Miniaturized Motor Controller for Space Robotic Applications

“Motion Control Chip”

T. Liljemark, H. Löfgren, E. Lamouruex, (ÅAC Microtec), S. Habinc (Aeroflex Gaisler), G. Gruener (CSEM), A. Rusconi (Selex Galileo), L. Richter (DLR), B. Boyes (Astrium), P. Poulakis (ESA) and J. Köhler (f.m. ESA, SNSB)

April 2011

© ÅAC Microtec AB 2011. All rights reserved.

Contact: Dr Fredrik Bruhn
fredrik.bruhn@aacmicrotec.com

Technical Area Editor, C&DH, Journal of Small Satellites
About ÅAC Microtec AB…

✔ Formerly named Ångström Aerospace Corporation
✔ Two business units
 - **Miniaturized and Robust Industrial Electronics**
 - **Space and Defense**
✔ Academic spin-off company from Uppsala University, The Ångström Laboratory
✔ Privately owned
✔ Internal clean room (class 100 and 1000) and assembly facility
✔ Turn over ~3.5 M Euro

✔ CEO, Mats Magnell, Ph.D. (f.m. Scania, Mydata, ABB)
✔ V.P., Fredrik Bruhn, Ph.D. (co-founder, f.m. Uppsala Univ., NASA JPL)
✔ Corporate Board
 - Chairman, Staffan Junel (f.m. V.P. Ericsson, CEO Hasselblad)
 - Sven Löfqvist (f.m. CEO Micronic Laser Systems)
 - Stefan Hanna (f.m. Ericsson M&A, IBM, Industrimatematik)
 - Olof Stjernberg (f.m. CEO Wasakredit)
Motivation

• ExoMars design includes more than 40 electrical motors
• Each motor requires control electronics
• Miniaturization of electronics, out of the hot box
 – Saving in volume, mass, energy

Image courtesy of ESA.
Introduction to MCC

- ESA TRP started in 2008, ÅAC Microtec AB prime
- Miniaturized Motion Control module for Cold Space environment
- Storage -120 °C to 70 °C
- Operational -55 °C to 70 °C
- Close cooperation with ExoMars team
- ~ 700 requirements (Selex Galileo/Astrium)

- Based on ÅAC packaging technology
- Distributed operation with only +28 V and CAN interface,
 – Software controlled (32-bit processor)
 – Current control loop >= 10 kHz

- Use of Nano-D connectors (space qualified by ESA)

- Modularized design for individual parts to be reused for other purposes
MCC operation overview

MCC

+ 28 V

CAN

H-bridge

H-bridge

H-bridge

Sensor inputs
MCC supported sensors and motors

- 3 Brushed or 1 brushless motor operation in triple modes:
 - Position
 - Velocity
 - Torque

- Maxon (Brushed), RE13, RE20, RE25
- Maxon (Brushless), EC22, EC40, EC60

- A wide range of sensor inputs

- Current loop frequency 10 kHz
- Outer loop frequency 1 kHz
- PWM frequency settable 20-100 kHz
Hybridization and silicon interposer technology

Digital part (MCC-C) Analog part (MCC-MD)
Assembly flow
MCC-C

• ÅAC XiVIA® Thru-silicon-Via (TSV) interposer technology
• MicroSemi/ACTEL ProAsic A3P3000E FPGA
 – LEON3-FT (Gaisler) or OpenRISC 1200-FT (ÅAC)
 – Processor clock 25 MHz
 – Scheduler from CSEM
 – Direct memory mapping (no RTEMS drivers)
 – PWM IP
 – Redundant, isolated CAN 2.0
 – SpaceWire (optional)
 – Alternative, RTL control loop

• 2 MB of SRAM
• 16 Mbit of Flash
• Galvanic isolation of communication
• ADC, 12 bit, 500 kHz
• CAN phy, 3.3 V
• Linear power regulation
• 34 x 34 x 3 mm3
MCC-MD

- 3 H-bridges (28 V @ 5 A)
 - 3 Brushed or 1 Brushless
 - 4 quadrant mode (<= 150 W)
- Motor heater (<= 90 W)
- Isolated temperature measurement
- EMI filtering
- 80 x 40 x 6 mm³
MCC-Power Supply Unit (PSU)

- Self resonant fly-back architecture (Designed in cooperation with ESA.

- +28 V input
- +12 V output
- -12 V output
- 7 V output
- 5 V output
MCC Casing
See the MCC in action, Visit the exhibition in "Einstein"
Control software environment (CSEM)
Movie showing operation of MCC
Results and current status

- 6 MCC units manufactured
- Challenges with process flow of ADC, SRAM, and Flash
- Electrically partially verified

- Power figures (more than half is lost in linear regulation):
 - Standby power 4 W,
 - Running 3 brushed motors simultaneously in torque and position mode 9 W.
- Weight:
 - Electronics 30 grams
 - Casing and connectors: 270 grams
 - Total: 300 grams

- Next step is TRR and following testing (DLR)

- The MCC needs another iteration to mature. But the result so far is really encouraging and promising
Acknowledgments

- European Space Agency, TRP program
- Dr. Johan Köhler
- Olivíer Mourra
- Long term commitment of Swedish National Space Board (SNSB)
- Partners below

- For more information, go to
- http://www.aacmicrotec.com