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ABSTRACT 

The autonomous ability to plan collision-free 
trajectories is a critical enabler for planetary 
exploration rovers, potentially saving time and 
resources in a mission while enhancing its value to 
the science community undertaking the project. In 
this paper, we concentrate on autonomous 
guidance and navigation, and apply it specifically 
to the path planning function. 

A method based upon artificial potential fields is 
presented for autonomous path planning and for 
path reconfiguration of planetary rovers. The 
artificial potential functions are re-interpreted as 
the payoff function in an iterated, asymmetric, and 
non-cooperative, non-zero-sum game, wherein 
each terrain obstacle and scientific target is 
represented by a game player. Since the players 
are implicitly independent, we show that the 
position at the target is the only Nash equilibrium of 
the game, thus guaranteeing a feasible path 
solution in every case, and thus eliminating the 
local-minima problem associated with prior artificial 
potential methods. The algorithm developed allows 
for path optimisation and the incorporation of 
constraints and furthermore is shown to offer a 
high degree of flexibility, enabling integrated 
combination with higher-level navigation planning 
functions. 

We present simulations with several obstacles 
and targets, and show how the algorithm can cope 
with the selective activation of targets as a method 
to build extended trajectories through any terrain. 
We conclude by introducing ongoing improvements 
to the method and its application in adaptive 
trajectory planning. 

1 INTRODUCTION 

One of the aspects that gains more and more 
relevance as the autonomy of planetary robots 
increases, is the planning of a collision-free 
trajectory on a planetary surface. Until a few years 
ago, the planning of a trajectory was done by 
operators on Earth. However, this uses precious 
bandwidth and communication resources, while 
also reducing useful activity time of the rover. 
Several trajectory planning techniques have been 
applied to the problem of rover navigation, with the 

most well-known being Grid-based Estimation of 
Surface Traversability Applied to Local Terrain 
(GESTALT) [Maimone et al. 2006] as used by the 
Mars Exploration Rovers (MER). While directly 
handling obstacle avoidance, this method is 
augmented by stereo-vision navigation for 
compensating odometry estimation errors in 
regions of poor traction. Wide-angle Hazard 
Avoidance cameras at the front and rear of each 
MER are used autonomously to provide local 
range maps in support of the planning function. 

 

Figure 1: MER’s GESTALT Navigation Planning  
[from Eisenman et al. 2005] 

The drivers for most of the development in the 
area of path planning include increasing the 
degree of autonomy to cope with only poorly 
characterised terrains; risk reduction; enabling 
decision making executive functions in support of 
autonomous scientific investigation of targets of 
interest; managing onboard resources – especially 
power for locomotion; reducing operational costs of 
ground support; and mitigating the inconvenience 
of significantly time-lagged teleoperation. Taken 
together, these all in some sense contribute to an 
overall goal of enhancing mission utility or scientific 
return. 

Beyond rover navigation, these considerations 
are increasingly important in other remote robotics 
or spacecraft operation scenarios, such as on-orbit 
servicing, requiring robust rendezvous strategies. 
A combination of robustness and flexibility is taken 
as a top-level requirement for path planning in 



 

such scenarios, together with the potential to be 
implemented in a variety of platforms for different 
operational contexts. 

In this work, we concentrate on autonomous 
guidance and navigation, and specifically on the 
path planning function and its role for autonomous 
robotic planetary platforms. The motivation for 
developing the new method was threefold: to 
develop a method capable of dealing with a 
multitude of terrains, thus increasing a rover's 
autonomy; to increase the path planning reliability 
and testability by keeping the method as simple as 
possible; and to make it modular as to be 
incorporated into GNC subsystems across a wide 
range of autonomous platforms. 

The remainder of this paper is organized as 
follows. In section 2 we describe the artificial 
potential method and in section 3 we briefly 
present the aspects of game theory that are 
essential for the understanding of the proposed 
method. In section 4 we define the proposed game 
algorithm used in this work, with simulations 
presented in section 5. Discussion and conclusions 
follow in section 6. 

2 ARTIFICIAL POTENTIALS 

In the group of methods for path planning, the 
artificial potential method is one of the most 
efficient. While providing a general field without the 
need for recalculation at every step, it also avoids 
the "stochastic" aspect of other methods (e.g. 
RRTs). 

The artificial potential method is based on 
artificial potential (AP) functions or fields. In this 
scheme, obstacles are represented by repulsive 
potentials and goals by attractive potentials. A total 
potential field is built through the weighted sum of 
all the individual AP-fields, and the robot uses the 
gradient of that field to navigate, from high 
potential states to low potential states. However, 
unless very specific functions are chosen, the 
potential field can (and usually does) suffer from 
local minima, causing the robot to stop at 
undesired locations, and requiring an executive 
action (generally from human intervention) to be 
taken. 

Some authors have identified functions that do 
not lead to local minima. Examples include 
harmonic functions [Keymeulen and Decuyper 
1994], [Feder and Slotine 1997], superquadric 
potentials [Khosla and Volpe 1988], and functions 
that are solutions to Maxwell’s equations [Hussein 
and Elnagar 2002]. Others have concentrated on 
strategies to avoid or escape the local minima 
through the use of random walks [Chang 1996], by 

iteratively modifying paths [Warren 1989], by 
positioning virtual obstacles near the local minima 
[Park and Lee 2003] or by using simulated 
annealing [Janabi-Sharifi and Vinke 2000], 
[Kirkpatrick, Gelatt and Vecchi 1983], [Park and 
Lee 2002]. 

Despite the multitude of solutions proposed, the 
artificial potential method remains very sensitive to 
the potential functions used, and when it is not, 
suffers from the local minima problem. Because of 
this, unexpected terrains and errors in the 
characterisation of the problem can lead to local 
minima in the total field, and gradient methods can 
suffer or fail completely. 

3 APPLIED GAME THEORY 

A game, in the mathematical sense, refers to 
the mathematical modelling of a situation of 
interaction involving two or more players or agents. 
We can describe a game by defining the number of 
players, the set of possible moves, the payoffs 
awarded to each one of them in function of all the 
possible combinations of moves (i.e. in function of 
the state of the game), and the game’s rules. The 
objective of the game is usually for each of the 
players to obtain the highest payoff possible. 

In the simplest case, the payoffs to each player 
are defined by matrices, and each element of the 
matrix is the payoff for the corresponding 
combination of moves. Assuming the players are 
rational in the sense that they try to have maximum 
payoff, and taken that the players (although 
knowing which moves are available to all players) 
do not know what a player's next move will be, the 
strategy to find the best move is: for every possible 
adversary move, find the counter moves that gives 
the best payoff. When all players behave in this 
"rational" way, the concept of Nash equilibrium 
applies. A given combination of players' moves is 
said to be a Nash equilibrium if no player has a 
garantee of increasing his reward by unilateraly 
departing from that given combination [Masterton-

Gibbons 2001]. Formally, a combination of 
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where fi is the payoff matrix for player i and Si is 
the space of possible plays. 

The possibility for a player to unilateraly change his 
play is thus an essential aspect of the Nash 



 

equilibrium concept. 

In general, to find the Nash equilibrium of a 
game, one proceeds by first finding the rational set 
of solutions for each player,i.e., the set of moves 
which are best answers to all possible moves by 
the adversaries. Performing the intersection of 
these sets gives the equilibrium combination of 
moves, such that if one players chooses to deviate 
from it, it will have no garantee that his payoff will 
increase. 

4 A MULTI PLAYER GAME FOR 

NAVIGATION 

The concept of Nash equilibria thus provides a 
very attractive concept from the point of view of 
path planning. It would be highly desirable to have, 
in general, an equilibrium solution, which in our 
case would be the target point at which the robot 
stops moving. To aproximate the formulation of the 
path planning problem to that of a game, we 
reinterpret the obstacles and the target of the 
terrain as players, where the payoff functions are 
now akin to artificial potential functions centered at 
the obstacles' and target's position. According to 
the game theoretic framework, each player tries to 
maximize its payoff by manoeuvering the robot 
(whose position now defines the state of the game) 
in a certain direction. Because each player tries to 
increase his payoff, the direction is given by the 
gradient of the artificial potential function. But given 
that now a combination of moves is a combination 
of coordinates, a change of move of a player is 
actually a change of robot coordinates, which are 
the same for all players. That is, no player can 
unilateraly change his strategy. To enforce this 
possibility, we implement the independence 
between players in the form of vector orthogonality. 

We define a frame (attached to the robot 

moving in ℜ
2
) determined by the unit vectors us (in 

the direction connecting the target and the robot’s 
position) and ut, respectively (see Figure 2). 
Variables are also defined for the players and their 
respective payoffs, as given in Table 1. 

 

 

 

 

 

 

 

 

Figure 2: Graphical representation of the method 

Table 1: Game variables 

Players 
Player's 
Position 

Player's 
payoff function 

Target P (xP, yP) φ (x- xP , y- yP) 

Obstacle Q (xQ, yQ) ψ (x-xQ , y- yQ) 

 

 

The gradient of each payoff function is then 
given by equations (2a) and (2b). 
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The vectors ux and uy can be defined in 

function of the us and ut by a rotation (3), with the 
angles defined by (4): 
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Substituting (4) and (3) into (2a) and (2b) gives: 
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To enforce the independence between players 
we require (5a) be orthogonal to (5b) and reduce 
the us component of (5b) to zero. We therefore 
build a vector field L, given by  
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uy ut 

player Target 
(modeled with φ) 

θ us 

ux 

player Obstacle 
(modeled with ψ) 



 

Because of the way it is built, (6) has the 
property that the set of points where both 
components of L are zero, in the (us, ut) frame, 
has only one element – the point at the center of 
the function φ, i.e., at the target’s position. This 
creates a global maximum in a field that is free 
from local minima. From the game theoretical 
point-of-view, each player's move is independent 
of all other player's moves, and the only Nash 
equilibrium point is the target's position. 

Consider a simple example of a field with a 
target at position (2,1) and an obstacle at position 
(1,1). Figure 3 shows the gradient of the several 
functions involved. The following is immediate: the 
rational set of the player target has only the point 
at the target's position (upper figure); the rational 
set of the player obstacle is the line defined by 
(x≥2, y=1) (middle figure); the intersection of these 
two sets has only one point, the only Nash 
equilibrium, at the target's position (lower figure). 

 

 

 

 
Figure 3: The gradient fields of the target function 
(upper picture), the modified obstacle function 

(middle picture) and the total vector field, given by 
(7) (lower picture). 

 

The only potential breakdown of this method is 
found in the artificial case wherein: a) the total 
modified AP-field is exactly symmetric relative to 
the line connecting the robot and the target; b) the 
robot’s velocity vector is parallel to that same line; 
and c) there is an obstacle exactly between the 
robot and the target. In this unlikely case, the robot 
will not see the obstacle. However, any 
perturbation from the exact path will cause the 
obstacle to become evident in the asymmetric field 
outside the line connecting the robot and its target. 

To summarise, with the proposed algorithm, the 
robot constantly feels an attraction towards the 
target, while the obstacles influesnce its motion by 
pushing it sideways. The addition of more 
obstacles (even including other robots) is 
equivalent to the addition of more players, each 
manifested as an additional term in the second 
component of L. 

This approach can be applied to planetary rover 
navigation through considering the objectives for 
safe path planning, including: 

• avoidance of regions with a gradient higher 
than a safe threshold; 

• avoidance of obstacles known to present a 
locomotion threat (rocks over threshold size, 
regions of suspect stability, soft sand, etc.); 

• approach to, or passing through, regions 
expected to offer higher mission return (e.g. 
pass closer to a certain set of rocks); 

• overall minimisation of energy usage (or 
traverse distance). 

Several situations have been performed using 
this method in order to assess how well it responds 
to the above requirements. Quantitative 
assessment compared to other algorithms is not 
completed, but inspection of the trajectories has 
proven satisfactory for demonstrating that the rover 
trajectories found for a given scenario are as 
expected. For this paper, a random set of eight 
obstacles is considered, with a single target. Figure 
6 through Figure 15 show the same obstacles (red 
circles) and central target (green circle). The black 
trajectories represent each of 200 paths selected 
by the algorithm in response to random starting 
locations for the rover. 

A classic image of Martian terrain from the 
Viking mission (Figure ) shows the types of 
obstacles rover operators try to avoid, and features 
extraction using a simple shadow-based method. 
The algorithms for generating local topology 
meshes, such as shape from shade, outwith the 
scope of this paper. In general, it is sufficient to 
assume terrain feature extraction (both targets and 
obstacles) is possible. 



 

  

Figure 4: Viking terrain with shadow-based method 
for obstacle extraction and mapping 

5 SIMULATIONS 

The rover dynamics are described by constant-
speed equations. The functions given by equations 
(7) through (12) and illustrated in Figure 5 were 
used for modelling different types of obstacles 
(impassable rocks, hills, sand regions), and thus 
used for testing the method's robustness 
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Figure 5: Representation of some types of 
obstacles 

 

We first analysed the effect of the variation of 
the field strength (Figure 6 and Figure 7), and the 
possibility of modelling whole regions (Figure 8). 
Using (7), sets of 200 runs each were performed, 
first by varying the field strength, and then 
incorporating both forbidden and preferred regions. 

 

Figure 6: Using (7), with K=0.2 

 

Figure 7: Using (7), with K=2 

 

A region (square) to be avoided, and one to be 
preferred (in way of a tunnel) were also modelled. 

 

Figure 8: Regions to avoid (red) and prefer (green) 
(using (7)) 



 

The same set of obstacles was then simulated 
using functions 7-12. 

 

Figure 9: Using (7) 

 

 

Figure 10: Using (8) 

 

 

Figure 11: Using (9) 

 

Figure 12: Using (10) 

 

Figure 13: Using (11) 

In Figure 13, a radius was set, outside of which the 
obstacle is not felt. This risk-minimisation strategy 
was again implemented using (12), and the action 
radius influence on the field geometry analysed. 

 

Figure 14: Using (12), R=0.5 



 

 

Figure 15: Using (12), R=1.5 

Using a picture of Mars to achieve a slightly more 
realistic setup, from which specific obstacles and 
target were extracted, we added a procedure for 
target selection, in that a second target is activated 
once the first one is reached (Figure 16). 

 

Figure 16: Superimposed on the terrain, are: a 
high-risk area (lower left), two targets (activated 
sequentially) and obstacles. Starting position is 

below, centre (Credits NASA/JPL). 

Finally, to verify the method's capability in serving 
optimisation objectives, we coupled the method 
with an optimisation engine, and optimised the 
field's parameters for shortest path (Figure 16). 

 

Figure 17: Two paths found during the optimisation 
process, and the shortest path found (using (7). 

6 DISCUSSION AND CONCLUSIONS 

In this paper the problem of navigating a robot 
using AP-functions was interpreted in the 
framework of game theory. That led to the 
implementation of player independence in the form 
of vector orthogonality between players’ actions 
(i.e. independence between the directions along 
which the players make their moves). The main 
result is that the generated AP-field presents no 
local minima, i.e., in all test cases, all obstacles 
were avoided and all paths reached the target, 
bringing a significant improvement over the prior 
art. 

In Figure 6 and Figure 7 we studied the impact 
of the field strength. As the field is intensified, the 
‘valleys’ in the field geometry grow deeper, and 
nearby paths are quickly aggregated. In Figure 8, 
obstacles regions were modelled as a square and 
as a pair of lines to show the ability of the method 
to deal with obstacles of different dimensions. 
Figure  through Figure 13 show the field modelled 
through the various test functions. Different 
functions influence differently the field's structure: 
some functions favour large ‘valleys’; others allow 
much more freedom around obstacles while 
approaching the target more rapidly. In Figure 14 
and Figure 15 an avoidance radius is modelled 
such that the rover maintains a certain minimum 
distance to the obstacle. This method also allows 
limitations on rover steering capabilities to be 
incorporated into obstacle avoidance. As expected, 
robots inside the radius first navigate away from 
the obstacle until they are clear of the avoidance 
radius, and then follow a path towards the target. 
We also demonstrated the ability of the method to 
cope with optimisation procedures. The 
optimisation, in our case, focused on the choice of 
the optimal field parameters in order to find the 
shortest path. Finally, we used a typical Mars 
surface to demonstrate how selective target 
activation can be used to create more complicated 
mission scenarios. 

As mentioned in section 4, the method can lead 
a robot to ignore an obstacle positioned between it 
and its target. These particular cases are rare (the 
set of possible cases has null measure) and 
unstable, making relatively simple to define 
mitigation strategies. At the outset one of the main 
objectives was to create a flexible method, 
eventually to be implemented across platforms. We 
therefore also simulated cases of target pursuit, 
motion in formation and chase/avoid behaviours, 
aspects which could be relevant for on-orbit 
servicing applications and unmanned vehicle flight 
planning, to mention a few (Figure 18). 



 

  

Figure 18: Obstacle avoidance by an agent group 
in formation 

Several improvements are planned for the 
further development of the method, among which 
are the inclusion of a more realistic dynamical 
model and the generalisation to three dimensional 
spaces. Overall, the method developed shows 
considerable improvements over other methods: 

• it guarantees reaching a target (does 
not suffer from local minima); 

• it maintains robustness independently 
of terrain geometry; 

• it allows the robot to instantly react to 
changes in the field (no need for 
complete path computation) 

• is flexible enough to be implemented in 
several applications, over several 
platforms (rover navigation, on-orbit 
servicing, motion in formation); 

• is simple, thus reducing costs 
associated with development and test; 

• is easy to change to incorporate new 
functionality. 
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