value is low at all
resolutions, however the density mean assumes correct values
of about 1050 Kg/m3 and the maximum value is slightly
above the correct interval. The error in the maximum values
can be explained considering that blood vessels enclosed
in the liver were not segmented, and the higher of to the
blood contributed to raise the maximum density of the
reconstructed data. The error in the minimum values was
analyzed in more detail. We realized that the errors were
all located in the same area of the liver: the left lobus (see
Figure 3). We resolved that the errors in the reconstructed
values were due to errors in the segmentation procedure that
was performed manually by non trained personnel.

Mesh Total
size mass min(ρ) max(ρ) mean(ρ)

32000 1382.5 1021.78 1063.73 1050.16
16000 1382.1 1021.73 1063.95 1050.16
11000 1381.5 1021.74 1063.73 1050.06
6000 1380.0 1021.78 1063.28 1050.02
1400 1378.1 1021.63 1063.15 1049.86

TABLE I
RESULTS OF MASS CALIBRATION ALGORITHM FOR THE WORST CASE

TESTED.

The mapping between the CAT value and the density
value seems to work well, moreover in all tests the density
distribution and the total mass of the model show very low
dependence on the mesh resolution: even with meshes of
1500 volumetric elements the data maintain correct values.

B. Spring calibration
To test the correctness of the spring calibration method

we decided to create a reference model to generate the
deformation measures, and to try to recompute it from its
topology, mass values and displacement measures using the
spring calibration algorithm. In these tests we chose to use
a mesh with a reduced number of tetrahedra due to the time
requirements of the algorithm.

The model used for the test is a cube with 1 cm edge
made of 120 nodes, 377 tetrahedra and 590 springs. The mass
values were instantiated considering a homogeneous density
of 1040 Kg/m3 and the spring constants were calculated
in accordance to Equations 6 and 7 with a homogeneous

Fig. 3. Local density visualization for the worst case model. Each node of
the mesh is drawn in a color proportional to its density: red for the maximum
density (1063.95 Kg/m3) and black for the minimum (1021.63 Kg/m3).

Young modulus of 3.6 Pa. The bottom face of the cube
was considered attached to the ground and a force of 0.001
N was sequentially applied to the central node of each
face for 0.2 seconds to obtain 200 sample points. Since the
deformations used in the calibration should be representative
of the deformations that should be simulated by the model,
we restrict our test to punctual compression because they are
easier to do in real tests that we plan for the future. Snapshots
of the deformations are shown in Figure 4. We suppose to
know only the position and the speed of the contact point
and to completely ignore any other information about the
deformation since eventually we would like to use in vivo
experimental data.

Fig. 4. Three snapshots of the deformed synthetic model. The model at
the rest position (a) and the model during the deformation of a lateral face
(b) and the upper face (c).

We implemented the method in C++ using GAlib [24] and
we used MPI [25], a message passing interface that allows
to develop parallelized programs, to make it run on a cluster
composed of 8 Pentium 4 at 2.80 GHz.

The genetic algorithm then started from the topology of
the cube, the weight of each node and the values of speed
and position of the contact point in the five deformations
and the range [3,4.2] Pa of reasonable Young moduli for the
model and evolved the population through 4000 generations.
It took 2 hours and a half for the algorithm to converge and
it reached a fitness value of -0.007 equivalent to differences
of 0.004312 cm in position and of 5.23078 cm/s for the
speed in the behavior of the reference model and the best

 
Figure 2: Examples of test for spring value calibration. 

 
The output of the genetic algorithm is a sequence of real numbers that should be interpreted as the Young moduli of 
each point of the model. To have a first estimate of the goodness of the method we compared the Young moduli of the 
model defined as a reference and the reconstructed one. The maximum difference obtained is of 9.49% that corresponds 
to a difference of 8% in the spring’s values, where the mean of the two end value is used. It is reasonable to think that 
moving away from the points used for the calibration makes the errors raise as the information derived by the measures 
decreases. We identify two important results. The first is that different models can have similar behaviors, at least for 
the class of deformation used in calibration. The second is that the calibration procedures can correctly identify a model 
that reproduces the measured behavior. It is important to identify and use, in the calibration of the springs, a set of 
deformations that completely represents the behavior of the object that we want to reproduce.  
 
GPU-BASED MODEL COMPUTATION 
 
Mass-Spring systems are commonly used in interactive dynamic simulation thanks to their much lower computational 
cost compared to FEM-based methods. Since the model is based upon a discretization of the object volume it is, in 
principle, vey suitable for parallel computation, such as the one carried out using a computer GPU. The GPU is the 
vector processor of current video cards. It is composed of a small set of parallel computational units and can be 
programmed with a language explicitly thought for 3D graphic, such as OpenGL [30] and OpenGL Shading Language 
[31]. The computational model is based on a kernel function, called fragment shader, evaluated independently for each 
rectangular element in the rendering region, defined by a primitive type and a set of vertices. In [34] we have described 
a novel algorithm for the fast computation of the model described above using a GPU.   
 
All traditional CPU algorithms have to be adapted to be implemented on GPU: this operation is often complex due to 
the complexity of the correct specification of all rendering parameters, the issues of video driver implementations and 
limited debug support.  For each mass we store a position vector for two contiguous time instants, the force vector F and  
a set of constant values, such as mass or a “is on” surface flag. Since each buffer element can store a maximum of 4 
scalars, we need to use auxiliary buffers. Moreover, the current hardware limitations impose to use 2D arrays to store up 
to 4096 elements.  The representation of springs requires a texture stack. In each element at position (u, v) we store a 
spring connected to a mass allocated at the same position. Each spring is processed and stored twice, since there are two 
connected masses. The spring data structure requires all the 4 allocable scalars in fact; it is composed by the rest length, 
the elastic coefficient, the damping coefficient and a scalar representing the density of the object. To store the entire 
system, we need as many textures as the maximum spring valence. However the analysis of complex geometric models 
evidences that the valence usually varies from a minimum of 3 to a maximum of 18. Consequently, a lot of elements in 
the texture stack are useless and need to be filled with null values. One of the biggest issues using mass-spring systems 
is the inability to model some material volumetric properties, for example incomprimibility. This limitation can be 
overcome introducing a volumetric entity, tetrahedra, and considering additional force contributions, as suggested in 
[32]. The representation of tetrahedra is similar to the spring one: we use a texture stack where each element at position 
(u, v) stores a tetrahedron connected to a mass allocated at the same position. In this case, the memory requirements are 
higher: each tetrahedron is stored and processed 4 times. The tetrahedron data structure is composed by 3 indices, which  
defines the triangle opposed to the processed mass, and the rest volume.  
 
A probing action is shown in Figure 3 (left). The implementation of this action is realized in two distinct phases. In the 
first phase, we mark all masses colliding with the instrument. These masses will be affected by the additional external 
force applied by the operator and will contribute to the final haptic forces. To reduce computational time, we 
approximate the tool geometry with an ellipsoid and the body volume with the particle set. This may cause the lack of 



collision detections if the body volume is not discretized with a high density mass set. The colliding masses are marked 
and stored in an additional texture and will be used in haptic force computation. In the second phase we compute the 
collision response. This computation requires loading the previously stored marks, to discard unmarked masses and 
translate the remaining ones to the approximated tool surface.  
 

Fig. 4. Probing gesture

in two different steps.
The first one is aimed at marking grabbed masses. The

simplest method requires to check if positions are inside a
small sphere centered in the closure point. This process has
to be realized only at tweezers’ closing instant, so we can use
a more complex methods if GPU has enough computational
power: our method marks masses if one of the connected
springs intersects with the test sphere.

The second step realizes the grabbing gesture traslating
marked masses according to tweezers’ motion. Each new
mass position is obtained by the following:

xi+1 = MiM−1
c xc (9)

where Mi is tweezers’ position matrix at instant i, M−1
c is

the tweezers’ inverse matrix at closing instant and xc is
mass position at closing instant. This method has a higher
complexity than the simple traslation but allows to avoid
degeneration of springs and tetrahedra. Since this step is
required only if at least one mass is grabbed, we use a query
to count the number of marked masses at closing instant but
we start using its results only after one simulation step to
avoid synchronization issues due to transfer of counter data.
The results of this gesture are depicted in Figure 5.

In the next section we will describe an innovative method
to compute forces acting on virtual tools on the GPUs,
aiming at reducing the size of data transfers and time
latencies.

Fig. 5. Grabbing gesture

C. Interaction forces computation

In this section we will describe a new method for comput-
ing interaction forces. This computational process requires
to identify all masses in contact with a virtual tool and
accumulating acting forces and torques. This operation has
a really simple implementation on CPUs but not on GPUs,
due to actual hardware limitations. Other implementations,
as in [6], transfer all masses’ positions and forces to the
system memory and realize the whole computation on CPU.
This approach is really simple but significantly degrades
simulation performance since it introduces time latencies
due to limited bandwidth and synchronization issues. Our
approach is different: all computations are done by the GPU,
so that only force and torque vectors have to be transferred.
The implementation in composed of three steps.

The first step is aimed at computing force and torque
vectors for each mass of the system. We store all masses’
force F and torque T in two distinct textures obtained by the
following:

F =b · M−1 · f (10)
T =b · M−1 · ( f × x) (11)

where b is the boolean mark that identifies if a mass collided
with tools, M−1 is the inverse matrix of tool position. in

In the second step we accumulate the content of the two
new textures, obtaining the force and torque vectors needed
for haptic feedback. This is realized with an iterative process
based on a reduction operator. For each pass, we update

 
 

Figure 3: Examples of probing and grabbing actions. 
 
The grabbing gesture shown in Figure 5 (right) allows the operator to manipulate object parts with tweezers. Also this 
implementation consists of two different steps. The first step aims at marking grabbed masses. The simplest method 
requires checking if positions are inside a small sphere centered in the closure point. This process has to be realized 
only at tweezers’ closing instant, so we can use a more complex methods if GPU has enough computational power: our 
method marks masses if one of the connected springs intersects with the test sphere. The second step realizes the 
grabbing action by translating the marked masses according to tweezers’ motion. This method has a higher complexity 
than the simple translation but allows avoiding degeneration of springs and tetrahedra. Since this step is required only if 
at least one mass is grabbed, we use a query to count the number of marked masses at closing instant but we start using 
its results only after one simulation step to avoid synchronization issues due to transfer of counter data.  
 

Fig. 6. Reduction steps

Test QuadroFX3450 GoForce7900 GeForce8800
Physical Simulation 1006 Hz XXX Hz 8182 Hz
Marking of masses 940 Hz XXX Hz 7112 Hz

Haptic feedback 524 Hz XXX Hz 2632 Hz

TABLE I
SIMULATION RATES WITHOUT VOLUME PRESERVATION.

the content of a buffer by computing element (u,v) as the
sum of (2u,2v), (2u+1,2v), (2u,2v+1) and (2u+1,2v+1)
elements stored in the buffer of the previous iteration. The
resulting vector will be stored at element (0,0) of the last
destination buffer. This process is depicted in Figure 6 and
can be easly implemented by using the classic ping-pong
technique.

In the third phase we start the asynchronous transfer
of results from the GPU memory to the CPU one. This
operation should be realized avoiding syncronizations of the
two processors. This can be done in different ways like
introducing other computational loads or a simulation step
delay.

IV. CONCLUSIONS

In this paper we presented our research aiming at re-
alizing a surgical simulation with haptic feedback at 1
KHz rate. Since even high-end computers have inadequate
performance, our implementation has been thought to exploit
the higher computational power and parallelism of current
Graphics Processing Units.

This paper is characterized by two main sections: physical
and surgical simulations. We described GPU computational
model, mass-spring systems and the corresponding graphical
representation, computation of elastic and volume preserva-
tion forces, collision detection and response, probe and grab
gestures and computation of interaction forces.

There are two main aspects that differentiate our work
from the previous ones. In Section I-D we described the
linear representation of mass-spring systems, aiming at re-
ducing the number of null elements processed. In Section III-
C we focused on the computation of force and torque acting
on virtual tools: a process based on accumulation of forces,
realized by a reduction operator, and one asynchronous data
transfer from GPU to CPU.

Table I and II highlight the simulation rates of our
implementation using the model of the liver depicted in
Figure 1 (7750 masses, 38077 tetrahedra and 48254 springs).
The second table refers to the simulation in which volume
preservation is taken into account. As can be easly seen,

Test QuadroFX3450 GoForce7900 GeForce8800
Physical Simulation 278 Hz XXX Hz 2338 Hz
Marking of masses 268 Hz XXX Hz 2184 Hz

Haptic feedback 238 Hz XXX Hz 1730 Hz

TABLE II
SIMULATION RATES WITH VOLUME PRESERVATION.

we reach a rate of at least 1 KHz on current GPU. This is
sufficient to provide realistic haptic feedback to an operator.

REFERENCES

[1] A. Hrennikoff, “Solution of problems of elasticity by the framework
method,” American Society Of Mechanical Engineers. Journal of
Applied Mechanics 8, pp. 619–715, 1941.

[2] L. Verlet, “Computer experiments on classical fluids, thermodynamical
properties of lennard jones molecules,” Physical Review 159, pp. 98–
103, 1967.

[3] M. Segal and K. Akeley, The OpenGL Graphics System. A Specifica-
tion. Version 2.1, Dec. 2006.

[4] J. Kessenich, The OpenGL Shading Language, Sept. 2006. Version
1.20, Revision 8.

[5] J. Georgii, F. Echtler, and R. Westermann, “Interactive simulation of
deformable bodies on GPUs,” in Simulation und Visualisierung 2005
(SimVis 2005), 3-4 März 2005, Magdeburg (T. Schulze, G. Horton,
B. Preim, and S. Schlechtweg, eds.), pp. 247–258, SCS Publishing
House e.V, 2005.

[6] T. Soresen and J. Mosegaard, “Haptic feedback for the GPU-based
surgical simulator,” Medicine Meets Virtual Reality 14, pp. 523–528,
2006.

[7] W. Wu and P.-A. Heng, “An improved scheme of an interactive finite
element model for 3D soft-tissue cutting and deformation,” The Visual
Computer, vol. 21, no. 8-10, pp. 707–716, 2005.

[8] E. Gilbert, D. Jonhson, and S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,”
IEEE Journal of Robotics and Automation, vol. 4(2), pp. 193–203,
Apr. 1988.

[9] D. Knott and D. K. Pai, “CIndeR: Collision and interference detection
in real-time using graphics hardware,” in Graphics Interface, pp. 73–
80, 2003.

[10] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha, “CUL-
LIDE: Interactive collision detection between complex models in
large environments using graphics hardware,” in Proceedings of the
2003 Annual ACM SIGGRAPH/Eurographics Conference on Graphics
Hardware (EGGH-03) (A. S. W. Mark, ed.), (Aire-la-ville, Switzer-
land), pp. 25–32, Eurographics Association, July 26–27 2003.

[11] J.-C. Lombardo, M.-P. Cani, and F. Neyret, “Real-time collision
detection for virtual surgery,” in Computer Animation, p. 82, 1999.

[12] J. R. Navarro, M. Sainz, and A. Susin, “GPU based cloth simulation
with moving humanoids,” tech. rep., Nvidia Corporation, Universitat
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Fig. 6. Reduction steps

Test QuadroFX3450 GoForce7900 GeForce8800
Physical Simulation 1006 Hz XXX Hz 8182 Hz
Marking of masses 940 Hz XXX Hz 7112 Hz

Haptic feedback 524 Hz XXX Hz 2632 Hz

TABLE I
SIMULATION RATES WITHOUT VOLUME PRESERVATION.

the content of a buffer by computing element (u,v) as the
sum of (2u,2v), (2u+1,2v), (2u,2v+1) and (2u+1,2v+1)
elements stored in the buffer of the previous iteration. The
resulting vector will be stored at element (0,0) of the last
destination buffer. This process is depicted in Figure 6 and
can be easly implemented by using the classic ping-pong
technique.

In the third phase we start the asynchronous transfer
of results from the GPU memory to the CPU one. This
operation should be realized avoiding syncronizations of the
two processors. This can be done in different ways like
introducing other computational loads or a simulation step
delay.

IV. CONCLUSIONS

In this paper we presented our research aiming at re-
alizing a surgical simulation with haptic feedback at 1
KHz rate. Since even high-end computers have inadequate
performance, our implementation has been thought to exploit
the higher computational power and parallelism of current
Graphics Processing Units.

This paper is characterized by two main sections: physical
and surgical simulations. We described GPU computational
model, mass-spring systems and the corresponding graphical
representation, computation of elastic and volume preserva-
tion forces, collision detection and response, probe and grab
gestures and computation of interaction forces.

There are two main aspects that differentiate our work
from the previous ones. In Section I-D we described the
linear representation of mass-spring systems, aiming at re-
ducing the number of null elements processed. In Section III-
C we focused on the computation of force and torque acting
on virtual tools: a process based on accumulation of forces,
realized by a reduction operator, and one asynchronous data
transfer from GPU to CPU.

Table I and II highlight the simulation rates of our
implementation using the model of the liver depicted in
Figure 1 (7750 masses, 38077 tetrahedra and 48254 springs).
The second table refers to the simulation in which volume
preservation is taken into account. As can be easly seen,

Test QuadroFX3450 GoForce7900 GeForce8800
Physical Simulation 278 Hz XXX Hz 2338 Hz
Marking of masses 268 Hz XXX Hz 2184 Hz

Haptic feedback 238 Hz XXX Hz 1730 Hz

TABLE II
SIMULATION RATES WITH VOLUME PRESERVATION.

we reach a rate of at least 1 KHz on current GPU. This is
sufficient to provide realistic haptic feedback to an operator.
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Table I and II highlight the simulation rates of our implementation using the model of the liver shown in Figure 1 (7750 
masses, 38077 tetrahedra and 48254 springs). The second table refers to the simulation in which volume preservation is 
taken into account. As can be easily seen, we reach a rate of at least 1 KHz on current GPU. This is sufficient to 
provide realistic haptic feedback to an operator. 
 
 



 
 
PLANNING WITHIN A DEFORMABLE ENVIRONMENT 
 
Before addressing the planning problem, it is necessary to choose the environment representation. We use the point-
based representation of objects: it allows reconstructing the scene in a more automatic and straightforward way, to do 
fast model resampling, and to easily compute collisions and penetration depth. Following the method described in [33] 
point clouds can be easily generated from different 3D representation (CAD models, triangular surfaces, segmented 
medical images, implicit functions) thus our method can be generalized to many scenarios represented by real data sets. 
We compute a penetration depth at each model point, and then we minimize the penetration function by choosing the 
most suitable trajectory for the instrument tip until it reaches a configuration near the final goal. We also compute the 
force direction, pointing outside the object, to identify the next possible point of the trajectory. Thus, each state of the 
problem space consists of the position of the instrument and the penetration function at that point. Such a path is 
feasible when a collision does not damage the obstacle and provided that the obstacle deforms of an appropriate 
amount. Key element of the algorithm is collision detection, since besides detecting a collision it should also compute 
the penetration depth (PD) between two objects, where with PD we mean the minimum displacement to be applied to 
one object to remove the colliding state.  
 
The object meshless representation has the advantage of describing both surface and volume of an object by a discrete 
set of points without using edges to model the connections. The model is composed of the set of surface points called 
phyxels. The probe is also described by a meshless model (we use a sphere but it could be easily generalized). We 
formulate the problem of computing the minimum penetration trajectory among deformable obstacles as a minimization 
problem, where the optimization variables are the trajectory parameters, and the performance index is a measure of how 
much the probe collides with the objects on its path. As the trajectory function, we used polynomials of degree 3 in 
order to assure smoothness but also the capability to overcome more than one obstacle. To see how the algorithm scales 
with increasing complexity, we ran it with environments with a varying number of objects, ranging from 3 to 10. Then, 
we repeated the tests with polynomials of degree 5 to compare performance, both in execution time and in the quality 
of the trajectories generated. In every scenario, the objects used are irregular objects, each of about 1300 phyxels, 
whereas for the probe we use a small spherical object. The function describing the object penetration is null outside the 
objects and because of this, the algorithm pushes the computed trajectory to the border of the obstacles, but not farther. 
For the calculation we used an inflated version of the probe model, with the result of pushing the probe outside the 
objects.  
 
An example scenario is shown in Figure 4, with two different values of stiffness for the various objects. In this case, the 
trajectories were forced on a plane passing through all the object, and had to collide with them. 
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Figure 4: Different stiffness factors lead to different trajectories. Red objects are the most stiff. 
 
 
We compared different solutions and rank them based the minimal cost function and the computation time. In the 
experiments we performed, the algorithm is usually successful but the final result depends on the initial choice of the 
parameters. In particular, in the presence of non-convex object, it could converge to local minima. This also makes 
comparisons among experiments with different scenarios particularly hard. There are however a few considerations that 
can be made. The most notable is that the algorithm bends the trajectory more with an increase of the iterations. In 
particular it gives more relevance to the coefficients of the higher degree terms. Probably as a consequence of this, the 
five degree trajectory is not as successful as the third degree one and, as expected, the computation takes more time. 
 



CONCLUSIONS 
 
In this paper we have briefly summarized some of the issues related to developing operator aids for teleoperating rigid 
instruments among deformable objects. This situation may arise during space activities involving maneuvers with 
inflatable elements, for which some deformation is acceptable, but within given force limits. To address this problem 
we first developed and tested a few algorithms for modeling deformable objects, in particular we focused on tetrahedral 
mesh representation, which ensures good calibration features and haptic rendering compatible with real time 
requirements. To address the planning problem instead, we used meshless models for which collision detection and 
penetration depth can be computed in a simpler way than with mesh-based models. Furthermore, we envision planning 
as an off-line activity, thus reducing the need of real time performance. In the paper we have given simple examples of 
the three algorithms results. The tetrahedral representation can be calibrated, either using data from the literature or 
taken from direct measurements, with good approximation, yielding model behavior within a few percentage points of 
the true object behavior. The GPU based model rendering has demonstrated a rendering cycle in excess of 1KHz, and 
thus can be used in high performance simulations to compensate communication time delay, or in training activities. 
Finally, a planner that takes advantage of the object deformation capability has shown to compute feasible trajectories 
in environments where classical planners fail to provide a solution. 
Clearly, the next objective of this research is to develop an integrated framework that can combine force reflection 
teleoperation with high performance simulation and planning, to give operators the flexibility to test procedures on a 
simulator, enhanced with planning aids, and to integrate real video with simulated graphics to compensate image delay. 
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