Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains

PhD student: Jeff DELAUNE, ONERA
Director: Guy LE BESNERAIS, ONERA
Advisors: Jean-Loup FARGES, ONERA
Clément BOURDARIAS, Astrrium ST
Thomas VOIRIN, ESA-ESTEC
Alain PIQUEREAU, ONERA
Summary

1. Motivation & System Overview
2. Mapped Landmark Matching
3. Filtering & Data Fusion
4. Simulation & Results
5. Conclusion & Future Work
6. Questions
Motivation

• Planetary landing mission needs:
 – Autonomy
 • Robust to communication link failures and no delays
 – Accuracy
 • Sites of scientific interest
 • Previously-landed assets: rover, astronauts, etc.
 • Technical requirements about the area: illumination patterns, hazard presence, etc.

• Navigation sensors:
 – Terrain sensors for precision: LiDAR or camera
 ✓ Lightweight, cheap, high TRL, passive (operates from any distance)
 ✗ Needs illumination, 2D (only) image measurements

• Constraints: Many sites have complex non-flat topographies.

• PhD objectives: Vision-based navigation system
 – Orbit-to-touchdown operations capable of a 100-m landing accuracy
 – Rugged-terrains capable
 – Validation: lunar landing software simulation, UAV real-time implementation
System Overview

- **Image data fused with an Inertial Measurement Unit (IMU)**
 - Measures non-gravitational accelerations and angular rates
 - High-frequency estimation, continuous navigation when camera fails, solves visual scale problem
- **Matching of online image features with mapped landmarks**
 - IMU biases estimation and error-drift correction
- **Tight fusion scheme**
Absolute Image Referencing Methods

Matching type	**Method**	**Advantages**	**Drawbacks**
Patch correlation	Raw-image correlation		
(Conte and Doherty, 2009) | - Proven real-time efficiency | - Memory requirement
- Illumination sensitivity
- Attitude error sensitivity
- Relief sensitivity |
| | Rendered-image correlation
(Adams et al., 2008) | - All modeled disturbances are counted in
- Relief handled | - Processing requirement
- Memory requirement
- State estimates needed |
| | Reconstructed-DEM matching
(Jansche, 2006) | - Relief can be handled | - Memory requirement
- Correlator hardware needed |
| | FFT + warped image correlation
(Mourikis et al., 2006) | - Proven real-time efficiency
- Accurate | - Illumination sensitivity
- Relief-sensitive |
| **Intensity signatures** | SIFT (Lowe, 2004) / SURF (Bay et al., 2008) | - Scale and rotation invariance
- Low memory requirement
- Relief-sensitive | - Computationally expensive
- Illumination-sensitive |
| **Geometric signatures** | Conics invariant
(Cheng and Anear, 2005) | - No state estimate needed
- Illumination robustness
- Low memory requirement | - Only with craters
- Planar terrain assumed |
| | Projected virtual landmark
(Singh and Lim, 2008) | - Illumination robustness
- Low memory
- Relief handled
- Any type of landmark | - State estimates needed
- False matches |
| | Landmark constellation matching
(Pham et al., 2009) | - Illumination robustness
- Low memory
- Any type of landmark | - Planar terrain assumed
- Attitude and attitude estimates needed |

- **Global image or reconstructed-DEM correlation:**
 - **X** Map memory size

- **Local patch correlation, SIFT/SURF:**
 - **X** Illumination-sensitive

- **Craters conic-invariant:**
 - **X** Only for craters

- **2 methods selected:**
 - ✓ Project landmarks
 - ✓ Landstel
Data fusion alternatives

• Numerical approximations of Kalman filtering extended to non-linear system and measurement model: EKF

• Loose fusion: state measurements
 ✓ Computational cost
 ✓ Redundancy
 X Precision
 X Stability

• Tight fusion: direct image measurements
 ✓ Precision
 ✓ Robustness
 X Implementation
 X Computational cost
Matching process

• Inputs:
 – Online image
 – Position and attitude estimates from the filter
 – On-board map

• Outputs: Image (2D) / World (3D) landmark coordinates matches

• Method:
 1. Projection of the 3D map points onto the estimated focal plane
 2. Signature extraction on both the online and predicted image
 3. RANSAC-based robust matching

• On-board map: 3D model of surface feature points
 – Extraction from an orbital image using a corner detector (e.g. Harris)
 – 3D coordinates retrieved by interpolation from a DEM the same area
 ➔ On-board data: 3xN matrix
Projection and pre-matching steps

- **3D model projection:**
 - Current camera pose estimated from the filter
 - Known camera calibration model
 - On-board map
 ➔ 2D feature coordinates prediction

- **Potential matches like Landstel (Pham et al., 2009): Shape Context**
 - Feature point characterized by the geometric distribution of its neighbours
 - Minimum and maximum distances: \(b_r \) and \(p_r \)
 - Distance and polar angle
 - Histogram signatures counting neighbours in each quadrant
 - One-to-one signature comparison
 - Distance criterion based on \(\chi^2 \) distance
 - Selection cut for distances lower than a threshold
 ➔ Set of potential matches BUT:
 - Many outliers
 - Several candidates for each image features
RANSAC-based robust matching

- **RANSAC**: RANdom SAmple Consensus (Fischler et al., 1981)
 - Outliers removal by fitting a model to experimental data
- **Model**: calibrated camera pose (Fischler et al., 1981)
 - Closed-form solution from 3 matches
 - 4 possible solutions: that closest to the filter estimate is selected

- **Algorithm**
 - Inputs: (2D,3D) potential matches
 1. Select a random set s of 3 potential matches
 2. Degenerate configuration check
 3. Compute the associated camera solution
 4. Determine the inliers
 5. If $\#\{\text{inliers}\}>T_0$, store the inlier vector
 6. Back to step until max. number of iterations is reached
 - Outputs:
 - Camera model having most inliers
 - Corresponding inliers \Rightarrow Fed to the filter
Discussion

• Comparison with projected landmarks method (Singh et al., 2008):
 - Same on-board map and matching geometric space (focal plane)
 - No outlier removal step
 • Closest-distance criterion
 • No match when filter has not converged properly

 Note: RANSAC is a proven real-time technique in terrestrial robotics.

• Comparison with Landstel (Pham et al., 2008):
 - Same signature and pre-matching method
 - Different outlier removal step
 - Different matching geometric space: horizontal plane in Landstel
 • Flat-world assumption in Landstel struggling on rugged terrains (relief > 10% altitude)
 - Signature extraction only needed in the online image in Landstel
Summary

1. Motivation & System Overview
2. Mapped Landmark Matching
3. Filtering & Data Fusion
4. Simulation & Results
5. Conclusion & Future Work
6. Questions
Filter block and system model

- Inputs/Outputs:
 - Vehicle state: \(\mathbf{x}_V = \begin{bmatrix} \mathbf{q}_{gb}^T & \mathbf{b}_{gb}^T & \mathbf{v}_{gb}^T & \mathbf{b}_{gb}^T & \mathbf{p}_{gb}^T \end{bmatrix}^T \)

- System model:
 \[
 \begin{bmatrix}
 b \\
 \mathbf{q}_g = \frac{1}{2} \Omega(\mathbf{\omega}_{gb}) \mathbf{q}_g \\
 \mathbf{b}_{gb} = \mathbf{n}_{gb} \\
 \mathbf{v}_{gb} = \mathbf{a}_{gb} \\
 \mathbf{b}_{gb} = \mathbf{n}_{gb} \\
 \mathbf{p}_{gb} = \mathbf{v}_{gb}
 \end{bmatrix}
 \quad
 \Omega(\mathbf{\omega}) = \begin{bmatrix} 0 & -\mathbf{\omega}^T \\ \mathbf{\omega} & -[\mathbf{\omega} \times] \end{bmatrix},
 \quad
 [\mathbf{\omega} \times] = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}
 \]

- IMU:
 \[
 \mathbf{\omega}_{NRI} = \mathbf{\omega}_{gb} + C(\mathbf{q}_g^b)(\mathbf{\omega}_g) + \mathbf{b}_{gb} + \mathbf{n}_{gb}
 \quad
 \mathbf{a}_{AMU} = C(\mathbf{q}_g^b)(\mathbf{a}_{gb} - \mathbf{\omega}_g^b + 2[\mathbf{\omega}_g] \mathbf{v}_{gb} + [\mathbf{\omega}_g \times] \mathbf{p}_{gb}^b) + \mathbf{b}_{gb} + \mathbf{n}_{gb}
 \]
State & covariance propagation

- **State propagation:**
 - Expectation operator applied to $\mathbf{x}_V = f(\mathbf{x}_V, \mathbf{n}_{IMU})$

 $\hat{\mathbf{q}}_g = \frac{1}{2} \Omega(\hat{\mathbf{\omega}}) \mathbf{q}_g$

 $\hat{\mathbf{b}}_{avr} = 0_{3 \times 1}$

 $\hat{\mathbf{\nu}}_{gb} = C(\mathbf{q}_g^b)^T \mathbf{a} - 2 [\mathbf{\omega}_{gb}^g \wedge] \mathbf{v}_{gb}^g - [\mathbf{\omega}_{gb}^g \wedge]^2 \mathbf{p}_{gb}^g + \mathbf{g}_b^g$

 $\hat{\mathbf{b}}_{avr} = 0_{3 \times 1}$

 $\hat{\mathbf{p}}_{gb} = \mathbf{v}_{gb}^g$

 with $\mathbf{a} = \mathbf{a}_{IMU} - \hat{\mathbf{b}}_{avr}, \mathbf{\omega} = \omega_{IMU} - \hat{\mathbf{b}}_{avr} - C(\hat{\mathbf{q}}_g^b)\mathbf{\omega}_{gb}^g$

- **Covariance propagation**
 - EKF: Linearization wrt state estimate $\delta \mathbf{x}_V = \mathbf{x}_V - \hat{\mathbf{x}}_V$

 $\delta \mathbf{x}_V = \mathbf{F}_V \delta \mathbf{x}_V + \mathbf{G}_V \mathbf{n}_{IMU}$

 $\delta \mathbf{x}_V = \begin{bmatrix} \delta \mathbf{\theta}_g^T & \delta \mathbf{b}_{gvr}^T & \delta \mathbf{v}_{gb}^T & \delta \mathbf{b}_{avr}^T & \delta \mathbf{p}_{gb}^T \end{bmatrix}$

 - Propagated covariance:

 $\mathbf{P} = \begin{bmatrix} \mathbf{P}_V & \mathbf{P}_{correlation} & \mathbf{P}^T_{correlation} & \mathbf{P}_{previous} \end{bmatrix}$

 \Rightarrow State management
State management

- New image ➔ State augmentation
- Previous camera pose is stored in memory ➔ Processing delays are accounted for.
• Mapped Landmark Matching output:
 – Image 2D coordinates \((z_j)_j\) ✧
 – Associated world 3D landmark coordinates: \((p^R_{rlj})_j\) ✧

\[
\begin{align*}
 z_j &= h_j(x) + n_j = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} p^c_{rl} + n_j \\
 \hat{z}_j &= C(q_x') (p^q_{rl} - \hat{p}^q_{avl}) + C(q_x') (p^q_{rl} - \hat{p}^q_{avl})
\end{align*}
\]

– Linearization wrt image prediction

\[
\delta z_j = H_j \delta x + \delta n_j = H_j \delta \theta_x^{c-1} + H_j \delta p_{avl}^q + n_j \quad \text{with} \quad \delta z_j = z_j - \hat{z}_j
\]

⇒ Allows Kalman gain to be computed for EKF update
Summary

1. Motivation & System Overview
2. Mapped Landmark Matching
3. Filtering & Data Fusion
4. Simulation & Results
5. Conclusion & Future Work
6. Questions
Simulation environment

- **Virtual terrain points mesh:**
 - Random uniform horizontal and vertical distribution
 - Altitude range can be varied to account for different topographies.

- **Trajectory selected: Moonlanding approach phase**
 - Duration: 80 seconds, 2-km altitude and 65 m/s velocity at startup
 - Guidance is based on that of Apollo LM

- **Matlab Simulink IMU model calibrated to match performances of state-of-the-art IMUs.**

- **Image: terrain points projection**
 - Focal plane placed using true pose from simulator.
 - Noise: $\sigma_{\text{im}} = 1$ pixel
 - 1024X1024 image spanning 70 deg FoV
• Number of terrain points: 505
• Not enough points visible at low altitudes ⇔ Low orbital image resolution
 1. Visual phase: state updates happen
 2. Inertial phase: drift due to error integration
Navigation performance

- 3σ initial uncertainty: 1 deg, 10 m/s, 100 m per axis
 - Rather conservative for a lunar approach phase starting at a 2-km altitude.

Attitude

Time [s]

- Roll angle
- Pitch angle
- Yaw angle

Velocity

Time [s]

- X-velocity error [m/s]
- Y-velocity error [m/s]
- Z-velocity error [m/s]

Position

Time [s]

- X-position error [m]
- Y-position error [m]
- Z-position error [m]
Terrain relief sensitivity

- Sensitivity to terrain topography:

<table>
<thead>
<tr>
<th>Surface altitude range (m)</th>
<th>Position error after visual phase (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20.9</td>
</tr>
<tr>
<td>100</td>
<td>19.0</td>
</tr>
<tr>
<td>200</td>
<td>20.1</td>
</tr>
<tr>
<td>1000</td>
<td>20.4</td>
</tr>
</tbody>
</table>

- Terrain elevation variation up to half the initial altitude have no influence on performance
 - First proof of concept
 - Further development on images with new issues: occlusions, etc.
Summary

1. Motivation & System Overview
2. Mapped Landmark Matching
3. Filtering & Data Fusion
4. Simulation & Results
5. Conclusion & Future Work
6. Questions
Conclusion

• Tightly-integrated fusion approach between
 – An IMU
 – Absolute image measurements of mapped landmarks

• 3σ position error < 100 m after visual phase

• Performances independent of terrain topography
 ➔ Candidate solution for pinpoint landing navigation on rugged terrains

• Future work:
 – Monte Carlo analysis to check robustness
 – Testing on an orbit-to-touchdown trajectory
 – Testing with images
 – Relative feature processing: limiting drift at low altitudes
 – Compare EKF with UKF and PF.
Questions?

References: Fischler et al., 1981, *Communications of the ACM*, 24

Pham et al., 2009, in *AIAA Guidance, Navigation and Control*

Singh et al., 2008, in *AIAA Guidance, Navigation and Control Conference and Exhibit*
Lunar South Pole Topography

Backscatter image of the lunar south pole region obtained by the GSSR after correcting for the antenna pattern.

(From: Hershey, S., E. Garcelo, P. Rosen, M. Stiefe, J. Jiao, M. Kobrick, B. Wilson, C. Chen, and R. Jurgens,
"An Improved Map of the Lunar South Pole with Earth Based Radar Interferometry."
from: RadarCon2009 Special Issue, to be published in IEEE Radar, Sonar, and Navigation journal.)