
10th ESA Workshop on Advanced Space Technologies for Robotics and Automation - ASTRA 2008

Description of the Locomotion Control Architecture
on the ExoMars Rover breadboard

M. Höpflinger(1), A. Krebs(1), C. Pradalier(1), C. Lee(2), R. Obstei(2), R. Siegwart(1)

(1)Autonomous Systems Lab (2)von Hoerner & Sulger GmbH
Institute of Robotics and Intelligent Systems 68723 Schwezingen
Swiss Federal Institute of Technology (ETHZ) Germany

CH-8092 Zurich (Switzerland)

{markus.hoepflinger, ambroise.krebs, {lee, obstei}@vh-s.de
cedric.paralier, roland.siegwart}

@mavt.ethz.ch

Abstract: The ESA ExoMars mission calls for the development of a Mars orbiter, a
descent module and a surface mobility device, the ExoMars Rover. The Autonomous
Systems Laboratory (ASL) of the Swiss Federal Institute of Technology Zürich has
been chosen as team member of the ExoMars Rover Vehicle Chassis and Locomotion
Subsystem Team lead by Oerlikon Space AG. Within the second project phase of
the ExoMars project, phase B1, the ASL was responsible for the development of
the Locomotion Control Architecture, the software integration and the performance
testing of the rover breadboard. This paper will present an overview of the Locomo-
tion Control Architecture and how the software has been integrated in the ExoMars
Rover breadboard.

1. Introduction

The ExoMars Rover breadboard1 is a six wheel drive and six wheel steered vehicle. The suspension
system bases on a modified version of the RCL-E ([2]).
The Locomotion Control System Architecture has to allow to operate the rover breadboard as a
stand alone item for the performance testing. As inputs, the locomotion control system has to
take higher level information, e.g. waypoints as provided in later project phases by the Navigation
System. The Locomotion Control System has to output position or velocity information to the
motor controllers of the steering and driving motors. Because of the missing Navigation System, a
Men Machine Interface (MMI) was developed to provide the Locomotion Control System with the
necessary information and to log the data of the various sensors on the rover.
The software has been implemented first on the CRAB2 breadboard (ETHZ, [3]) and finally on
the ExoMars Rover breadboard (fig. 1). Table 2 lists the main dimensions of the two used rover
breadboards.

1The ExoMars Rover breadboard produced by our consortium ([1]) in the context of the phase B1. For simplicity
called ExoMars Rover breadboard in this paper.

2http://www.asl.ethz.ch/robots/crab

Figure 1: Images of the used rover breadboards on obstacles.
Left: ExoMars Rover Breadboard, Right: ETHZ CRAB

Figure 2: Dimensions of the breadboards

ExoMars Breadboard ETHZ CRAB
Mass 94 kg 34 kg
Track width 1.2 m 0.78 m
Distance between wheels 0.7 m 0.42 m
Wheel diameter 0.25 m 0.196 m

1.1 Computer hardware and software

A standard personal computer (x86 architecture) has been used as Electrical Ground Support
Equipment (EGSE) . The MMI to send high level locomotion commands to the rover was executed
on this standard PC. The software was implemented in C/C++ and uses the wxWidgets library
for visualisation. A data logger writes the incoming data of the rover to files on the hard disk of
the PC.
Two main tasks are running on the PC: A task for user input and visualisation and a task for the
communication with the rover breadboard.

As on board computer (OBC) on the rover a computer board equipped with an Leon 2 processor
(ESA, Gaisler Research) was used. The board has several interfaces, among which an ethernet,
used to programm the board, and two SpaceWire, allowing the communication with the lower level
hardware (breadboard motor controller and sensor interface electronics).
On the OBC, the operating system RTEMS (Real Time Executive for Multiprocessor Systems, [4])
is used. This operating system has been used for real time military or space applications (e.g. [5]).
The operating system supports various platforms as the SPARC architecture of the Leon 2 board
and uses a POSIX API for user applications. RTEMS in our case is used in single-processor mode.
For the locomotion control software , eight different tasks are running with different priorities. Since
there is no memory protection by the OS, exclusive access to memory has to be guaranteed by using
semaphores. The synchronisation between the different tasks is event based.

2. Implementation of the locomotion control software

Figure 3 shows the overall architecture of the rover control. The rover level locomotion control sends
high level drive commands (e.g. way point coordinates) to the subsystem. The OBC computes the
lower level motor commands (e.g. steering motor positions) out of the driving commands. The motor
commands are then transmitted via SpaceWire to the six wheel nodes manufactured by vH&S. The
wheel nodes contain the motor power converter to power the motors and the electronics to interface
the motor level sensors. The EBOX, another SpaceWire node, integrates the power supplies and
electronics to interface the chassis level sensors as an inertial measurement unit (IMU).

Figure 3: Data flow of the ExoMars Rover breadboard control architecture

Among other tasks the wheel node electronics handle the SpaceWire communication with the
OBC and read out the sensor values of various sensors (see figure 4).

Figure 4: Left: Data flow between the EBOX and the chassis level sensors
Right: Data flow between the wheel nodes and the motor level sensors/actuators

Figure 5 shows a sequence diagram of the communication between the on board computer and
the wheel node electronics. On receiving a SpaceWire time code (STC) from the locomotion control
module, the wheel nodes respond by sending all the collected sensor data to the OBC. The STC

is sent once at every execution of the locomotion control module to every SpaceWire node. Wheel
node one will first receive the STC and thus answers first. The OBC waits for 2 ms until all the
wheel nodes had time to respond to the time code. Then it sends the low level motor commands
to all the different wheel nodes.

Figure 5: Sequence diagram of the communication between OBC and wheel nodes (without EBOX)

Figure 6 shows the most important tasks of the locomotion control software running on the
Leon 2 board on the rover. The Socket Manager task is responsible to handle the communication
with the EGSE PC.
The Motion Control Manager task executes a state machine to switch the control modes and control
mode sub states. The Motion Control Loop task generates the low level motor commands and
considers the rover data to decide on state changes. A desired state change is signalled by sending
an event to the Motion Control Manager task. The Hardware Rx Manager task is responsible to
receive and process RMAP ([6]) messages from the SpaceWire bus, thus making the new data
available in the shared data structure for all other tasks.
The transmission of the message is done by the Hardware Tx Manager task. It sends the SpaceWire
time code (STC) as well as the low level motor commands to the SpaceWire nodes.

Figure 6: Simplified view of the main tasks run on the on board computer

Figure 7: Drawing of the rover in different control modes: Normal (Ackermann), Turn on Spot, Lateral
(Symbols: α, βi: Steering angles; v, vi: Driving speeds; FL, ML, RL, FR, MR, RR: Indices for wheels

l: distance between front and rear wheel; w: track width)

Figure 8: Part of the MMI GUI showing the fields to input parameters for the normal mode (ackermann steering)

2.1 Control modes

The locomotion control software allows to control the rover in manual and in automatic modes. In
automatic mode the rover follows a given trajectory. In manual modes, which are of the number of
three, the rover teleoperated directly by the user. Figure 7 shows a possible wheel configuration for
three different control modes: Ackermann Mode (also called Normal Mode since it is the default
control mode), Turn on Spot Mode and the Lateral Mode.

2.1.1 Input to control modes

The high level rover drive commands are generated by the GUI on user input (Figure 8). Table 9
lists the parameters the user has to input to control the rover in the given control mode.
For all manual modes, the user defines the motion of a virtual wheel (in this implementation the
virtual wheel is located on the middle of the front axle of the rover (see first schematics of figure
7)). With the restriction that the instantaneous rotation centre (IRC) is located at the middle
wheel axle of the rover, the IRC is defined by the steering angle α of the virtual wheel and the rover
dimensions. The angles of the steering wheels and the rotational speeds of the driving wheels depend
on the rotational speed v and the steering angle α of the virtual wheel: βi = f(α), vi = f(v, α).

Figure 9: Table showing the input parameters for the MMI GUI

Ackermann Mode Turn on Spot Mode Lateral Mode Automatic

Virtual speed [cm/s] Rot. speed [deg/s] Speed [cm/s] Waypoint list [m]
Virtual steering angle [deg] Rot. Angle [deg] Steering Angle [deg]

2.1.2 Ackermann Mode

In Ackermann Mode, the rover wheels are steered so that the rover rotates around a given instan-
taneous rotation centre (see figure 7). The steering angles are calculated by the following formulas:

βFL = −βRL = arctan

(
l

l/tan(α)− w

)
βFR = −βRR = arctan

(
l

l/tan(α) + w

)
βML = βMR = 0

The rotational speed of the driving wheel can be computed as follows:

vFL = vRL = v · sin(α)
sin(βFL)

vFR = vRR = v · sin(α)
sin(βFR)

vML = v · sin(α)
tan(βFL)

vMR = v · sin(α)
tan(βFR)

2.1.3 Turn on Spot Mode

The second schematics shows the rover in Turn on Spot Mode. The IRC is located at the centre of
the rover. This allows the rover to turn on spot.
The steering angles are calculated as follows:

βFL = −βRL = −βFR = βRR = − arctan(
l

w
) βML = βMR = 0

The speed of the driving wheels is given by the following formula:

vFL = vRL = −vFR = −vRR = −ω
2
·
√
w2 + l2 vML = −vMR = −ω · w

2

where ω corresponds to the rotational speed of the rover.

2.1.4 Lateral Mode

The third schematics of figure 7 shows a rover in Lateral Mode.
By steering all the wheels, the rover is able to move laterally. In this control mode, all the steering
angles and the rotational velocities of the driving wheels are the same:

∀i βi = α

∀i vi = v

2.1.5 Automatic mode

In the automatic mode, the rover follows a given trajectory. The trajectory can be generated with
a waypoint editor of the GUI. After generation, the waypoint list is transmitted to the rover. By
comparing the estimated position through wheel odometry and the target position, the rover motion
can be controlled. It was specified, that the rover should follow the waypoints by driving along arcs
connecting two waypoints. This restriction simplifies the complex problem of trajectory generation.

Figure 10: Control modes and sub states of the control modes

INIT_ST

STOP_ST

STEER_ST

MOVE_ST

 Unused state
 Change state to INIT_ST

Set virtual angle to 90°, speed to 0
Check wheel positions/speeds.
I f reference value == target value:
Change state to STOP_ST

 Set speed to zero
 Store rover orientation
 Change state to MOVE_ST

 Check rover rotation angle
 if target angle reached:
 change to STOP_ST

Figure 11: Simplified state machine for Turn on Spot Mode

2.2 Description of the control sub states

Every control mode includes four sub states: INIT State, STOP State, STEER State and MOVE
State (see figure 10). In INIT State, the control mode is initialised. After the initialisation, the
rover is ready to start the motion.
Figure 11 shows an example of a state machine with the conditions for transition from one state
to another. In INIT State the rover is commanded to stop the driving motors and to rotate the
steering wheels so that a turn on spot is possible. As soon as the wheels are steered correctly, the
state is changed to STOP. By comparing the rover input it is verified that the rover speed is zero.
Then the actual orientation of the rover is recorded and the state changed to MOVE. The rotational
velocity of every wheel is calculated and transmitted to the wheel nodes. While in MOVE State, the
robot turns on spot until the integrated variation of orientation reaches the target angular distance
to be travelled.

3. Conclusion and Future work

The locomotion control software has been implemented and tested on the CRAB breadboard as
well as on the ExoMars Rover breadboard. The ExoMars Locomotion System test campain showed
the ease of the usage of the software and the robustness. The software recorded valuable data to
support the engineering phase of the flight model.
It could be previewed and observed that the implementation of the path follower limits the user
definable waypoints. For better path following capabilities, the specification should be changed in
that way, that the rover not only follows arcs between two waypoints. This would induce an infinite
number of possible trajectories between two waypoint. The infinite number of solutions would have
to be reduced by optimisation, which could require more data about the environment.
For Phase B2, a visualisation tool has been developed. This greatly reduces the effort to test and
debug the locomotion control module.

4. Acknowledgement

This work was supported by ESA and Oerlikon Space AG in the context of the project ExoMars
Rover Vehicle.

References
1. C. Lee, J. Dalcolmo, S. Klinkner, L. Richter, G. Terrien, A. Krebs, R. Siegwart, L. Waugh, C. Draper,

”DESIGN AND MANUFACTURE OF A FULL SIZE BREADBOARD EXOMARS ROVER CHASSIS”,
9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2006

2. V. Kucherenko, A. Bogatchev, M. van Winnendael, “Chassis Concepts for the ExoMars Rover”,
8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2004

3. T. Thueer, P. Lamon, A. Krebs, R. Siegwart,
“CRAB-Exploration rover with advanced obstacle negotiation capabilities”
9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2006

4. T. Straumann, “OPEN SOURCE REAL TIME OPERATING SYSTEMS OVERVIEW”,
8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001

5. T.A. Ely, C. Duncan, E.G. Lightsey, A. Mogensen, “Real Time Mars Approach Navigation aided by the Mars
Network”, American Institute of Aeronautics and Astronautics, 2006

6. S. Parkes, C. McClements, “SpaceWire Remote Memory Access Protocol”, University of Dundee, 2005

	Introduction
	Computer hardware and software

	Implementation of the locomotion control software
	Control modes
	Input to control modes
	Ackermann Mode
	Turn on Spot Mode
	Lateral Mode
	Automatic mode

	Description of the control sub states

	Conclusion and Future work
	Acknowledgement

