MINDWALKER:
A Brain Controlled Lower Limbs Exoskeleton for Rehabilitation.
Potential Applications to Space.

Jeremi Gancet, Michel Ilzkovitz, Guy Cheron,
Yuri Ivanenko, Herman van Der Kooij, Frans van Der Helm,
Frank Zanow, Freygardur Thorsteinsson.
MINDWALKER Overview

• 3 years long (2010-2012) research project funded by the European Union (FP7 Accessible and Inclusive ICT)

• 2.75 MEUR funding

• 7 partners: Space Applications Services (Coordinator), Univ. Libre de Bruxelles, Santa Lucia Foundation, Univ. of Twente, Technical Univ. of Delft, eemagine, Ossur

• Addresses the lack of mobility of people having Spinal Cord Injury (SCI) condition
Research Topics and Work Plan

- BNCI technologies
 - EMG
 - EEG

- DRNN

- Orthosis commands

- Virtual Reality Simulation for Training

- Exoskeleton Structure and Control
Research Topics and Work Plan

• Large User Requirements baseline, with early involvement of:
 1. Over 40 Spinal Cord Injured (SCI) patients
 2. Over 15 medical staff in rehabilitation: MD, therapists, care givers, etc.

• Multiple steps integration: M12, M18, M24, M27, M33

• Clinical evaluation with SCI patients and medical staff
 • Will take place from M27 to M36, to Santa Lucia Foundation, Rome, Italy
 • After formal ethical review and acknowledgment by Italian “Istituto Superiore di Sanita”.
Subsystems Challenges and Approach
Objective: developing a convenient EEG cap that patients could wear in their every day life.
Dry EEG Cap

• **Challenge**: most usual EEG caps are not convenient for every day use…

Up to 256 channels…
Dry EEG Cap

- **Approach**: dry electrodes, lightweight EEG cap
 - No need for wet gel – multipin electrodes, trying different types of alloys and coating (gold, titanium, etc.)
 - Embedded signal amplification stage

Early prototype
BNCl Processing Chain

Objective: mapping brain signal to lower limbs kinematic control signal – non invasive manner…
BNCI Processing Chain

• **Challenge**: BNCI traditional approaches rely on Evoked Potentials (EP), e.g. “P300” approach:

(speed 2x)

Credit: N. Waytowich and G. Johnson, Old Dominion University
BNCl Processing Chain

• **Challenge**: mapping brain signals to kinematic control signal?
 => demonstrated with invasive interfaces so far:

Credit: Motorlab, Pittsburgh University
BNCl Processing Chain

• **Approach:**
 - Non-invasive, EEG based
 - Mathematical tools for spatial and temporal filtering (EEG signal is very noisy…)
 - Identifying promising patterns in EEG of walking subjects (number of neuroscience related experiments)
 - Development of a “translation engine”: Dynamic Recurrent Neural Network (DRNN).
 - Returns hips + knees + ankles angles from (filtered) EEG fed signal

• **Arms EMG:** backup option investigated in parallel (as a feed to the DRNN)
Objective: to develop a prototype of a lower limbs exoskeleton (and its controller) allowing dynamical balance while walking
Lower Limbs Exoskeleton

- **Challenge:** safe, crutch-less mobile structure supporting the weight of an adult being
Lower Limbs Exoskeleton

• **Approach:**
 - Novel lower limbs exoskeleton mechanical structure and actuators
 - Low level controller
 - limit cycle walking approach +
 - model predictive control
 - ensures dynamic balance of the system (exo + human being)
 - High level controller
 - “supervisory” controller
 - local environment digital elevation map (exteroceptive sensors)
 - navigation model

Early prototype CAD
VR Training Environment

Objective: develop VR based tools that are effective at stimulating and training patients
VR Training Environment

Challenge: what VR stimuli / combination of stimuli may effectively trick a patient in generating brain signals similar to those produced for walking…?

Approach:
- Supporting BNCI scientists experiments with VR setups, to identify relevant stimuli types and protocols
- Baseline setup:
 - 3D visual feedback,
 - Kinect based torso / head / arm tracking,
 - Complementary vestibular stimulation with actuated seat
Project Status

• Lower limbs exoskeleton hardware procurement and assembly ongoing – assembled prototype to be ready by June 2011.

• Control software experimented with the Univ. Twente LOPES setup

• Experiments for EEG-to-kinematics control on their way – integration of related outcomes by the fall 2011.

• Dry EEG cap early prototype to be made available in the project by June.

• VR training environment and setup under development – early prototype to be released by June 2011.

Next milestone: M18 integration step (end of June): “early integrated prototype”
Potential Applications to Space
Although primarily for rehabilitation oriented applications, MINDWALKER technologies are relevant in other domains, including in particular space:

=> Astronauts health condition mitigation

=> Robotic platforms control
Astronauts Health Condition Mitigation

Return to Earth / after-landing condition mitigation
• Health condition: difficulty to stand up, loss of balance, risk of fainting.

MINDWALKER technologies:
• Lower limbs exoskeleton for walk with safe balance keeping
• + possibly EEG-BNCI (though EMG may be considered instead)
Astronauts Health Condition Mitigation

Microgravity related health deconditioning countermeasure

• Health condition: bones deconditioning, muscles atrophy

MINDWALKER technologies:

• Lower limbs exoskeleton as a mean to exercise bones and muscles (simulating gravity conditions)
• Immersive VR environment with visual feedback and (possibly) vestibular feedback
Robotic Platforms Control

EEG based dexterous manipulation

• Setup: on-orbit astronaut operation of a robotic arm (EVA or IVA)

MINDWALKER technologies

• EEG-BNCI to kinematics control
• Dry EEG cap
• Immersive 3D visual feedback
Mobile robotic planetary exploration with telepresence

- Setup: Teleoperation of a mobile planetary robotic platform (rover or bi-pedal platform), from e.g. an orbiting spacecraft or a planetary outpost.

MINDWALKER technologies

- EEG-BNCI to locomotion and manipulation control,
- Dry EEG cap
- Immersive VR (telepresence feeling)
Conclusion

• MINDWALKER is a FP7 EU funded project that investigates the use of BNCI technologies for lower limbs exoskeleton control

• Lower limbs exoskeleton for rehabilitation is a hot research topic (competition)

• EEG BNCI control for robotic devices is a hot research topic too… Promising and is worth being fully considered as a user interface modality

• Immersive VR is anticipated to be a powerful stimulation approach in addition to being effective training tool

• Those technologies may have potentially interesting applications in space…
Acknowledgment

MINDWALKER is supported by EU research program FP7 under project contract #247959 for Accessible and Inclusive ICT

https://www.mindwalker-project.eu/

Contact: Michel Ilzkovitz: michel.ilzkovitz@spaceapplications.com