

ONBOARD AUTONOMOUS NAVIGATION ARCHITECTURE FOR A PLANETARY
SURFACE EXPLORATION ROVER AND FUNCTIONAL VALIDATION USING OPEN-

SOURCE TOOLS

Raul Correal (1), Gonzalo Pajares (2)

(1) TCP Systems and Engineering. Aerospace Systems Division. Fernandez Caro, 7. 28027 Madrid, Spain. Email:
rcorreal@tcpsi.es

(2) University Complutense of Madrid. Dept. Software Engineering and Artificial Intelligence. C/ Profesor José García
Santesmases, s/n. 28040 Madrid, Spain. Email: pajares@fdi.ucm.es

ABSTRACT

In the planetary domain there exist severe
communication constraints linking planets like Mars
and the ground station on Earth, such as signals delays
and communication windows. This makes critical the
necessity of having onboard local autonomy, allowing
deployed vehicles making its own decisions
independently of ground control, maximizing the
scientific return of the mission and reducing operational
costs and risks. This paper outlines a visual-based
autonomous navigation approach and software
architecture for exploration rovers’ onboard autonomy
in planetary environments. A framework with
simulation and monitoring capabilities is presented,
developed to support this research, allowing analysis of
performance and behaviors to evaluate feasibility of
strategies and early functional validation of approaches.
Some of these capabilities are partially supported by
COTS and open-source packages.

1. INTRODUCTION

The concept of autonomy is commonly understood as
the capacity of a system to make decisions on its own.
In the planetary domain, once a robotic vehicle has been
deployed on the targeted planet surface, it must interact
with many non-predictable local conditions. Autonomy
entails the capacity of dealing with those situations
without any or minimum dependency on ground control.

The constraints on communications, with signal’ delays
up to 40 min. from Earth to Mars, and the limited
availability of satellites orbiting the target planet makes
teleoperation unfeasible and imperative the necessity for
onboard autonomy. Among the multiple operations a
planetary rover shall perform, navigation is one of the
most critical, when the vehicle must drive from one
location to another performing on-site scientific
investigations and is exposed to risks such as tipping
over, falling in cracks or getting stuck in soft sand,
putting the whole mission at risk. For that reason, rovers
are typically operated in a very conservative way,
elaborating plans from ground control to be daily
uploaded to the rover, allowing a restricted amount of
onboard autonomy and just under certain conditions.

That is the case of the NASA MER mission [1], where
two twin rovers, Spirit and Opportunity, were deployed
on opposite sides of Mars in January 3 and January 24,
2004, with the primary goal of searching for and
characterizing a wide range of rocks and soils that hold
clues to past water activity on Mars. The mission,
originally scheduled for 3 months duration, resulted in
an unprecedented success, being at the time of this
writing operating for more than 7 years.

The European Space Agency (ESA) will launch its first
Mars robotic exploration mission, Exomars, by 2018,
deploying two different rovers at the same location,
Exomars and MAX-C, carrying complimentary
scientific instruments. The main focus of the ExoMars
Rover is to search for evidence of past and present life
on Mars, drilling the soil to collect samples and
analyzing molecules to study the Martian geology and
mineralogy, and search for biosignatures. This rover is
expected to be highly autonomous. Scientists on Earth
will designate target destinations on the basis of
compressed stereo images acquired by the cameras
mounted on the rover mast. It must then calculate
navigation solutions and safely travel approximately
100 m per sol. To achieve this, it shall create digital
maps from navigation stereo cameras and compute a
suitable trajectory avoiding collisions and hazards. The
onboard intelligence for this explorer vehicle is
currently under development [2]. Some activities related
to rover control, such as CNES’ EDRES autonomous
navigation framework evaluation as potential flight
software candidate [3] have already been done.

This paper presents the current state of the works we
have carried out in the development of a planetary
exploration rover’s control architecture. In section 2, the
visual-based autonomous navigation internal processes
are described, so the robot plans its actions and makes
its own decision by perceiving its surroundings,
computing trajectories and executing them safely.
Section 3, presents an overview of the onboard software
architecture and how processes are organized. In section
4, simulation facilities developed for testing and
validation are outlined.

2. VISUAL-BASED AUTONOMOUS
NAVIGATION

As denoted before, navigation is one of the rover’s most
critical activities, where the whole mission is put at risk.
When working autonomously, the security and integrity
of the vehicle directly depends on which areas and how
the rover decides to traverse. Safe paths must be
computed, avoiding obstacles and hazardous situations
such as tipping over, getting stuck or losing traction.
Terrain assessment and computation of paths directly
depends on the environment’s internal representation,
which is a direct result of the perception process. In
planetary environments, robotic explorers commonly
rely on the use of cameras to sense the environment and
build a digital representation.

2.1. Sensing the Environment

To obtain 3D information from the environment, a pair
of cameras, or a stereo camera, is commonly used,
taking two images (left and right) at the same time. To
match pixels in both images and compute disparities, we
use a block matching algorithm [4]. It works with
previously rectified images, using small “sum of
absolute difference” (SAD) windows, finding strongly
matching (high-texture) points, maximizing the number
of pixels used subsequently to compute depth, see fig. 1.

Figure 1. Disparities computation from a pair of images

A previous process normalizes brightness in images,
reducing lighting differences and enhancing texture
based on neighbors’ value on a given window,
maximizing chances of finding right correspondences.

After correspondences computation, a filtering phase
eliminates false matches, overcoming random noise and

avoiding speckle, local regions of large and small
disparities. An additional clustering filter eliminates the
still remaining bad matches, detecting isolated clusters
of matches with no spatial continuity. Fig. 2 shows the
effect of this filter, appreciated in the left-bottom corner.

Figure 2. Disparity filtering using clusters

Knowing the geometric arrangement of the visual
system, depth data is derived from the filtered
disparities by triangulation, where each pixel is
translated into depth, getting Z values. The result is a
3D points cloud representing the environment from the
camera point of view. A series of geometric
transformations translate these points to the rover
reference system for 3D terrain reconstruction.

When working in simulation with synthetic images, as it
is further described below, the rectification process is
not necessary given they don’t have distortions caused
by camera lenses. Also the calibration process to obtain
the intrinsic parameters of the camera like focal length,
principal point or distortion models is not necessary
given they are known a priori. However, these processes
have been implemented for later use with real images.

The onboard software architecture has been designed to
be parametric, easily controllable by means of a
configuration file, establishing parameters and values so
many different configurations can be quickly set in
order to test and evaluate its impact and performance on
the overall navigation process. Regarding the perception
process, some of configurable parameters are camera
resolution, focal length, field of view, offset between
perceptions, correspondence algorithm in use, etc.

2.2. Environment Representation

The 3D points cloud resulting from the stereo process is
not an appropriate method of representing the
environment for terrain assessment and trajectory
computation. A most appropriate technique is building
digital elevation models (DEMs). It encapsulates
elevation data on a grid structure, initially empty, filled
with the 3D points. The result is a rover-centered top-
view representation of the environment, as showed in
fig. 3(a).

(a) (b)

Figure 3. a) Initial DEM; b) interpolated DEM

There is usually no enough information to fill up the
whole grid, with some areas remaining unknown. These
areas will have an impact in later trajectory planning. To
minimize its impact, some empty portions of the map
can be estimated based on its surroundings. This process
can be seen in fig. 3(b), showing the resulting DEM
after interpolation. The method to be used and
parameters, such as number of neighbors to consider,
are configurable.

Initially the DEM is empty and, as the rover performs
more perceptions, new portions of the environment are
discovered and the internal map is extended and
updated. Except at the very beginning, where three pairs
of images are taken to initialize the map -front and both
sides of the rover, two new perceptions are done at each
navigation cycle.

In order to cover the widest possible area, a
configurable offset between perceptions is established,
usually with some overlapping to avoid unknown areas.
For instance, if the camera is modeled with a 90º HFOV
(Horizontal Field of View), configuring a 35º offset
allows imaging almost the whole front terrain, fig. 4.

Figure 4. Terrain area captured by two perceptions (red

and blue) with an overlapping region (purple). Green
lines represent direction of perceptions

New data has priority over old data. Previous map is
updated to keep the rover at the DEM center, and
merged with new information, taking into account rover

and pan/tilt unit attitude when images were captured.
Fig. 5 shows a terrain model built from two single
merged perceptions and the integrated map after several
navigation cycles.

When merging data from two different perceptions from
the same location it may happen more than one 3D point
computed are related to the same grid cell. Each point
may have different elevation data. In such cases,
different strategies may be implemented like computing
elevation average, taking the highest of lowest value or
the largest magnitude -elevation or depression. The later
is the one followed in these examples.

(a) (b)

Figure 5. a) Merged DEM from two and b) after several
perceptions

Only local distance around the robot is stored in the
map, forgetting old and distant data. The above
examples represent a 10x10 meters terrain with a
resolution, cells size, of 5 cm. Values such as map size,
resolution, interpolation method and its parameters can
be configured by the operator.

2.3. Trajectory Computation

The ultimate goal of perceiving the environment and
building an internal representation is to compute paths
so the rover drives safely from one location to another.
Some points must be taken into account in this problem
domain when designing a suitable trajectory
computation algorithm: 1) the map is not complete,
there exists unknown areas not seen yet by the robot, 2)
the target location may be beyond map limits -the robot
should go 12 meters ahead and the internal map stores
10 meters, 3) the world is not binary, meaning each cell
doesn’t have just two possible values, free or occupied,
but a range value representing elevation data, 4) the
robot is not a point, several cells are involved when
computing rover safety at a given location, 5) the rover
is non-holonomic. It implies some conventional path
planning methods and search algorithms cannot be
applied under these constraints.

Our approach is based on the GESTALT local planner
[5] (Grid-based Estimation of Surface Traversability
Applied to Local Terrain), developed by NASA-JPL for

the MER’ mission rovers, Spirit and Opportunity. The
algorithm projects a series of candidate paths on the grid
and evaluates its suitability. Paths are equidistantly
separated. The list of cells traversed by each one is
obtained and the traversabilty of each cell evaluated.

For each of those cells, rover integrity must be
evaluated in order to declare the whole path safe. In fig.
6, red cell indicates the rover center. Green cells delimit
the area under the wheels, delimiting the portion of
terrain interacting with the vehicle. For simplicity and
conservatism, the algorithm shall account for all
possible rover’ poses centered at that location. To do
that, rover-size diameter circumference is computed,
represented by the yellow circumference, which
includes the set of cells underneath the rover, being this
at any possible pose and therefore, the area to be
evaluated to assess rover safety.

Figure 6. DEM area affected computing rover safety

The next values are computed, taking into account the
whole set of cells within the affected area, and assigned
to the central cell:

• Step: maximum elevation difference between
any pair of adjacent cells within the
circumscribing area.

• Roughness: maximum elevation difference
among all cells within the circumscribing area.

• Tilt: maximum slope computed as a function of
elevation difference among peripheral cells
within the circumscribing area, where front and
back wheels rest.

Only cells part of candidate paths are evaluated, to
avoid spending computing power –and time- calculating
cells’ values, the whole map, which will never be used.
Once these values have been obtained for every cell of
every path, the direction deviation of each route with
respect to the goal is computed. The algorithm tries to
find the more directed path to the goal meeting the
established security criteria. First, the path with
minimum absolute deviation is chosen. If security

constraints are met the path is selected. Otherwise, the
process is repeated with the next one with minimum
absolute deviation.

When a path is selected, the algorithm computes the
relative deviation between it and the current robot
heading to be sent to the low level controller, along with
path data, to execute the trajectory. In case no path is
selected, several strategies can be followed, as described
in section 2.4.

Security constraint values -step, tilt and roughness
hazards, are established by the operator. Configurable
parameters for this module also are: number of forward
and backward candidate paths, type (arcs, lines, etc),
planning distance, navigation distance, chassis
measures, body clearance or wheels’ separation.

Planning distance refers to the candidate paths’ length
and navigation distance specifies how long the selected
path will be actually followed. The planning distance is
commonly set larger than the navigation one. The
reason behind this is to avoid getting too close to
obstacles and non navigable areas that may
subsequently cause the rover moving backwards, see
fig. 7. Outer area represents planning distance and inner
the navigation area.

Figure 7. Path planning process, with straight and arc

candidates

Chassis measures has a direct impact in establishing
which cells are underneath the rover at any given
position and have to be evaluated in the path planning
process. Body clearance determines what areas can be
traversed. As these parameters are configurable by the
operator, the impact they have on the whole navigation
process can be evaluated straightforward.

2.4. Navigation

The navigation process is initiated when a daily plan,
containing scheduled actions, is received from ground
control. By now, as our research is focused on
autonomous navigation capabilities this plan consists
just on a series of waypoints the rover has to go. For
each waypoint, the rover determines the perception
direction. In case it is out of sight, meaning out of the
area that can be perceived by two frontal overlapped
perceptions, see fig. 4, the mast is rotated so the

waypoint is directly faced. Then the process described
in previous sections begins, perceiving the environment,
updating the digital elevation map, computing candidate
paths and selecting the best one meeting all criteria.

It is interesting to point out the distance between
waypoints received from ground control may not be the
same as the rover configured planning/navigation
distance. In such cases it’s necessary to perform several
navigation cycles to go from one waypoint to the next.
In fig. 8, green areas represent the planning distance -
usually shorter than navigation distance. In this
example, two navigation cycles are required between
waypoints, marked by blue flags.

Figure 8. Several navigation cycles may be needed to go

from one waypoint to the next

If case no suitable path is found among the candidates,
several strategies can be established by the operator: 1)
report an error and wait for a new plan, 2) repeat the
planning process increasing the number of candidate
paths, 3) make new perceptions to extend and update the
environment internal model, 4) compute backwards
paths to move away from the non navigable area and
plan again. More suitable strategies may be established.

In case of computing backwards paths, chances are the
terrain has already been perceived and stored within the
map. In such cases, paths can be computed without
taking new images and the path can be followed moving
back blindly. Otherwise, the camera, or the robot, is
rotated to face the new area and take images to update
the map.

The operator can configure locomotion parameters such
as nominal and maximum linear/angular velocities and
navigation parameters such as maximum steering angle
or accuracy requirements determining a waypoint has
been reached, established as an acceptable area.

3. ONBOARD SOFTWARE ARCHITECTURE

The most widely known robot control architecture is the
layered design, or subsumption architecture, introduced
by MIT Prof. Brooks [6]. This conventional design has

been extensively used in many robotic developments,
and even some adaptations of this model have been
applied to planetary rovers’ control, like the CLARAty
architecture, developed by JPL [7], or LAAS [8].

The software architecture onboard our vehicle, designed
to organize the processes described above, follows this
same layered model. It’s decomposed in levels
containing independent modules with defined interfaces.
Each module, or subsystem, encapsulates a concrete
functionality. The main idea behind this modular design
is to allow scalability and extensibility of the system, to
be used as a research platform. A scheme of this
architecture can be seen in fig. 9.

Figure 9. Onboard software layered architecture

The lowest layer is the physical level, where devices are
electronically connected using the appropriate ports and
buses. Communications and abstraction layer are placed
over. The former provides means of contacting with
ground station. This link is currently supported by ICE
[9], an object-oriented toolkit that enables building
distributed applications, being out of scope of this work
modeling features such as satellite latency, delays or
bandwidth constraints.

The abstraction layer encapsulates the access to
underlying hardware and devices, in such a way it is
transparent for the high-level software the access to the
specific piece of hardware, by means of predefined
interfaces. This allows easy future adaptations, in cases
such as replacing devices from different manufacturers
(e.g.: cameras) or adapting the autonomy architecture to
different vehicles (e.g.: MSL or Exomars). The
abstraction layer is provided by Player [10], which

provides a network interface to a variety of robot and
sensor hardware, allowing writing control programs and
supporting a wide variety of mobile robots and
accessories.

Above it, the functional layer, which is the actual focus
of the work presented on this document, is structured in
individual modules. These components are organized
and distributed by task, embedding the whole rover
functionality described in previous sections.

These modules have been designed to have a high level
of cohesion and low interdependency, where
interactions among them are supported by defined
interfaces. For instance, the module creating a digital
elevation map from a 3D points cloud is independent
from the module that generates the cloud, in this case
the stereo vision process, so in the future the insides of
the stereo process may be easily modified, extended or
substituted, or a new one using a laser scanner to
produce 3D points can be added, as long as it fulfills
with the interface.

A light plan execution mechanism coordinates the
execution of actions. Currently, a sequential control
flow instantiates the functions of the corresponding
modules in a sense-plan-act paradigm, perceiving the
environment, updating its internal representation,
planning trajectories and executing them. On top, a
high-level deliberative layer controls overall rover
activities. The role of this decisional level is to create
global actions plans considering mission constraints,
time and available resources, monitoring operations,
checking for plan deviation, dealing with unexpected
problems, evaluating risks and generating contingency
actions to adapt the plan whenever necessary.

As our research has been focused so far on the
functional layer, a sophisticated executive procedure or
onboard planning haven’t been developed at the time of
this writing, currently generating navigation plans on
ground station to be sent to the rover.

4. SIMULATION

A crucial point in any software development is testing.
In order to validate the performance of the functional
layer modules a set of experiments must be designed.
Two main methods can be followed: either getting hold
of a rover-like vehicle and a mars-like outdoor terrain or
create a computer simulation.

Despite a system like this has to certainly be validated
on the field before launching, at early stages, where
strategies and approaches are initially designed,
simulation is the most appropriate technique, testing
with the real, and usually unique and expensive, system
only when approaches are mature enough. Besides, the

real vehicle may not be available till advanced phases of
the development or there may not be enough resources
to get a vehicle. Simulation has also the main
advantages of repeatability and controllability,
determining the concrete settings of the experiments as
desired, including managing any aspect of the vehicle,
terrain or conditions, reproducing the exactly same
scenario as many times as necessary. These capabilities
are crucial in validating the system

A key aspect in testing the system is closing the control
loop; meaning modeling the plant to obtain the
necessary data to feed the controller and sending the
produced output back to the plant to simulate the effects
it produces. In this case, the plant is a simulation of the
rover, terrain and its interactions, and the controller is
the rover onboard software. According to fig. 9, the
model of the plant replaces the physical layer. The
abstraction layer provides transparency to higher levels,
which remain mostly unaltered, except for the extended
functionality and necessary adaptations arising when
moving from the simulated to the real world.

Within the control loop, sensor readings are obtained
from the plant –stereo camera images, IMU data, etc,
processed onboard and computed trajectories sent,
decomposed in lower level motor commands, to the
rover motors, to generate motion. Several navigation
cycles are performed perceiving the environment,
processing images, calculating paths, driving the rover
to a certain location interacting with the environment
and perceiving again from the new site.

Space agencies have developed utilities and simulation
frameworks with different levels of fidelity and
sophistication in the course of the last years. Some of
the most relevant ones are ROAMS [11] -Rover
Analysis, Modeling and Simulation, from NASA/JPL,
EDRES [12, 3] -Space Exploration Robotics
Development Environment, developed by CNES -
French National Centre for Space Studies, and 3DROV
[13], developed by TRASYS Space for ESA.
Unfortunately, these environments are proprietary and
not publicly accessible to the research community.

In this work, the system has been simulated using
Gazebo [14], a multi-robot simulator with the
capabilities of creating outdoor environments, robots
with sensors and actuators and 3D real-time scene
rendering. A set of sensor models are available, such
stereo-cameras, and parameters like field of view,
resolution and stereo base can be configured, so images
of the environment from the camera point of view can
be taken, to be used as input to the rover controller. A
model of a planetary robotic explorer has been created
based on the NASA MER rover, fig. 10. It has boogie
suspension, six independent wheels, four of them

steerable, an IMU (Inertial Measurement Unit), a front
low stereo camera and another one on top of a mast with
two degrees of freedom –pan&tilt- for navigation.

Figure 10. Simulation model of the NASA-JPL MER

rover

A Mars-like terrain, including mounds, depressions and
rocks, has been created. The simulator allows
controlling illumination conditions -light direction and
intensity, creating shadows in the environment. A
Dynamics engine computes rigid-body physics,
modeling the rover-terrain interactions.

As stated along this document, one of the main design
drivers on the system has been configurability. As it is
addressed to be used as a research platform to study
exploration autonomy strategies, an easy and quick
configuration system is crucial. Besides the great deal of
parameters mentioned along the text, the simulator
allows setting values for terrain relief and complexity,
soil texture, light direction and intensity, gravity, etc.
and model related features such as rocks’ size, pose and
orientation, rover’ wheels size, chassis measures, joints,
torques, gains, lenses’ field of view and resolution
among others. Fig. 11(a) shows an image of a rough
terrain taken from a 45º FOV stereo camera model and
(b) an image of a softer terrain with a different rock
distribution and illumination conditions taken from a
75º FOV stereo camera. The alteration of any of these
parameters will have an impact on the internal rover’s
software computations and external behavior, being its
analysis, characterization and measurement the main
purpose of this research platform.

(a) (b)

Figure 11. Terrains, rock distribution, illumination
conditions or camera models can be easily configured

Some measures on processes, algorithms performance
and computing time have been obtained, tab. 1.

Table 1. Computing time on a PC Intel Core2 1.86 Ghz,

with synthetic simulator-generated images (640x480)
Function Computing

time
Stereo matching 120-230 ms
 Disparity filtering 40-90 ms
Computing 3D points 210-350 ms
 Reprojection 100-220 ms
DEM construction 60-80 ms
DEM interpolation < 10 ms
DEM updating < 10 ms
Merge DEMs < 10 ms
Path planning process 20-40 ms

The disparity filtering process is part of the stereo
matching algorithm. Computing 3D points includes
disparity matrix re-projection and perspective
transformations to return a points list in the rover
reference system. A complete perception process takes
between 360 to 600 ms, including acquisition, stereo
matching and 3D points’ calculation. The computing
time of a navigation cycle, the time the rover is idle with
calculations, is 2-3 sec., excluding pan-tilt unit
positioning, what is done three times on each cycle –
left, right and back to front.

5. CONCLUSIONS

The main purpose of the presented work is developing a
first approach of an autonomous navigation software
architecture for a planetary exploration rover and the
necessary infrastructure to support it, to be used as a
research platform where more sophisticated and
advanced functionality can be integrated over time to be
tested and validated at the functional level.

The work has been focused on the functional layer,
composed of independent modules communicated
through defined interfaces, easing future modifications,
extensions or, eventually, replacement. These modules
are highly configurable, the operator can set many
parameters and analyze its impact on the overall rover
performance and behavior, which is extremely useful at
research time when developing different approaches and
strategies.

There are ongoing efforts to incorporate onboard
planning, currently done on ground station, through the
use of AI planning systems (i.e.: Fast-forward -FF),
where aspects such as rover resources, power
consumption, instruments usage, solar panels loading
rate, sun position, contingent tasks, etc. are taken into
account when designing autonomy strategies.

The Gazebo simulator has some limitations. However, it
is important to emphasize the main purpose is to

analyze high-level autonomy strategies and validation of
navigation approaches. It is not the aim of this research
work studying aspects such as rover’ mechanical design,
terramechanics or advanced locomotion issues, which is
not supported by the simulator, but, as denoted before,
analysis of performance and validation of the functional
layer modules, being the current models’ level of
fidelity appropriate to serve those purposes.

The ultimate validation has to be done by field testing.
The architecture presented on this paper is currently
being ported to flight-representative hardware. A
Gaisler LEON III board, an outdoor sensorized mobile
robot and stereocameras will be used to test the
functionality of the modules and the whole autonomy
process. Some developments and adaptations will take
place to accommodate the current functionality to the
new problems arising when dealing with the real world
like illumination conditions, slipping soil, sensor noise,
etc. Processes’ performance will be measured and
compared with the ones obtained from desktop
simulation.

6. REFERENCES

1. Crisp, J. A., M. Adler, J. R. Matijevic, S. W. Squyres,
R. E. Arvidson, and D. M. Kass. (2003). Mars
Exploration Rover Mission. Journal of
Geophysical Research, vol. 108, issue E12

2. Joudrier, L., Elfving, A. (2009). Challenges of the
ExoMars Rover Control. American Institute of
Aeronautics and Astronautics, AIAA 2009-1807.
Seattle, Washington.

3. Odwyer, A., Correal, R. (2008). Experiences in
Producing a Preliminary Navigation OBSW
Prototype for the Exomars Rover Based on
EDRES. In Proc. 10th ESA Workshop on
Advanced Space Technologies for Robotics and
Automation, European Space Agency, Noordwijk,
The Netherlands.

4. Konolige, K. (1997) Small vision system: Hardware
and implementation. In Proc. of the International
Symposium on Robotics Research, Hayama, Japan,
pp. 111–116.

5. Goldberg, S., Maimone, M., Matthies, L. (2002).
Stereo Vision and Rover Navigation Software for
Planetary Exploration. IEEE Aerospace
Conference, Big Sky, Montana.

6. Brooks, R. (1986) A Robust Layered Control System
for a Mobile Robot. IEEE Journal on Robotics and
Automation, vol RA-2, no. 1.

7. Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D.,
Petras, R., Das, H. (2001). The CLARAty
Architecture for Robotic Autonomy. In Proc. Of
IEEE Aerospace Conference, Big Sky Montana.

8. Ingrand, F., Lacroix, S., Lemai-Chenevier, S., Py, F.
(2007). Decisional Autonomy of Planetary Rovers,
Journal of Field Robotics, Volume 24, Issue 7,
Pages 559 - 580

9. Henning, M., Spruiell, M. (2010). Distributed
Programming with Ice. ZeroC, Inc.

10. Gerkey, B. P. Vaughan, R. T. Howard, A. (2003).
The Player/Stage Project: Tools for Multi-Robot
and Distributed Sensor Systems. In Proc. Int. Conf.
on Advanced Robotics. Pages 317-323. Coimbra,
Portugal.

11. Jain, A., Guineau, J., Lim, C., Lincoln, W.,
Pomerantz, M., Sohl, G., Steele, R. (2003).
ROAMS: Planetary Surface Rover Simulation
Environment. Int. Symp. on Artificial Intelligence,
Robotics & Automation in Space. Nara, Japan.

12. Maurette, M., Rastel, L. (2002). Planetary rover
simulation and operation. ASTRA, ESA Workshop
on Advanced Space Technologies for Robotics and
Automation. ESTEC, Noordwijk, The Netherlands.

13. Poulakis, P., Joudrier, L., Wailliez, S., Kapellos, K.
(2008). 3DROV: A Planetary Rover System
Design, Simulation and Verification Tool. 9th Int.
Sym. on Artificial Intelligence, Robotics &
Automation in Space. Los Angeles, USA

14. Koenig, N., Howard, A. (2004). Design and Use
Paradigms for Gazebo, an Open-Source Multi-
Robot Simulator. In Proc. of Int. Conf. on
Intelligent Robots and Systems, Sendai, Japan.

