MOBILITY CHALLENGES AND POSSIBLE SOLUTIONS FOR LOW-GRAVITY PLANETARY BODY EXPLORATION

F. Herrmann (1), S. Kuß (1), B. Schäfer (1)

1 German Aerospace Center (DLR), Institute of Robotics and Mechatronics
Oberpfaffenhofen, D-82234 Wessling, Germany

ASTRA 2011, April 12 - 14, Nordwijk
Motivation

> Exploration of small bodies is challenging
 > Microgravity
 > Environmental conditions
 > Deep space missions

> Testing of microgravity mobility systems is impossible on earth
 > Simulation (not valid without any tests)
 > Alternative tests (mock-up)
 > Microgravity tests

> Hardware development
 > Test-rigs
 > Breadboard
 > Flight model

> Electronics and controller development for
 > Deep space mission requirements
 > High miniaturization
 > Simulation support
Small bodies environment

Microgravity
- Gravitational force depends on
 - mass distribution/density
 - distance of body centre
 - position on target body

Undefined soil conditions
- Ground shape
- Material
- Behaviour while interacting
Mobility system requirements

- Provide measurements on different locations
 - Maximise science possibilities
- Robust concept
 - Simple but effective
 - Controllable & adaptive
 - Independent from soil characteristics
- Deep space qualified
 - Survival of cruise phase
 - radiation
 - temperatures

(1999 JU3)
Finding a solution

- Multi body system (MBS) simulation model
 - Small body (or representative) environment
 - Mobile system
- Gravitation model of the target body
 - Simple (mostly sufficient)
 - Sophisticated (if needed)
- Contact models
 - Polygonal contact model PCM
 - Soil contact model SCM (DLR developed)
- Parameter variations
 - Test out suitable model parameters
 - Sensitivity analysis to environment parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>[N/m²]</td>
<td>4.72e5</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>[-]</td>
<td>0.4</td>
</tr>
<tr>
<td>Layer depth</td>
<td>[m]</td>
<td>0.02</td>
</tr>
<tr>
<td>Areal damping</td>
<td>[Ns/m³]</td>
<td>1.0e8</td>
</tr>
<tr>
<td>Damping depth</td>
<td>[m]</td>
<td>0.02</td>
</tr>
<tr>
<td>Friction coefficient μ</td>
<td>[-]</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>MRS-A</th>
<th>MRS-B</th>
<th>MRS-C</th>
<th>MRS-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil class</td>
<td>[-]</td>
<td>Fine</td>
<td>Intermediate</td>
<td>Coarse</td>
<td>pebbly</td>
</tr>
<tr>
<td>Grain size dist</td>
<td>[mm]</td>
<td>-</td>
<td>-</td>
<td>0.7 – 1.5</td>
<td>8-12</td>
</tr>
<tr>
<td>Bulk density</td>
<td>[kg/m³]</td>
<td>1300-2300</td>
<td>1400</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>Internal friction angle</td>
<td>[deg]</td>
<td>30-32</td>
<td>31-33</td>
<td>30-39</td>
<td>20-30</td>
</tr>
<tr>
<td>Cohesion</td>
<td>[kPa]</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Deformation coefficient n</td>
<td>[-]</td>
<td>1.1 – 1.8</td>
<td>0.8 – 1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Scaling coefficient k*</td>
<td>[kN/m²]</td>
<td>10³ - 2*10⁵</td>
<td>10⁵</td>
<td>10⁵ - 10⁶</td>
<td>10⁵ - 10⁶</td>
</tr>
</tbody>
</table>

- MOBILITY CHALLENGES AND POSSIBLE SOLUTIONS FOR LOW-GRAVITY PLANETARY BODY EXPLORATION
- Florian Herrmann > 14.04.2011
Simulation: Wheeled rover in microgravity (1)

- Example model
 - 6-wheeled rover
 - ExoMars (breadboard) kinematics
 - Mass of 102 kg reproduce ground loads of a 300 kg rover on Mars
 - Rover behaviour covered by hardware test experience

- Scenario 1
 - Earth gravity
 - Ascending slope of 11 deg
 - Crossing an obstacle
Simulation: Wheeled rover in microgravity (2)

- Test: Reducing gravity step by step
 - Scenario 2: 10 % of earth gravity
 - Scenario 3: 2.5 % of earth gravity

- Not considered
 - Possible change of soil behaviour due to microgravity
 - Microgravity-specific modification possibilities
Simulation: Wheeled rover in microgravity (3)

- Scenario 4: 1.0 % of earth gravity
 - Still 1000 x higher gravity than usually on small bodies!
- Results
 - Great impact of microgravity on traction performance
 - Conventional kinematics do not work in this environment
 - Less wheel loads mean less applicable torque
 - Disturbances can lead to uncontrollable dynamics, e.g. wheel lift-off
 - Very slow reaction due to microgravity
Hopping mechanisms

- Previous missions
 - Phobos hopper (43 kg)
 - spring-driven brackets
 - 10 hops
 - 20 meters each
 - MINERVA I & II (0.6 kg)
 - Flywheel driven
 - Lifetime: 36 hrs
- Both were lost before operating on the target’s surface
Trade off: Definition of a hopper concept (1)

- Requirements: MASCOT (DLR-RY)
 - 10 kg lander package
 - Target body 1999 JU3
 - surface gravity: 1.7e-5 g
- Example: Only two concepts
 - Arm concept
 - Excenter driven concept
- Other tested concepts
 - Spring driven concepts
 - Flywheel
- Important parameters
 - Robustness of motion
 - Estimated power consumption
 - Mechanical issues
 - bearing & mounting design
 - complexity
Trade off: Definition of a hopper concept (2)

- Example scenario
 - Gravity: 1.7×10^{-5} g
 - Different soil characteristics left/right
 - PCM
 - $v_0 = 0.5 \times v_{esc} = 0.16$ m/s
- Lever arm concept
Trade off: Definition of a hopper concept (3)

- Example scenario
 - Gravity: 1.7 * 10^{-5} g
 - Different soil characteristics left/right
 - PCM
 - \(v_0 = 0.5 \times v_{esc} = 0.16 \text{ m/s} \)
 - Excenter driven concept
Trade off: Definition of a hopper concept (4)

- Reasons for simulation-supported trade-off
 - Concept decision in early phase (A)
 - Not yet all information available
 - target properties
 - final system parameters (mass..)
 - Many open questions
 - It is easy with parameter variation to compare concepts

- Results of the trade-off
 - Excenter tappet concept is the most promising for given mission requirements
Parameter Variation: Deviation of mass moment inertia (1)

- When concept is fixed
 - Get information about system behaviour
 - Improve dynamics
 - Support design process
 - Component selection

- Parameter variation example
 - Hopping scenario
 - Variation of the inertia tensor (4x)
 - Observe impact on dynamic behaviour

- Desired results
 - Specification of acceptable inertia deviation

- Other possible variations
 - Position of CoM
 - Drive control strategies
Parameter Variation: Deviation of mass moment inertia (2)

- Note: Slow motions due to microgravity
 - Realtime duration of this action: 400 s / 6:40 min

<table>
<thead>
<tr>
<th></th>
<th>dev01</th>
<th>dev02</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0,0784</td>
<td>0,0784</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>0,015</td>
</tr>
<tr>
<td>z</td>
<td>0,1152</td>
<td>0,1152</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>0,015</td>
</tr>
<tr>
<td>y</td>
<td>0,1152</td>
<td>0</td>
</tr>
<tr>
<td>z</td>
<td>0,1505</td>
<td>0,1505</td>
</tr>
</tbody>
</table>
Parameter Variation: Deviation of mass moment inertia (3)

<table>
<thead>
<tr>
<th>dev03</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0,0784</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>0,1152</td>
<td>0,015</td>
</tr>
<tr>
<td>z</td>
<td>0</td>
<td>0,015</td>
<td>0,1505</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dev04</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0,0784</td>
<td>0</td>
<td>0,015</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>0,1152</td>
<td>0</td>
</tr>
<tr>
<td>z</td>
<td>0,015</td>
<td>0</td>
<td>0,1505</td>
</tr>
</tbody>
</table>
Component development (1)

- Goal of the ParVar: identify required drive speed for small hop
- Parameter variation
 - $4 \times K_L$ (proportional gain for position control): 5…20
 - $45 \times T$ (time constant for drive action): 0.1 … 1 sec
 - 180 variations
Component development (2)

- Results
 - Height (z-position)
 - Required motor torque

![Graph showing z-position and motor torque over time](image)
Component development (3)

➤ Best result
 ➤ K_L = 5
 ➤ T = 0.445 s

➤ Motor
 ➤ Less than 5 mNm without margins and security
 ➤ Runs less than 0.5 s
 ➤ Maximum drive speed: 820 rad/s or 7830 rpm
 ➤ Relocation distance: 0.79 m
 ➤ Estimated motor current: 0.55 A
Component development (4)

- Results are used for calculating
 - Input & output speed of the gear
 - Required current
- This leads to suitable components
 - Motor
 - Gear
 - Controller / power electronics
- Resulting action
 - Small hop
 - Duration: 130 s (low gravity!)
DLR RM activities overview

- MBS model
 - Simulation
- Mock-up
 - Tests under earth gravity
- Breadboard
 - Microgravity tests
- Flight model
 - Asteroid
DLR-RM test facility: Mock-up (1)

- Testing on earth
 - Impossible without modifications
- Mock-up: Highly scaled test model
 - Off-the-shelf components
 - Less mass
 - More power
 - Increased excenter masses
 - Different mass distribution
 - Gravity compensation: pendulum
 - Simulation verification
DLR-RM test facility: Mock-up (2)

- First test results
 - Pendulum: 2 m
- Comparison
 - Test
 - Simulation

![Graph showing angular velocity over time](image-url)
Outlook

- More mock-up tests
 - Improved test modes
 - pendulum length: up to 10 m
 - Control strategies
 - start & stop position
 - drive speed
 - Different ground conditions
- Breadboard microgravity tests
 - Drop tower
 - Parabolic flight
- Simulation support
 - Mock-up tests
 - Microgravity tests
 - Flight model

MASCOT is under the lead of DLR-RY (Bremen) and proposed for the Hayabusa-2 mission of JAXA