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ABSTRACT 

In the planetary domain there exist severe 
communication constraints linking planets like Mars 
and the ground station on Earth, such as signals delays 
and communication windows. This makes critical the 
necessity of having onboard local autonomy, allowing 
deployed vehicles making its own decisions 
independently of ground control, maximizing the 
scientific return of the mission and reducing operational 
costs and risks. This paper outlines a visual-based 
autonomous navigation approach and software 
architecture for exploration rovers’ onboard autonomy 
in planetary environments. A framework with 
simulation and monitoring capabilities is presented, 
developed to support this research, allowing analysis of 
performance and behaviors to evaluate feasibility of 
strategies and early functional validation of approaches. 
Some of these capabilities are partially supported by 
COTS and open-source packages. 
 
1. INTRODUCTION 

The concept of autonomy is commonly understood as 
the capacity of a system to make decisions on its own. 
In the planetary domain, once a robotic vehicle has been 
deployed on the targeted planet surface, it must interact 
with many non-predictable local conditions. Autonomy 
entails the capacity of dealing with those situations 
without any or minimum dependency on ground control. 
 
The constraints on communications, with signal’ delays 
up to 40 min. from Earth to Mars, and the limited 
availability of satellites orbiting the target planet makes 
teleoperation unfeasible and imperative the necessity for 
onboard autonomy. Among the multiple operations a 
planetary rover shall perform, navigation is one of the 
most critical, when the vehicle must drive from one 
location to another performing on-site scientific 
investigations and is exposed to risks such as tipping 
over, falling in cracks or getting stuck in soft sand, 
putting the whole mission at risk. For that reason, rovers 
are typically operated in a very conservative way, 
elaborating plans from ground control to be daily 
uploaded to the rover, allowing a restricted amount of 
onboard autonomy and just under certain conditions. 

 
That is the case of the NASA MER mission [1], where 
two twin rovers, Spirit and Opportunity, were deployed 
on opposite sides of Mars in January 3 and January 24, 
2004, with the primary goal of searching for and 
characterizing a wide range of rocks and soils that hold 
clues to past water activity on Mars. The mission, 
originally scheduled for 3 months duration, resulted in 
an unprecedented success, being at the time of this 
writing operating for more than 7 years. 
 
The European Space Agency (ESA) will launch its first 
Mars robotic exploration mission, Exomars, by 2018, 
deploying two different rovers at the same location, 
Exomars and MAX-C, carrying complimentary 
scientific instruments. The main focus of the ExoMars 
Rover is to search for evidence of past and present life 
on Mars, drilling the soil to collect samples and 
analyzing molecules to study the Martian geology and 
mineralogy, and search for biosignatures. This rover is 
expected to be highly autonomous. Scientists on Earth 
will designate target destinations on the basis of 
compressed stereo images acquired by the cameras 
mounted on the rover mast. It must then calculate 
navigation solutions and safely travel approximately 
100 m per sol. To achieve this, it shall create digital 
maps from navigation stereo cameras and compute a 
suitable trajectory avoiding collisions and hazards. The 
onboard intelligence for this explorer vehicle is 
currently under development [2]. Some activities related 
to rover control, such as CNES’ EDRES autonomous 
navigation framework evaluation as potential flight 
software candidate [3] have already been done. 
 
This paper presents the current state of the works we 
have carried out in the development of a planetary 
exploration rover’s control architecture. In section 2, the 
visual-based autonomous navigation internal processes 
are described, so the robot plans its actions and makes 
its own decision by perceiving its surroundings, 
computing trajectories and executing them safely. 
Section 3, presents an overview of the onboard software 
architecture and how processes are organized. In section 
4, simulation facilities developed for testing and 
validation are outlined. 



 

2. VISUAL-BASED AUTONOMOUS 
NAVIGATION 

As denoted before, navigation is one of the rover’s most 
critical activities, where the whole mission is put at risk. 
When working autonomously, the security and integrity 
of the vehicle directly depends on which areas and how 
the rover decides to traverse. Safe paths must be 
computed, avoiding obstacles and hazardous situations 
such as tipping over, getting stuck or losing traction. 
Terrain assessment and computation of paths directly 
depends on the environment’s internal representation, 
which is a direct result of the perception process. In 
planetary environments, robotic explorers commonly 
rely on the use of cameras to sense the environment and 
build a digital representation. 
 
2.1. Sensing the Environment 

To obtain 3D information from the environment, a pair 
of cameras, or a stereo camera, is commonly used, 
taking two images (left and right) at the same time. To 
match pixels in both images and compute disparities, we 
use a block matching algorithm [4]. It works with 
previously rectified images, using small “sum of 
absolute difference” (SAD) windows, finding strongly 
matching (high-texture) points, maximizing the number 
of pixels used subsequently to compute depth, see fig. 1. 
 

 

 
Figure 1. Disparities computation from a pair of images 
 
A previous process normalizes brightness in images, 
reducing lighting differences and enhancing texture 
based on neighbors’ value on a given window, 
maximizing chances of finding right correspondences. 
 
After correspondences computation, a filtering phase 
eliminates false matches, overcoming random noise and 

avoiding speckle, local regions of large and small 
disparities. An additional clustering filter eliminates the 
still remaining bad matches, detecting isolated clusters 
of matches with no spatial continuity. Fig. 2 shows the 
effect of this filter, appreciated in the left-bottom corner. 
 

 
Figure 2. Disparity filtering using clusters 

 
Knowing the geometric arrangement of the visual 
system, depth data is derived from the filtered 
disparities by triangulation, where each pixel is 
translated into depth, getting Z values. The result is a 
3D points cloud representing the environment from the 
camera point of view. A series of geometric 
transformations translate these points to the rover 
reference system for 3D terrain reconstruction. 
 
When working in simulation with synthetic images, as it 
is further described below, the rectification process is 
not necessary given they don’t have distortions caused 
by camera lenses. Also the calibration process to obtain 
the intrinsic parameters of the camera like focal length, 
principal point or distortion models is not necessary 
given they are known a priori. However, these processes 
have been implemented for later use with real images. 
 
The onboard software architecture has been designed to 
be parametric, easily controllable by means of a 
configuration file, establishing parameters and values so 
many different configurations can be quickly set in 
order to test and evaluate its impact and performance on 
the overall navigation process. Regarding the perception 
process, some of configurable parameters are camera 
resolution, focal length, field of view, offset between 
perceptions, correspondence algorithm in use, etc. 
 
2.2. Environment Representation 

The 3D points cloud resulting from the stereo process is 
not an appropriate method of representing the 
environment for terrain assessment and trajectory 
computation. A most appropriate technique is building 
digital elevation models (DEMs). It encapsulates 
elevation data on a grid structure, initially empty, filled 
with the 3D points. The result is a rover-centered top-
view representation of the environment, as showed in 
fig. 3(a). 



 

 
(a) (b) 

Figure 3. a) Initial DEM; b) interpolated DEM 
 
There is usually no enough information to fill up the 
whole grid, with some areas remaining unknown. These 
areas will have an impact in later trajectory planning. To 
minimize its impact, some empty portions of the map 
can be estimated based on its surroundings. This process 
can be seen in fig. 3(b), showing the resulting DEM 
after interpolation. The method to be used and 
parameters, such as number of neighbors to consider, 
are configurable. 
 
Initially the DEM is empty and, as the rover performs 
more perceptions, new portions of the environment are 
discovered and the internal map is extended and 
updated. Except at the very beginning, where three pairs 
of images are taken to initialize the map -front and both 
sides of the rover, two new perceptions are done at each 
navigation cycle. 
 
In order to cover the widest possible area, a 
configurable offset between perceptions is established, 
usually with some overlapping to avoid unknown areas. 
For instance, if the camera is modeled with a 90º HFOV 
(Horizontal Field of View), configuring a 35º offset 
allows imaging almost the whole front terrain, fig. 4. 
 

 
Figure 4. Terrain area captured by two perceptions (red 

and blue) with an overlapping region (purple). Green 
lines represent direction of perceptions 

  
New data has priority over old data. Previous map is 
updated to keep the rover at the DEM center, and 
merged with new information, taking into account rover 

and pan/tilt unit attitude when images were captured. 
Fig. 5 shows a terrain model built from two single 
merged perceptions and the integrated map after several 
navigation cycles. 
 
When merging data from two different perceptions from 
the same location it may happen more than one 3D point 
computed are related to the same grid cell. Each point 
may have different elevation data. In such cases, 
different strategies may be implemented like computing 
elevation average, taking the highest of lowest value or 
the largest magnitude -elevation or depression. The later 
is the one followed in these examples. 
 

 
(a) (b) 

Figure 5. a) Merged DEM from two and b) after several 
perceptions 

 
Only local distance around the robot is stored in the 
map, forgetting old and distant data. The above 
examples represent a 10x10 meters terrain with a 
resolution, cells size, of 5 cm. Values such as map size, 
resolution, interpolation method and its parameters can 
be configured by the operator. 
 
2.3. Trajectory Computation 

The ultimate goal of perceiving the environment and 
building an internal representation is to compute paths 
so the rover drives safely from one location to another. 
Some points must be taken into account in this problem 
domain when designing a suitable trajectory 
computation algorithm: 1) the map is not complete, 
there exists unknown areas not seen yet by the robot, 2) 
the target location may be beyond map limits -the robot 
should go 12 meters ahead and the internal map stores 
10 meters, 3) the world is not binary, meaning each cell 
doesn’t have just two possible values, free or occupied, 
but a range value representing elevation data, 4) the 
robot is not a point, several cells are involved when 
computing rover safety at a given location, 5) the rover 
is non-holonomic. It implies some conventional path 
planning methods and search algorithms cannot be 
applied under these constraints. 
 
Our approach is based on the GESTALT local planner 
[5] (Grid-based Estimation of Surface Traversability 
Applied to Local Terrain), developed by NASA-JPL for 



 

the MER’ mission rovers, Spirit and Opportunity. The 
algorithm projects a series of candidate paths on the grid 
and evaluates its suitability. Paths are equidistantly 
separated. The list of cells traversed by each one is 
obtained and the traversabilty of each cell evaluated.  
 
For each of those cells, rover integrity must be 
evaluated in order to declare the whole path safe. In fig. 
6, red cell indicates the rover center. Green cells delimit 
the area under the wheels, delimiting the portion of 
terrain interacting with the vehicle. For simplicity and 
conservatism, the algorithm shall account for all 
possible rover’ poses centered at that location. To do 
that, rover-size diameter circumference is computed, 
represented by the yellow circumference, which 
includes the set of cells underneath the rover, being this 
at any possible pose and therefore, the area to be 
evaluated to assess rover safety. 
 

 
Figure 6. DEM area affected computing rover safety 

 
The next values are computed, taking into account the 
whole set of cells within the affected area, and assigned 
to the central cell: 
 

• Step: maximum elevation difference between 
any pair of adjacent cells within the 
circumscribing area. 

• Roughness: maximum elevation difference 
among all cells within the circumscribing area. 

• Tilt: maximum slope computed as a function of 
elevation difference among peripheral cells 
within the circumscribing area, where front and 
back wheels rest. 

 
Only cells part of candidate paths are evaluated, to 
avoid spending computing power –and time- calculating 
cells’ values, the whole map, which will never be used. 
Once these values have been obtained for every cell of 
every path, the direction deviation of each route with 
respect to the goal is computed. The algorithm tries to 
find the more directed path to the goal meeting the 
established security criteria. First, the path with 
minimum absolute deviation is chosen. If security 

constraints are met the path is selected. Otherwise, the 
process is repeated with the next one with minimum 
absolute deviation. 
 
When a path is selected, the algorithm computes the 
relative deviation between it and the current robot 
heading to be sent to the low level controller, along with 
path data, to execute the trajectory. In case no path is 
selected, several strategies can be followed, as described 
in section 2.4. 
 
Security constraint values -step, tilt and roughness 
hazards, are established by the operator. Configurable 
parameters for this module also are: number of forward 
and backward candidate paths, type (arcs, lines, etc), 
planning distance, navigation distance, chassis 
measures, body clearance or wheels’ separation. 
 
Planning distance refers to the candidate paths’ length 
and navigation distance specifies how long the selected 
path will be actually followed. The planning distance is 
commonly set larger than the navigation one. The 
reason behind this is to avoid getting too close to 
obstacles and non navigable areas that may 
subsequently cause the rover moving backwards, see 
fig. 7. Outer area represents planning distance and inner 
the navigation area. 
 

 
Figure 7. Path planning process, with straight and arc 

candidates 
 
Chassis measures has a direct impact in establishing 
which cells are underneath the rover at any given 
position and have to be evaluated in the path planning 
process. Body clearance determines what areas can be 
traversed. As these parameters are configurable by the 
operator, the impact they have on the whole navigation 
process can be evaluated straightforward. 
 
2.4. Navigation 

The navigation process is initiated when a daily plan, 
containing scheduled actions, is received from ground 
control. By now, as our research is focused on 
autonomous navigation capabilities this plan consists 
just on a series of waypoints the rover has to go. For 
each waypoint, the rover determines the perception 
direction. In case it is out of sight, meaning out of the 
area that can be perceived by two frontal overlapped 
perceptions, see fig. 4, the mast is rotated so the 



 

waypoint is directly faced. Then the process described 
in previous sections begins, perceiving the environment, 
updating the digital elevation map, computing candidate 
paths and selecting the best one meeting all criteria. 
 
It is interesting to point out the distance between 
waypoints received from ground control may not be the 
same as the rover configured planning/navigation 
distance. In such cases it’s necessary to perform several 
navigation cycles to go from one waypoint to the next. 
In fig. 8, green areas represent the planning distance -
usually shorter than navigation distance. In this 
example, two navigation cycles are required between 
waypoints, marked by blue flags. 
 

 
Figure 8. Several navigation cycles may be needed to go 

from one waypoint to the next 
 
If case no suitable path is found among the candidates, 
several strategies can be established by the operator: 1) 
report an error and wait for a new plan, 2) repeat the 
planning process increasing the number of candidate 
paths, 3) make new perceptions to extend and update the 
environment internal model, 4) compute backwards 
paths to move away from the non navigable area and 
plan again. More suitable strategies may be established. 
 
In case of computing backwards paths, chances are the 
terrain has already been perceived and stored within the 
map. In such cases, paths can be computed without 
taking new images and the path can be followed moving 
back blindly. Otherwise, the camera, or the robot, is 
rotated to face the new area and take images to update 
the map. 
 
The operator can configure locomotion parameters such 
as nominal and maximum linear/angular velocities and 
navigation parameters such as maximum steering angle 
or accuracy requirements determining a waypoint has 
been reached, established as an acceptable area. 
 
3. ONBOARD SOFTWARE ARCHITECTURE 

The most widely known robot control architecture is the 
layered design, or subsumption architecture, introduced 
by MIT Prof. Brooks [6]. This conventional design has 

been extensively used in many robotic developments, 
and even some adaptations of this model have been 
applied to planetary rovers’ control, like the CLARAty 
architecture, developed by JPL [7], or LAAS [8]. 
 
The software architecture onboard our vehicle, designed 
to organize the processes described above, follows this 
same layered model. It’s decomposed in levels 
containing independent modules with defined interfaces. 
Each module, or subsystem, encapsulates a concrete 
functionality. The main idea behind this modular design 
is to allow scalability and extensibility of the system, to 
be used as a research platform. A scheme of this 
architecture can be seen in fig. 9. 

 

 
Figure 9. Onboard software layered architecture 

 
The lowest layer is the physical level, where devices are 
electronically connected using the appropriate ports and 
buses. Communications and abstraction layer are placed 
over. The former provides means of contacting with 
ground station. This link is currently supported by ICE 
[9], an object-oriented toolkit that enables building 
distributed applications, being out of scope of this work 
modeling features such as satellite latency, delays or 
bandwidth constraints. 
 
The abstraction layer encapsulates the access to 
underlying hardware and devices, in such a way it is 
transparent for the high-level software the access to the 
specific piece of hardware, by means of predefined 
interfaces. This allows easy future adaptations, in cases 
such as replacing devices from different manufacturers 
(e.g.: cameras) or adapting the autonomy architecture to 
different vehicles (e.g.: MSL or Exomars). The 
abstraction layer is provided by Player [10], which 



 

provides a network interface to a variety of robot and 
sensor hardware, allowing writing control programs and 
supporting a wide variety of mobile robots and 
accessories. 
 
Above it, the functional layer, which is the actual focus 
of the work presented on this document, is structured in 
individual modules. These components are organized 
and distributed by task, embedding the whole rover 
functionality described in previous sections. 
 
These modules have been designed to have a high level 
of cohesion and low interdependency, where 
interactions among them are supported by defined 
interfaces. For instance, the module creating a digital 
elevation map from a 3D points cloud is independent 
from the module that generates the cloud, in this case 
the stereo vision process, so in the future the insides of 
the stereo process may be easily modified, extended or 
substituted, or a new one using a laser scanner to 
produce 3D points can be added, as long as it fulfills 
with the interface. 
 
A light plan execution mechanism coordinates the 
execution of actions. Currently, a sequential control 
flow instantiates the functions of the corresponding 
modules in a sense-plan-act paradigm, perceiving the 
environment, updating its internal representation, 
planning trajectories and executing them. On top, a 
high-level deliberative layer controls overall rover 
activities. The role of this decisional level is to create 
global actions plans considering mission constraints, 
time and available resources, monitoring operations, 
checking for plan deviation, dealing with unexpected 
problems, evaluating risks and generating contingency 
actions to adapt the plan whenever necessary. 
 
As our research has been focused so far on the 
functional layer, a sophisticated executive procedure or 
onboard planning haven’t been developed at the time of 
this writing, currently generating navigation plans on 
ground station to be sent to the rover. 
 
4. SIMULATION 

A crucial point in any software development is testing. 
In order to validate the performance of the functional 
layer modules a set of experiments must be designed. 
Two main methods can be followed: either getting hold 
of a rover-like vehicle and a mars-like outdoor terrain or 
create a computer simulation. 
 
Despite a system like this has to certainly be validated 
on the field before launching, at early stages, where 
strategies and approaches are initially designed, 
simulation is the most appropriate technique, testing 
with the real, and usually unique and expensive, system 
only when approaches are mature enough. Besides, the 

real vehicle may not be available till advanced phases of 
the development or there may not be enough resources 
to get a vehicle. Simulation has also the main 
advantages of repeatability and controllability, 
determining the concrete settings of the experiments as 
desired, including managing any aspect of the vehicle, 
terrain or conditions, reproducing the exactly same 
scenario as many times as necessary. These capabilities 
are crucial in validating the system 
 
A key aspect in testing the system is closing the control 
loop; meaning modeling the plant to obtain the 
necessary data to feed the controller and sending the 
produced output back to the plant to simulate the effects 
it produces. In this case, the plant is a simulation of the 
rover, terrain and its interactions, and the controller is 
the rover onboard software. According to fig. 9, the 
model of the plant replaces the physical layer. The 
abstraction layer provides transparency to higher levels, 
which remain mostly unaltered, except for the extended 
functionality and necessary adaptations arising when 
moving from the simulated to the real world. 
 
Within the control loop, sensor readings are obtained 
from the plant –stereo camera images, IMU data, etc, 
processed onboard and computed trajectories sent, 
decomposed in lower level motor commands, to the 
rover motors, to generate motion. Several navigation 
cycles are performed perceiving the environment, 
processing images, calculating paths, driving the rover 
to a certain location interacting with the environment 
and perceiving again from the new site. 
 
Space agencies have developed utilities and simulation 
frameworks with different levels of fidelity and 
sophistication in the course of the last years. Some of 
the most relevant ones are ROAMS [11] -Rover 
Analysis, Modeling and Simulation, from NASA/JPL, 
EDRES [12, 3] -Space Exploration Robotics 
Development Environment, developed by CNES -
French National Centre for Space Studies, and 3DROV 
[13], developed by TRASYS Space for ESA. 
Unfortunately, these environments are proprietary and 
not publicly accessible to the research community. 
 
In this work, the system has been simulated using 
Gazebo [14], a multi-robot simulator with the 
capabilities of creating outdoor environments, robots 
with sensors and actuators and 3D real-time scene 
rendering. A set of sensor models are available, such 
stereo-cameras, and parameters like field of view, 
resolution and stereo base can be configured, so images 
of the environment from the camera point of view can 
be taken, to be used as input to the rover controller. A 
model of a planetary robotic explorer has been created 
based on the NASA MER rover, fig. 10. It has boogie 
suspension, six independent wheels, four of them 



 

steerable, an IMU (Inertial Measurement Unit), a front 
low stereo camera and another one on top of a mast with 
two degrees of freedom –pan&tilt- for navigation. 
 

 
Figure 10. Simulation model of the NASA-JPL MER 

rover 
 
A Mars-like terrain, including mounds, depressions and 
rocks, has been created. The simulator allows 
controlling illumination conditions -light direction and 
intensity, creating shadows in the environment. A 
Dynamics engine computes rigid-body physics, 
modeling the rover-terrain interactions. 
 
As stated along this document, one of the main design 
drivers on the system has been configurability. As it is 
addressed to be used as a research platform to study 
exploration autonomy strategies, an easy and quick 
configuration system is crucial. Besides the great deal of 
parameters mentioned along the text, the simulator 
allows setting values for terrain relief and complexity, 
soil texture, light direction and intensity, gravity, etc. 
and model related features such as rocks’ size, pose and 
orientation, rover’ wheels size, chassis measures, joints, 
torques, gains, lenses’ field of view and resolution 
among others. Fig. 11(a) shows an image of a rough 
terrain taken from a 45º FOV stereo camera model and 
(b) an image of a softer terrain with a different rock 
distribution and illumination conditions taken from a 
75º FOV stereo camera. The alteration of any of these 
parameters will have an impact on the internal rover’s 
software computations and external behavior, being its 
analysis, characterization and measurement the main 
purpose of this research platform. 
 

 
(a) (b) 

Figure 11. Terrains, rock distribution, illumination 
conditions or camera models can be easily configured 

Some measures on processes, algorithms performance 
and computing time have been obtained, tab. 1. 
 
Table 1. Computing time on a PC Intel Core2 1.86 Ghz, 

with synthetic simulator-generated images (640x480) 
Function Computing 

time 
Stereo matching 120-230 ms 
 Disparity filtering 40-90 ms 
Computing 3D points 210-350 ms 
 Reprojection 100-220 ms 
DEM construction 60-80 ms 
DEM interpolation < 10 ms 
DEM updating < 10 ms 
Merge DEMs < 10 ms 
Path planning process 20-40 ms 

 
The disparity filtering process is part of the stereo 
matching algorithm. Computing 3D points includes 
disparity matrix re-projection and perspective 
transformations to return a points list in the rover 
reference system. A complete perception process takes 
between 360 to 600 ms, including acquisition, stereo 
matching and 3D points’ calculation. The computing 
time of a navigation cycle, the time the rover is idle with 
calculations, is 2-3 sec., excluding pan-tilt unit 
positioning, what is done three times on each cycle –
left, right and back to front. 
 
5. CONCLUSIONS 

The main purpose of the presented work is developing a 
first approach of an autonomous navigation software 
architecture for a planetary exploration rover and the 
necessary infrastructure to support it, to be used as a 
research platform where more sophisticated and 
advanced functionality can be integrated over time to be 
tested and validated at the functional level. 
 
The work has been focused on the functional layer, 
composed of independent modules communicated 
through defined interfaces, easing future modifications, 
extensions or, eventually, replacement. These modules 
are highly configurable, the operator can set many 
parameters and analyze its impact on the overall rover 
performance and behavior, which is extremely useful at 
research time when developing different approaches and 
strategies. 
 
There are ongoing efforts to incorporate onboard 
planning, currently done on ground station, through the 
use of AI planning systems (i.e.: Fast-forward -FF), 
where aspects such as rover resources, power 
consumption, instruments usage, solar panels loading 
rate, sun position, contingent tasks, etc. are taken into 
account when designing autonomy strategies. 
 
The Gazebo simulator has some limitations. However, it 
is important to emphasize the main purpose is to 



 

analyze high-level autonomy strategies and validation of 
navigation approaches. It is not the aim of this research 
work studying aspects such as rover’ mechanical design, 
terramechanics or advanced locomotion issues, which is 
not supported by the simulator, but, as denoted before, 
analysis of performance and validation of the functional 
layer modules, being the current models’ level of 
fidelity appropriate to serve those purposes. 
 
The ultimate validation has to be done by field testing. 
The architecture presented on this paper is currently 
being ported to flight-representative hardware. A 
Gaisler LEON III board, an outdoor sensorized mobile 
robot and stereocameras will be used to test the 
functionality of the modules and the whole autonomy 
process. Some developments and adaptations will take 
place to accommodate the current functionality to the 
new problems arising when dealing with the real world 
like illumination conditions, slipping soil, sensor noise, 
etc. Processes’ performance will be measured and 
compared with the ones obtained from desktop 
simulation. 
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