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ABSTRACT

This paper presents a novel application of machine learn-
ing techniques for Mars rock detection using multispec-
tral data. The feature set contains spectral data captured
from the NASA MER Pancam instruments. The slope
features, PCA features, statistic features and features in
different colour space derived from the raw multispectral
data are also added to the full feature set in order to en-
large the searching range of optimized features. Fuzzy-
rough feature selection (FRFS) is employed to generate
good feature sets with lower dimension. Some machine
learning classification methods (1NN, 5NN, Bayes, S-
MO and Dtree) and cluster method (FCM) are utilized
to classify the rock from soil using the selected feature.
The experimental results show that the FRFS can produce
a low-dimensional feature set with improved classifying
and clustering results thereby enhancing the efficacy and
accuracy of rock detection.

Key words: Mars image classification; FRFS; Multispec-
tral.

1. INTRODUCTION

Nowadays, the rovers on Mars are equipped with a num-
ber of instruments, and hence they are able to collect a
considerable quantity of scientific data. These data are
transmitted back to Earth where scientists can analyse the
data to gain scientific information. In addition, scientists
send the command sequence to Mars to control the rover-
s after analysing these data. However the transmitting
bandwidth between Mars and Earth is limited. Therefore,
to enhance the efficiency, applying automatic technology
for Mars exploration is appropriate.

In the variety of data, image data are numerous and infor-
mative. For example, Curiosity, the lastest rover which
landed on Mars on August 2012, carries 17 camera in-
struments which are eight HazCams, four NavCams, two
MastCams (analogous to Pancam), a ChemCam, MAR-
DI and MAHLI. If the automated analysis of Mars im-
ages was implemented, the transmission quantity could
be significantly reduced.

Panoramic Camera (Pancam, in Curiosity called Mast-
Cam) is one of most important image capture instru-
ments. The Pancam system of the Mars Exploration
Rover Mission (MER, including two rovers: Spirit and
Opportunity) is a multispectral, stereoscopic, panoramic
system consisting of two digital cameras capable of ob-
taining color images (synthesized using multispectral da-
ta) to constrain the mineralogic, photometric, and phys-
ical properties of surface materials [1]. As to the forth-
coming ESA ExoMars project, the Panoramic Camera
(PanCam) imaging system is also designed to have the
ability to obtain high-resolution colour and wide angle
multispectral stereoscopic panoramic images [2]. The
multispectral data accessed from Pancam instruments
provides abundant information for autonomous science
analysis.

The major scientific objectives of the Pancam images
are the identification of surface targets such as outcrop-
s, ridges and troughs and the variety of rocks. Thereinto,
one of key elements is to detect rocks from the captured
images. However, rock objects exhibit diverse morpholo-
gies, colours and textures on Mars. They are also often
covered in dust or partially embedded in the terrain there-
by increasing the difficulty of identification. Some sim-
ilar rocks may look different with variable coatings and
dust mantles. A rock may show various appearances un-
der different angles of sunlight. Shadows may lead to a
negative effect for rock detection as well.

Although the reasons above weaken the relationship be-
tween some features and the essence of a rock, we be-
lieve that there are some features that exist to discrimi-
nate rocks from soil. There are many features applied in
rock detection such as edge-based features [3, 4], mor-
phological features [5] and statistics-based features [6].
Here we propose that the multispectral data captured by a
Pancam instrument and the derived features could be use
to characterise a rock. However, not all features facili-
tate rock detection. Some irrelevant and random features
will reduce the efficiency and even decrease the accura-
cy of classification. Thus, we propose an approach that
uses the raw multispectral data to produce many features
from where we can select the most effective features to
perform rock detection.



2. GENERATION AND SELECTION OF FEA-
TURES

We downloaded the MER Spirit multispectral image da-
ta in .img format from the NASA planetary data system
(PDS) archives to generate the features for selecting. The
data can be represented as an image sized of 512 × 512
pixels. For the feature selection method, we adopted a
fuzzy-rough feature selection algorithm based on fuzzy
similarity relations.

2.1. Raw Data

Each Pancam camera from MER is equipped with an
eight position filter wheel, providing the multispectral
imaging capabilities. The detailed wavelength and band
pass of each filter is shown in Table 1. Among all the
16 filters, the filters L2-L7 and R1-R7 are designed for
the geology purposes. In other words, the spectral data
captured by these filters can provide information relating
to Mars geology. Thus by analysing these data, we can
find the distinction between the rocks and soil (regolith).
Some instances of spectral data are illustrated in Figure
1.

Table 1. MER Pancam Characteristics
Name Wavelength (nm) Band Pass (nm)

Left Camera
L1 739 338
L2 753 20
L3 673 16
L4 601 17
L5 535 20
L6 482 30
L7 432 32
L8 440 20

Right Camera
R1 436 37
R2 754 20
R3 803 20
R4 864 17
R5 904 26
R6 934 25
R7 1009 38
R8 880 20

In Figure 1, it can be seen that the spectral value of rock
and soil varies slightly when the wavelength is greater
than 700 nm. Thus, to simplify the data generating pro-
cess, we chose multispectral data only from the left ge-
ology cameras (i.e. L2-L7, the spectral range from 432
nm to 753 nm). As to the type of these data, we used the
RAD data (which can be radiometrically-corrected cal-
ibrated to absolute radiance unit), and then converted to
R* (R-star) data. R* was defined as “the brightness of the
surface divided by the brightness of an RT (Radiometric
Calibration Target) scaled to its equivalent Lambert re-
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Figure 1. Some examples of multispectral curves cap-
tured by the Spirit Pancam. Red curves represent rocks,
blue curves represent soils. Detailed information can be
found in [7].

flectance” [8]. It can be calculated as following:

Rstar = DN ∗RSF +RO

In which, DN is the digital number value (intensity) of
the image data, RSF is the radiance scaling factor and
RO is the radiance offset (All these parameters are stored
in the .img files). R* data are useful for classification by
the reason that they allow for direct comparison between
spectra taken at different times of day.

2.2. Feature Generating

The original data did not consider the intensity and direc-
tion of the light so that they can hardly become the opti-
mized feature set for classification. A rock in frontlight
may exhibit a different appearance when it is in backlight.
Hence we made some preliminary features from the orig-
inal data in order to search the optimized feature set to
recognize the rocks from soil.

Firstly we extracted the slope features between each ad-
jacent sample spectrum. For example, the slope between
432nm and 482nm is (R ∗482 −R∗432)/(482 − 432).
Because all of the features should be normalized be-
fore classification, the function was simplified to (R ∗482
−R∗423). Finally 5 features of slope were obtained.



Table 2. Description of each feature
Feature No. Meaning
1-6 Original spectral radiance data
7-11 Slope between 2 adjacent spetra
12-13 Mean and variance of original data
14-15 The PCA first 2 components
16-18 CIEXYZ
19-21 RGB
22-24 CIELab

In addition, we computed the mean value and variance
and regarded them as 2 features. The mean value reflects
the intensity of illumination, and the variance reflects the
fluctuation of spectral data to some degree.

Principal component analysis (PCA) which is found to
be a useful tool for interpreting compositional variation
has been applied to MER datasets [10]. In our current
work, all 6 original R* data were subjected to PCA to
find the components including more information. Here
we picked the first 2 components from PCA as features.
The cumulative energy of these 2 components was more
than 99.9%.

Additionally, we converted the multispectral data to three
different colour spaces: CIEXYZ, RGB and CIELab.
CIEXYZ can reflect the light tristimulus values to the
human eye. CIELab represents lightness and colour in-
formation in different channels independently. RGB is
the most popular space to synthesize colour image. Each
of these colour spaces contains three channels, and hence
we obtained 9 features.

From the above feature generating methods, we obtained
24 features in total. All features were normalized to range
from 0 to 1 for classification. An example of all the
normalized features represented by grey-scale images is
shown in Figure 2.

For easy cross-referencing, Table 2 lists the reference
numbers of the features that may be selected.

2.3. Fuzzy-Rough Feature Selection

After we established the full feature set containing
24 features, a Fuzzy-Rough feature selection (FRFS)
method [9] was applied to find a good feature subset for
classification. It has also be used in the work of McMerdo
image classification [6]. This FRFS method uses a fuzzy
similarity measure to calculate the degree of dependency.
The subsets with a high degree of dependency perform
better classification than those with low dependency.

The QuickRUDUCT algorithm has been applied to ac-
celerate the progress of feature selection. This algorithm
chooses the feature which increases mostly the dependen-
cy of the current subset and adds the feature into it, and
thus the subset added by this feature has a higher depen-
dency than the previous one. The algorithm will termi-

nate when the addition of any remaining feature does not
increase the dependency.

For the FRFS parameter of our work, the Lukasiewicz
t-norm and implicator were taken as fuzzy connectives.
The similarity relation function used is as follows, in
which σa is the variance of feature a.

µRa
= max(min

(a(y)− (a(x)− σa)

a(x)− (a(x)− σa)
,

(a(x) + σa)− a(y)

(a(x) + σa)− a(x)
,
)
, 0)

3. EXPERIMENTS AND RESULTS

We conducted experiments using the MERA (Spirit
rover) multispectral data of Sols 601-602. The purpose
of our experiment focused upon the rock and soil detec-
tion. The detailed experimental results and analysis are
presented below.

3.1. Feature Selection and Classification in Local
Image

Five classic machine learning algorithms were applied to
test the performance of our approach. These were: 1-
nearest neighbors algorithm (1NN), 5-nearest neighbors
algorithm (5NN), naive bayes algorithm (Bayes), deci-
sion tree J48 algorithm (Dtree) and SVM by Sequen-
tial Minimal Optimization (SMO). In every image (multi-
spectral data), 50 pixel points of rock and soil were select-
ed into the training set for feature selection respectively.
The feature selection and classification process of one im-
age were separate to the process of the other images. That
is to say, an image only selects “local” feature(s) from it-
self and for the classification of itself. Some classified
results with the related selected features are illustrated in
Figure 3. From visual inspection, it can be seen in the fig-
ure that the 5NN, Bayes and SMO classifier gained better
results than the Dtree and 1NN.

Moreover, to prove that the features selected by our
method can classify the rock and soil effectively and ef-
ficiently, we compared the results between the classifica-
tions using different features (selected features, full fea-
tures (1-24), origin features(1-6) and some random fea-
tures). The random feature sets have the same number
of features as the selected feature sets. Since the results
using different classifiers are similar, we only show the
classified results by Bayes in Figure 4. In the comparison
between the classification results using different feature
sets, it can be seen that classified results using the se-
lected feature set are approximate to the full and original
feature sets, but the amount of features used are reduced.
In addition, as to the random feature sets, which contain
the same number of features to our features selected by
FRFS, cannot obtain results as accurate as the one using
our selected feature set.
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Figure 2. An example of all 24 feature of a image (see Table 2).

3.2. Global Classifier for Rock Detection in a Scene

In the classification above, although the method provides
a competent performance, we focus only on the classifi-
cation of an image itself. It is of lesser significance to
reduce the quantity of transmission in the respect that we
have to transmit images to Earth for generating a training
set. Therefore, we have attempted to establish a trained
classifier for a certain scene on Mars. Essentially, we
need to find a “global” feature set for the classification
problem.

To build the global classifier with less features, we picked
50 pixel points of rock and 50 pixel points of soil from 5
different multispectral data images respectively. Thus we
produced a training set which had 250 instances of rock
and 250 instances of soil. We applied FRFS to the train-
ing set with 24 features to find the most effective feature
set for classifying. We obtained a reduced feature set that
contains feature 1, 4, 7, 10, 11, 13, 15 and 23. Then
we used the training set containing only these features to
establish the global classifier to detect rock. The Bayes
classified results of images from which we picked pixel
points as training set are shown in Figure 5.

In addition, we tested the global classifier on Martian im-
ages in similar scenes from which we have not extracted
points to generate features and obtained qualified results.
A result example is shown in Figure 6.

 

Figure 6. A classified result of an image from which we
have not extracted pixel points for training.

3.3. Cluster Results by Selected Feature

Besides the classification approaches used here, the is-
sue of detecting rock from soil can be solved by cluster
methods. The 2 class clusterer can replace a classifier to
deal with the problem of a faster computative speed and
without the need for training sets. Thus we used fuzzy
C-means (FCM) to cluster the data to verify if FRFS can
select suitable feature(s) for clustering. Both local and
global selected feature sets were used for clustering. In
comparison, the clustering results using full features, o-
riginal features and some random features are given. The
comparative results are shown in Figure 7.

It is clear to see that the results of the feature set selected
by our algorithm, whether global features or local fea-
tures, gained an improved performance. The rocks cov-
ered by dust can be also clustered into the class of rock
using our selected features, while the rocks in the clus-
tered results using other feature sets are incomplete. We
found that the clustering result using selected features
performed even better than the full feature sets. It is
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Figure 3. The selected features and the classification results by these features using different classification algorithms.



 

Figure 5. Global classification results.

proven that the FRFS is capable not only to reduce the
number of features but also to remove the random and
unrelated features which may disturb the cluster result.

4. CONCLUSION

In this paper, we have used Martian multispectral data
captured by MER Spirit to generate several multispectral-
derived features. The FRFS algorithm was applied in
seeking suitable and optimized feature set for classifying
and clustering. The results showed that our method can
deal with problem of the rock detection effectively. In fu-
ture work, other features such as band depth and red/blue
ratio [10] will also be introduced into our method in order
to find the most optimized feature subset thereby being
adapted to more complicated environments.
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Figure 4. The comparison between selected feature sub-
set to other feature sets.
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Figure 7. The clustering results using different feature
sets.


