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ABSTRACT

This work focuses on an adaptive guidance algorithm for
planetary landing that updates the trajectory to the sur-
face by means of a minimum fuel optimal control prob-
lem solving. A semi-analytical approach is proposed.
The trajectory is expressed in a polynomial form of mini-
mum order to satisfy a set of boundary constraints derived
from initial and final states and attitude requirements. By
imposing boundary conditions, a fully determined guid-
ance profile is obtained, function of only two parameters:
time-of-flight and initial thrust magnitude. The optimal
guidance computation is reduced to the determination of
these parameters, according to additional path constraints
due to the actual lander architecture: available thrust and
control torques, visibility of the landing site, and other
additional constraint not implicitly satisfied by the poly-
nomial formulation. Solution is achieved with a simple
two-stage compass search algorithm: the algorithm firstly
finds a feasible solution; whenever detected, it keeps solv-
ing for the optimum; nonlinear constraints are evaluated
numerically, by pseudospectral methods. Results on dif-
ferent scenarios for a Moon landing mission are shown
and discussed to highlight the effectiveness of the pro-
posed algorithm and its sensitivity to the navigation er-
rors.

Key words: pinpoint landing; adaptive guidance; retarget-
ing; hazard avoidance.

1. INTRODUCTION

An autonomous, precise and safe landing capability is a
key feature for the next space systems generation. The
chance to adapt and correct the final landing pinpoint al-
most up to the touch down increases both the robustness
and the flexibility of the vehicle operations: surface haz-
ards can be safely avoided, unpredictable events such fail-
ures can be managed and in loco detected scientifically
relevant places may be approached, slightly changing the
landing trajectory, being already nearby the final target.
One of the big challenges to deal with, in such a scenario,
is represented by the short duration of the terminal de-
scent phase together with the telecommunications delay

because of the interplanetary distances: they clearly asks
for a high level of on board autonomy in the Guidance
Navigation and Control during this phase, coupled with
light and fast computational mechanisms.
A trajectory based on a quartic polynomial in time was
used during the Apollo missions [6]. A derivative of
the Apollo lunar descent guidance was still considered
in recent years, for the Mars Science Laboratory (MSL)
[12]. Various other approaches to obtain both numerical
and approximate solutions of the pinpoint landing termi-
nal guidance problem have been described over the last
few years. In [10] the first-order necessary conditions for
the problem are developed, and it is shown that the opti-
mal thrust profile has a maximum-minimum-maximum
structure. Direct numerical methods for trajectory op-
timization have been widely investigated, not requiring
the explicit consideration of the necessary conditions [2].
These methods have been used together with Chebyshev
pseudospectral techniques, in order to reduce the number
of the optimization variables [3]. Also convex program-
ming approach has been proposed, in order to guarantee
the convergence of the optimization [1]. Direct colloca-
tion methods has showed that the size of the region of
feasible initial states, for which there exist feasible tra-
jectories, can be increased drastically (more than twice)
compared to the traditional polynomial-based guidance
approaches, but at the price of a higher computational
cost [1].
In this paper a guidance algorithm capable to dynamically
recompute and correct the landing trajectory during the
descent is developed, allowing the on-board choice of the
landing site, required by systems that have to operate in
full autonomy. A semi-analytical approach is proposed,
in order to conjugate the low computational cost of poly-
nomial approximation to the larger flexibility of direct op-
timization methods. Fuel consumption has been used as
optimality criterion.

2. THE GUIDANCE ALGORITHM

The retargeting problem, as part of an hazard detection
and avoidance system, involves only the last part of the
landing. Distances, for both downrange and altitude, are
small (less than 3 km) compared to the planet’s radius and
the assumption of a constant gravity field with flat ground
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Figure 1: Ground Reference System.

is appropriate.
No aerodynamic forces are considered. The eventual
presence of atmosphere (especially with low density, as in
the case of Mars) could be however negligible, due to the
relative low velocity involved (on the order of 100m s−1),
and these forces can be treated as disturbances [1].
The translational dynamics of the spacecraft, expressed

in a Ground reference system (Fig. 1), are described by
the equations: 

r̈(t) =
T(t)

m(t)
+ g,

ṁ(t) = − T (t)

Ispg0
,

(1)

where r ∈ R3 is the position vector, T ∈ R3 is the thrust
vector, m is the mass of the spacecraft, g ∈ R3 is the con-
stant gravity field of the planet, Isp the specific impulse of
the main engine and g0 the standard gravity acceleration
on Earth. T = ∥T∥ is the net thrust magnitude.

The main thruster is assumed to be rigidly connected

Figure 2: Body-fixed Reference System.

to the spacecraft, so the direction of the thrust vector is
determined directly by the spacecraft attitude, expressed
in Euler angles, {ϕ, θ, ψ}T , in the 231 form. ϕ is the
Roll angle, θ is the Pitch angle and ψ is the Yaw angle
(Fig. 2). The 231 form is preferred to the more traditional
321, because allows to avoid the presence of singularities
in the angles determination, in the field of application of
the landing phase. The thrust vector can be represented
as:

T(t) = −T (t)

[
cosψ(t) sin θ(t)
cosψ(t) cos θ(t)

− sinψ(t)

]
. (2)

At the time instant t0 in which a retargeting is com-
manded, position and speed of the spacecraft are known.

The initial acceleration depends on the initial thrust mag-
nitude T0, from Eqns. (1) and (2). At the end of the ma-
neuver, at time tf, target position and speed are required.
Also, the spacecraft is desired to have a vertical attitude.
This implies that the horizontal components of the thrust
vector must be zero:

r̈y(tf) = r̈z(tf) = 0. (3)

Then, a total of 17 boundary constraints are available.
The three components of the acceleration can be ex-
pressed in a polynomial form. The minimum order
needed to satisfy boundary constraints is 2 for the vertical
axis, 3 for the horizontal components:

r̈x(t) = r̈x(t0) + C1xt+ C2xt
2, (4)

r̈y/z(t) = r̈y/z(t0) + C1y/zt+ C2y/zt
2 + C3y/zt

3. (5)

Integrating the acceleration two times, and applying
boundary constraints, the trajectory is completely defined,
function of tf and T0.
From the acceleration profile, the thrust-to-mass ratio
P(t), and then the thrust vector, can be obtained:

P = T/m = r̈− g ⇒ T = mP. (6)

The mass versus time trend is determined by a first order
linear ordinary differential equation whose solution is:

m(t) = m0 exp

(
−
∫ tf

t0

∥P(t)∥
Ispg0

dt

)
. (7)

The analytical calculation of the integral exponent is com-
plex, but it can be easily obtained trough numerical inte-
gration, using Chebyshev pseudospectral methods, such
as the Clenshaw-Curtis quadrature [11].
From the thrust unit vector n̂ = T/∥T∥ a complete guid-
ance profile, in terms of Euler angles and thrust magni-
tude, is obtained, function of initial thrust magnitude T0
and time-of-flight tToF = tf − t0:

θ = tan−1
(
n̂x/n̂y

)
, −π ≤ θ ≤ 0, (8)

ψ = tan−1
(
n̂z
(
n̂2x + n̂2y

)−0.5
)
, −π

2
≤ ψ ≤ π

2
, (9)

ϕ = 0. (10)

2.1. Additional Constraints

The problem is so reduced to find the values of T0 and
tToF, according to any additional constraint not implicitly
satisfied by the polynomial formulation, in order to min-
imize the fuel consumption. Assuming x = {tToF, T0}T ,
the cost function is f(x) = m(t0)−m(tf), and the prob-
lem can be expressed in the form:

min
x
f(x) such that

{
xL ≤ x ≤ xU

cL ≤ c(x) ≤ cU
. (11)

The optimization variables x are not allowed to take any
value, but they have a finite domain with lower bound



xL and upper bound xU . These are called box con-
straints. The elements of c(x) are generally non-linear
functions of the optimization variables, also bounded be-
tween lower and upper limits cL and cU . These con-
straints need to be satisfied during all the landing maneu-
ver, so they are called path constraints. Finally, the poly-
nomial formulation does not explicitly consider boundary
constraint on mass. This implies the additional constraint:

mdry ≤ m(tf) ≤ m0. (12)

Box Constraints
The thrust magnitude is bounded to the thrust available
on-board:

0 < Tmin ≤ T0 ≤ Tmax. (13)

The time-of-flight must be greater than zero, while its
theoretical upper limit is determined by the maximum
amount of fuel on board mfuel.

0 ≤ tToF ≤ tmax = mfuel
Ispg0
Tmin

. (14)

Path Constraints
During the landing the required thrust magnitude cannot
exceed the limit imposed by the actual engine on board:

Tmin ≤ T (t) ≤ Tmax. (15)

Euler angles rate of change is subject to the actual control
torques MCmax available by the ACS. The extrapolation
of the exact torques from angles is not immediate, due to
coupled terms in the attitude dynamics. The objective is
to characterize such a rotational rate constraint without
coupling the problem to the rotational dynamics, in order
to save computation time. Torques are approximated by
the decoupled term due to the angular acceleration. This
corresponds to the reality in case of small angles and low
angular speed, a condition not at all verified during a re-
targeting, and it can be used only for an estimate:

−ρMCmax ≤ Imaxθ̈(t) ≤ ρMCmax, (16)

−ρMCmax ≤ Imaxψ̈(t) ≤ ρMCmax. (17)

Imax is the maximum moment of inertia at initial time t0.
This allows to avoid the on-board calculation of inertia
properties, and gives a margin of safety in the torques cal-
culation. An additional margin of safety 0 < ρ < 1 can
be applied.
In a feasible landing path altitude is always greater than
zero. This constraint can be improved considering a glide-
slope constraint. In this case the lander is required to re-
main in a cone defined by the minimum slope angle γmax,
as showed in Fig. 3. This constraint has a dual purpose: it
assures that the the lander does not penetrate the ground,
even in presence of bulky terrain features near the landing
site; at the same time it limits the angle of view onto the
target. In fact, the performances of vision-based naviga-
tion systems depend on inclination between the trajectory
and the ground [4, 9]. The constraint take the form:

−∞ ≤ ∥Sr(t)∥+ cT r(t) ≤ 0, (18)

γ
max
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Figure 3: Glide-slope constraint.

where

S =

[
0 1 0
0 0 1

]
, (19)

cT = [− tan γmax 0 0] . (20)

Path constraints need to be satisfied at every time instant
during the landing. Pseudospectral techniques allow to
evaluate them discretely. Derivative terms are obtained
by the use of the Chebyshev differentiation matrix.

2.2. Optimization Algorithm

The optimization problem (11) is solved through a mod-
ified version of the compass search method, enhanced in
order to handle also non-linear constraints. First, the op-
timization variables are normalized, in order to give them
the same relative weight in the optimization:

x̃ =
x− xL

xU − xL
⇔ x = x̃(xU − xL) + xL. (21)

Normalized optimization variables can vary between 0
and 1. Then, a feasibility function F (x̃) is created, de-
fined as:

F (x̃) =

NC∑
j=0

1

wFj
max(0, c̃j), (22)

where c̃j are the components of a generalized constraints
vector c̃(x̃), and wF is a vector of weights, in order to nor-
malize different constraints that can have different orders
of magnitude:

c̃(x̃) =

cL − c(x̃)
c(x̃)− cU
0− x̃
x̃− 1

 , wF =

cU − cL
cU − cL
xU − xL

xU − xL

 . (23)

A feasible set of optimization variables x̃ corresponds
to a null value of the feasibility function. On the con-
trary, in case of infeasibility F (x̃) > 0. The optimiza-
tion algorithm operates in two phases. Firstly, an un-
constrained compass search on the function F (x̃) is per-
formed. The search is stopped when a feasible point is
found (F (x̃) = 0), or when the iteration limit is reached.
In this case, the problem is classified as infeasible.
If the fist step is successful the algorithm keeps solving
for the optimum through an unconstrained search on the
modified cost function Φ(x̃), defined as:

Φ(x̃) = f(x̃) + η sgn
(
F (x̃)

)
, (24)
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(a) TLS [0, 0, 0] m (NLS).
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(b) TLS [0,−1000, 0] m.
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(c) TLS [0, 0,−2000] m.
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(d) TLS [0,+2000,+2000] m.

Figure 4: Landing Position Sensitivity to TLS coordinates. Initial dispersion ±25m, ±0.4m s−1 (1σ).

where f(x̃) is the original cost function of the problem
(11), and η = 10100, a number certainly greater than the
maximum value that cost function can assume.

3. LANDING SIMULATION

The guidance algorithm has been tested through a 6DoF
retargeting simulator of a lunar landing, realized in
Matlab R⃝ and Simulink R⃝ environment. The ESA Lunar
Lander mission has been taken as reference scenario [8].
Assumptions on lander architecture are summarized in
Tab. 1.

Table 1: Lander architecture assumptions.

Feature Value

Mass @ 2000m altitude 865 kg
Dry mass mdry 790 kg
Isp 325 s
Imax 1000 kg m2

Tmin 1000N
Tmax 2320N
MCmax 40N m

The simulation starts at 2000m altitude on a nominal
landing trajectory. A vertical terminal descent phase is

supposed to be after the retargeting. Then, target states
for the guidance algorithm are r(tf) = {30, 0, 0} m and
ṙ(tf) = {−1.5, 0, 0} m s−1. A disturbance torque is in-
troduced by thrust misalignment from the spacecraft cen-
ter of mass. Errors in the states passed to the guidance
block are introduced in order to emulate a navigation sys-
tem. Attitude is supposed to be estimated by an Inertial
Measurement Unit (IMU), whose performances are sum-
marized in Tab. 2.
The presence of a vision-based navigation system is as-

Table 2: IMU performance properties.

Property Value UoM

Scale factor 1 ppm
Misalignment Error 170 µrad
Bias Error 0.005 deg/h
ARW noise density 0.005 deg/

√
h

sumed in order to estimate position and speed. This kind
of systems makes use of a radar or laser altimeter to esti-
mate the altitude with which the images taken by cameras
are resized to the proper scale. Since altimeters absolute
error increases with the distance from the ground, the er-
ror in the estimate is modeled as a Gaussian random error
with zero mean and standard deviation varying linearly
with the altitude.
The guidance subsystem recalculates the trajectory when-
ever a retargeting is commanded and anyway every 5 s, in
order to cope with measure dispersions. From the guid-
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(a) TLS [0, 0, 0] m (NLS).
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(b) TLS [0,−1000, 0] m.
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(c) TLS [0, 0,−2000] m.
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(d) TLS [0, 2000, 2000] m.

Figure 5: Landing Velocity Sensitivity to the Target Landing Site coordinates. Initial dispersion ±25m, ±0.4m s−1 (1σ).

ance profile, at every update of the control system, target
quaternions and angular velocities are computed, and ex-
ploited by a PID controller to calculate theoretical control
torques. The attitude is assumed to be actually controlled
by a cluster of chemical thrusters capable to supply a con-
stant torque of ±40N m on every axis. So theoretical
control torques are processed by a PWPF modulator that
commands thrusters firings.
The considered guidance and control systems update rate
is 20Hz.

3.1. Sensitivity to Landing Site

Monte Carlo simulations have been run to verify the sen-
sitivity of the system with respect to the Target Landing
Site (TLS) coordinates. Every simulation considers 100
samples affected by navigation errors; the assumed error
is 25m (1σ) and 0.4m s−1 (1σ) at 2000m altitude, re-
spectively for position and speed along all axes, linearly
decreasing with altitude. Diversions up to ±2000m along
both the horizontal directions from Nominal Landing Site
(NLS) have been considered. Four representative cases of
diversion are presented:

(a) TLS {0, 0, 0}T m (retargeting on NLS);

(b) TLS {0,−1000, 0}T m (Downrange brake);

(c) TLS {0, 0,−2000}T m (Crossrange diversion);

(d) TLS {0,+2000,+2000}T m (max distance tested).

The obtained results are shown in Fig. 4 for the position
and in Fig. 5 for the speed. The landing precision appears
to be independent by the magnitude of the requested di-
version.

3.2. Sensitivity to Navigation Errors

Monte Carlo simulations have been exploited to verify
the sensitivity of the system to the initial navigation dis-
persion. Each simulation considers 100 samples. The
same targeting scenario is considered for all the simula-
tions, with the TLS collocated at [0,+1000,+1000] m
from the Nominal Landing Site. Each simulation has a
different value of initial error standard deviation in the de-
termination of position. Standard deviation (STD) values
of 45, 25 and 10m has been considered. Also a simula-
tion without navigation errors has been performed, in or-
der to determinate the impact of the navigation dispersion
relatively to the accuracy obtained only from the control.
In all the simulations the initial velocity error STD is as-
sumed constant at 0.4m s−1.
Performances obtained are shown in Fig. 6 and in Fig. 7,
respectively for position and speed. Dispersion due to
control is at least one order of magnitude lower than the
one due to navigation. This proves that landing precision
is mainly affected by navigation errors.
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(a) Error STD 45m (1σ).
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(b) Error STD 25m (1σ).
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(c) Error STD 10m (1σ).
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Figure 6: Position Sensitivity to initial Navigation errors. TLS [0,+1000,+1000].

−0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

v
Y
 (Downrange) [m/s]

v Z
 (

C
ro

ss
ra

ng
e)

 [m
/s

]

 

 

TLS
Mean
Shots
1σ
2σ
3σ

(a) Error STD 45m (1σ).

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

v
Y
 (Downrange) [m/s]

v Z
 (

C
ro

ss
ra

ng
e)

 [m
/s

]

 

 

TLS
Mean
Shots
1σ
2σ
3σ
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(c) Error STD 10m (1σ).
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Figure 7: Landing Velocity Sensitivity to Navigation dispersions. TLS [0,+1000,+1000].



3.3. Camera Field of View

A preliminary study on cameras Field of View (FoV) for
navigation and/or hazard detection has been performed.
The smooth attitude profile imposed by the trajectory
polynomial approximation guarantees the absence of sud-
den maneuvers, allowing a continuous landmarks track-
ing. A single camera, pointing towards the roll axis has
been assumed. By way of example, Fig. 8 shows how
the intersection between the camera line of sight and
the ground varies during a representative retargeting, of
[0,+750,−1200] m. The camera pointing depicted into
the graph is taken every 0.5 s, an update rate lower than
the actual camera frame rate, that is considered between
10 and 20Hz [4]. Tracked landmarks pass into the FoV
in a continuous way, allowing relative navigation.

The nominal landing trajectory is designed in order to
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Figure 8: Camera pointing during retargeting.

have the necessary time for hazard mapping before the
first retargeting. But if a second retargeting is required,
during the first maneuver the TLS is required to be in
sight for the time necessary to update the hazard map.
Since the FoV angle considered is between 50 and 70◦

[4], the LS visibility can be considered lost when the an-
gle between the line of sight and the TLS direction is
greater than 25-35◦, depending by the actual HDA sys-
tem architecture.
Fig. 9 shows the trend of this angle during the same ma-
neuver of Fig. 8, and for other two retargetings: a minor
diversion of [0,+150,+150] m and a large retargeting
of [0,+1700,+1600] m. It can be seen that the oscil-
latory movement implied by the maneuver might cause
this loss just after the diversion start. However, the visi-
bility is recovered at lower altitudes, enabling the recre-
ation of the hazard map. This behaviour is obtained in all
the analysed cases. For minor retargetings, the oscillation
magnitude is smaller, and the LS visibility can be main-
tained along the maneuver. Diversions up to ±2000m on
both the horizontal axes have been tested. In diversions
above 1500m, greater oscillations are counterbalanced
by greater time-of-flight, that guarantees more time for
a second retargeting.
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Figure 9: TLS-Sightline angle on different Target Landing
Sites.

If a double retargeting is expected, a change in the retar-
geting strategy, in order to guarantee the necessary visi-
bility, could be considered. One possibility is a two-step
retargeting similar to that suggested in [5]: the first di-
version is commanded at high altitude (2000m or above
if it is possible), pointing towards the vertical onto se-
lected TLS at an intermediate altitude (400-600m). In
this way the system is able to perform, at the end of this
maneuver, a short vertical descent at constant speed, dur-
ing which the hazard map can be updated with more res-
olution. Then, if requested, a second diversion until the
terminal descent phase and the touchdown can be com-
manded. If not needed, the descent can be completed with
a fuel optimal vertical descent, whose solution is known
in close form [7].
Another possible choice is a modification in the hazard
detection system architecture, such as the use of multiple
cameras, or the use of gimbals, in order to increase the
Field of View [9].

4. CONCLUSIONS

The purpose of this work was the development of a re-
targeting algorithm for planetary landing, capable of up-
dating and correcting a landing trajectory almost to the
touchdown. A classical polynomial approach has been ex-
tended, in order to improve flexibility in the landing site
choice, and to consider additional non linear constraints
during the descent. The resulting algorithm has light com-
putational weight, and maintains a high divert capability
even with the use of a basic optimization algorithm such
as compass search.
The functionality and the robustness of the algorithm
have been tested by applying it in a simulation of a com-
plete retargeting. The guidance scheme has been coupled
with an attitude controller, and perturbed states have been
exploited in order to emulate navigation system errors. In
order to identify possible sources of errors in placing the
spacecraft on target, a dispersion analysis has been per-
formed, and it has been observed that navigation errors
play a major role in determining the accuracy at touch-
down.
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