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ABSTRACT

SPARTAN (SPAring Robotics Technologies for Au-
tonomous Navigation) and its extension SEXTANT
(Spartan EXTension Activity - Not Tendered) are two
robotic exploration technology development activities
funded by the European Space Agency (ESA). They tar-
get the development of computer vision algorithms for
visual navigation that will be suitable for use by Martian
rovers. This paper summarizes our on-going efforts in
the context of SEXTANT for developing dependable and
efficient solutions for two key ingredients of visual navi-
gation, namely terrain mapping and localization.

Key words: Terrain Mapping, Visual Odometry, Visual
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1. INTRODUCTION

Planetary exploration scenarios require that the optimal
route between two far-away locations is computed in sev-
eral iterations and with multiple intermediate waypoints
since perfect knowledge of the environment is generally
not available. Thus, a rover is asked to navigate in an
unknown terrain several hundreds of meters away from
a starting position. Therefore, it must perceive its sur-
roundings, determine the best trajectory and execute it
until reaching the desired target whilst maintaining an es-
timate of its current position. At each navigation cycle,
sizeable volumes of data need to be processed with as
little computing power, memory footprint and communi-
cation overhead as possible. Two key elements of visual
navigation are terrain mapping and localization.

Terrain mapping concerns the use of several stereo im-
ages for incrementally producing a three-dimensional
map of the environment that will be utilized for obstacle
avoidance and path planning. Mapping makes extensive
use of dense stereo matching and subsequent merging
of partial maps. Localization, on the other hand, refers
to the use of imagery for updating a feature-based map,
whilst maintaining correct position estimates within lo-
cally maintained sub-maps. Localization resorts to visual

simultaneous localization and mapping (VSLAM) tech-
niques, using as priors motion estimates computed by vi-
sual odometry. This is because commonly used sensory
inputs for localisation priors are either not available in
extraterrestrial environments (e.g. GPS) or are prone to
highly erroneous output (e.g. IMU).

Visual Odometry (VO) refers to the process of estimating
the egomotion (i.e. position and orientation) of a vehi-
cle by analyzing onboard-camera images [1]. In broad
terms, solutions to VO need to address three distinct
sub-problems, namely feature detection, feature match-
ing and motion estimation. Feature detection concerns
the automatic extraction of sparse point features from a
general scene, feature matching involves tracking them
across a set of successive image frames and motion es-
timation regards the recovery of the relative pose of the
employed camera(s) as well some partial scene 3D in-
formation using structure from motion algorithms. With
respect to planetary exploration, most approaches use
stereo or monocular cameras [2, 3, 4]. However, monoc-
ular cameras are not the most popular choice due to the
well-known depth/scale ambiguity that prevents the re-
covery of absolute scale [5, 6]. Use of stereo cameras, on
the other hand, permits the recovery of truly Euclidean
3D pose and scene structure and entails less need for
keyframe selection. VO operates incrementally by com-
puting the motion between consecutive frames and inte-
grating it over time [1].

After extracting salient and repeatable feature points (e.g.
Harris corners, MSERs) and subsequent descriptors (e.g.
SIFT, SURF) from images, features are matched accord-
ing to some similarity measure. However, matched fea-
tures are usually contaminated by outliers due to erro-
neous data association caused by environmental phenom-
ena such as image noise, occlusions, blur, clutter or view-
point and illumination changes. How these outliers are
removed, is of utmost importance for the quality of the
motion estimates [7]. Recent field trials on Mars ana-
logue environments by Bakambu et al. [8], have indi-
cated that, on average, image regions have greater sta-
bility than local corner features. In a number of test site
environments (e.g. sand-dunes, boulders, mudflat), max-
imally stable extremal regions (MSERs) outperform Har-
ris and SIFT local features. However, MSERs correspond



to blobs of high contrast with respect to their surround-
ings, thus most past works use instead local features that
respond to strongly textured areas in an image [9, 10, 11].
Furthermore, Tong and Barfoot [7] indicate that local fea-
ture descriptors (e.g. SIFT, SURF) provide increased per-
formance in outlier rejection for motion estimation.

This paper focuses predominantly on the mapping and
localization aspect via dense stereo and visual odometry
estimation, respectively. By critically reviewing the pub-
lished literature, we have selected mapping and localiza-
tion building blocks whose performance characteristics
fulfill the application requirements while at the same time
are amenable to efficient implementations. The remain-
der of the paper is organized as follows. Sect. 2 presents
our approach for dense stereo matching. Sect. 3 discusses
the point features employed for representing image mo-
tion and Sect. 4 details their use for obtaining sparse 3D
structure. Sect. 5 explains the estimation of egomotion
from 2D image projections and reconstructed 3D points.
Experimental results based on the use of synthetic data
are reported in Sect. 6. The paper is concluded in Sect. 7.

2. DENSE 3D RECONSTRUCTION

Stereo matching is a fundamental problem in computer
vision that despite having been the subject of intense
study for more than thirty years, still remains an active
area of research. The archetypal stereo problem is re-
stricted to the use of only two images, a case also known
as binocular stereo. Binocular stereo aims to establish
pixel-wise, or otherwise dense, correspondences across
the images of a stereo pair. Capitalizing on rectified
epipolar geometry, this search for correspondence is re-
stricted to corresponding scanlines in the two images.
Binocular stereo algorithms can be classified as local or
global. In local methods, the disparity computation at
a given point depends only on intensity values within
a small, local window. Global methods make explicit
smoothness assumptions that involve solving a costly op-
timization problem to disambiguate potential matches.
Compared to global methods, local ones exhibit only mi-
nor inaccuracies, are less computationally intensive and
exhibit easily exploitable data parallelism. Therefore,
they are often the preferred solution for robotic applica-
tions. A comprehensive review of binocular stereo ap-
proaches can be found in [12].

To obtain dense correspondences, the plane sweeping lo-
cal stereo algorithm has been adopted in this work [13].
Plane sweeping is a general re-sampling algorithm that
performs multi-image stereo matching with arbitrary
camera configurations. It works by sweeping a set of
hypothetical planes at increasing distances through the
scene and measuring the photoconsistency of the syn-
thetic images generated by back-projecting the input im-
ages onto these planes. Back-projection on the sweep-
ing plane is achieved with the aid of the homographies
it induces and does not require prior rectification of im-
ages. Photoconsistency is evaluated using normalized

cross correlation (NCC). NCC can be efficiently com-
puted by precomputing sums of squared and pixel-wise
products of back-projected image intensities over the cor-
relation kernel. The range of distances covered by the
sweeping plane are set to bracket the working volume.
Parabola fitting on the correlation profiles defined as the
depth ranges over acceptable values is used to calculate
disparities with subpixel accuracy.

Plane sweeping is attractive since it is amenable to par-
allel (i.e. GPU) implementation that can achieve real-
time performance [14]. Besides, it has low memory re-
quirements, which can become a critical issue on robotic
platforms. Owing to these reasons, parallelized imple-
mentations of plane sweeping have been extensively em-
ployed in the real-time reconstruction of large-scale en-
vironments from binocular pairs mounted on mobile ve-
hicles [15]. The accuracy of plane sweeping can be in-
creased when the orientation of major structures in the
scene, such as the ground plane, can be assumed known.
Furthermore, its computational complexity can be di-
rectly modulated with respect to the precision of the ob-
tained depth map, both regarding pixel resolution as well
as depth precision. In this manner, it is possible to dedi-
cate shorter computational times for a coarser reconstruc-
tion of the scene, thus obtaining an algorithm with any-
time characteristics (an algorithm is said to be anytime
when it can return a valid solution to a problem even if it
is stopped before it normally ends). This feature is some-
thing which is not trivially feasible with other local stereo
approaches.

3. FEATURE EXTRACTION AND MATCHING

During the past decade, significant progress has been
made in the development of local invariant features.
These features permit the detection of local image struc-
tures in a repeatable fashion and their encoding in a way
invariant to various image transformations. However, de-
spite their robustness, local feature detectors often en-
tail considerable computational overhead. This seriously
limits their applicability on planetary rovers, due to the
limited computational capacity of the later. On the other
hand, since image acquisition is frequent, the distortions
between successive images are not expected to be large
and, therefore, can be accommodated by simpler and
hence faster to compute interest point detectors.

In light of these considerations, features are detected in
this work with the Harris corner detector [16]. Harris,
also known as Plessey, is a popular interest point detec-
tor that is based on the local auto-correlation function
(i.e. intensity variation) of an image. The local auto-
correlation function measures the local changes of the
image using patches shifted by a small amount in dif-
ferent directions around a point. The shifted patches are
approximated by a Taylor expansion truncated to the first
order terms, which gives rise to a 2 X 2 matrix known
as the structure tensor. The eigenvalues of this matrix
capture the intensity structure of a point’s local neigh-



borhood. More specifically, when both eigenvalues are
larger than some threshold, a corner is present in the im-
age. This is because the eigenvalues are proportional to
the principal curvatures of the image surface, therefore
shifts in any direction result in significant change. Var-
ious corner strength (i.e. “cornerness”) measures have
been proposed, avoiding the costly explicit computation
of the eigenvalues [17].

The Harris detector is generally considered as the best
operator available with respect to detecting true corners.
This is because it behaves very well with respect to detec-
tion and has a high repeatability rate. Its implementation
involves separable 2D convolutions, therefore it can eas-
ily be implemented on hardware. To improve the spatial
distribution of the detected Harris corners, the adaptive
non-maximal suppression (ANMS) scheme of Brown et
al. [18] has been employed, efficiently implemented as
suggested in [19]. This scheme retains only those corners
whose strength is locally maximal (i.e., in a neighbour-
hood of radius r pixels).

For each feature point, the local image appearance in
its vicinity is captured using the BRIEF descriptor [20].
BRIEF (short for Binary Robust Independent Elementary
Features) is an efficient feature point descriptor based
on binary strings extracted directly from image patches.
BRIEF is based on performing several pair-wise inten-
sity comparisons on an image patch and encoding the
comparison outcomes using a bit vector. It was inspired
by earlier work that achieved effective recognition of
patches seen from different viewpoints by using a rela-
tively small number of pair-wise intensity comparisons
to train randomized classification trees. BRIEF abandons
the randomized tree and simply creates a bit vector from
the test responses. The spatial locations of the pixels
compared by BRIEF in each patch are selected at ran-
dom.

BRIEF descriptors are compared using the Hamming dis-
tance, which counts the number of positions at which the
corresponding bit strings differ. The Hamming distance
of two binary strings a and b is equal to the number of
ones (i.e. population count) in @ XOR b, which can be
computed very efficiently [21]. Compared to more elab-
orate descriptors such as SIFT [22], BRIEF is less dis-
criminant but much faster to compute and match. Fur-
thermore, it is robust to lighting changes, blur, and per-
spective distortion. Despite not being designed to be ro-
tationally invariant, BRIEF can tolerate small amounts of
in-plane rotation. A truly rotation invariant extension of
BRIEF is proposed in [23]. The stability and repeatabil-
ity of BRIEF descriptors is increased by smoothing the
image patches with a Gaussian of o = 1.5 prior to their
computation. In our implementation, image patches were
53 x 53 and 512 binary tests were performed in each,
giving rise to BRIEF descriptors that were 64 bytes long.

Prior to estimating 3D motion, 2D motion of feature
points has to be determined by matching them across im-
ages. Matching of BRIEF descriptors is performed us-
ing the distance ratio test originally proposed for match-

ing SIFT descriptors [22], which proceeds as follows.
Given an image pair, matches are identified by finding
the two nearest neighbors of each keypoint from the first
image among those in the second, and only accepting a
match if the distance to the closest neighbor is less than
a fixed threshold of that to the second closest neighbor.
This threshold can be adjusted to leniently establish more
matches, or conservatively select the most reliable ones.
To make the matching more discriminative, a maximum
disparity and epipolar line distance limit should be sat-
isfied in addition to the distance ratio being sufficiently
small.

At regular time intervals, stereo image pairs are acquired.
The procedure described above can be used to establish
point correspondences between images within the same
stereo pair or between images from stereo pairs taken
at consecutive points in time. In the following, such
correspondences will be referred as spatial and temporal
matches, respectively.

4. SPARSE 3D RECONSTRUCTION

Feature detection and matching between the two stereo
views captured at a certain moment in time yields a set of
spatial matches. Knowledge of the stereo calibration pa-
rameters, allows the estimation via triangulation of the
3D points giving rise to these spatial matches. Trian-
gulation recovers 3D points as the intersections of back-
projected rays defined by the matching image projections
and the camera centers. Since there is no guarantee that
back-projected rays will actually intersect in space (i.e.
they might be skew), matched image points should be re-
fined prior to triangulation so as to exactly satisfy the un-
derlying epipolar geometry. This is achieved by comput-
ing the points on the epipolar lines that are closest to the
original ones. The computation involves minimizing the
distances of points to epipolar lines with a non-iterative
scheme that boils down to solving a sixth degree poly-
nomial [24]. Since this is rather costly in terms of com-
putation, we employ an approximate but much cheaper
alternative relying on the Sampson approximation of the
distance function [6, 25].

As the rover moves, temporal matches between the left
images of the stereo pairs acquired at times ¢ and ¢ +
1 induce correspondences among the known 3D points
reconstructed in stereo at time ¢ and their 2D projections
at time ¢ + 1. These correspondences are illustrated in
Fig. 1 and suffice to estimate the relative motion of the
stereo rig between times ¢ and ¢ + 1, as will be detailed
in the following section.

5. POSE ESTIMATION

Pose estimation concerns determining the position and
orientation of a camera given its intrinsics and a set of n
correspondences between known 3D points and their 2D



Figure 1: Establishment of 2D-3D correspondences for
a moving stereo rig. Projection rays are shown in blue,
spatial matches are indicated with green arrows and tem-
poral matches with red. Pose estimation relies on the 3D
points reconstructed at time ¢ and their image projections
at time ¢ + 1.

image projections. This problem, also known as camera
resectioning or the Perspective-n-Point (PnP) problem,
has received much attention due to is wide applicability
in various domains. PnP is typically solved using non-
iterative approaches that involve small, fixed-size sets of
3D-2D correspondences. For example, the basic case for
triplets (n = 3 thus known as the P3P problem), was first
studied in [26] whereas other solutions were later pro-
posed in [27, 28]. P3P is known to admit up to four dif-
ferent solutions, whereas in practice it usually has just
two. As a result, a fourth point is used in practice for
disambiguation. Minimal solutions to PnP are particu-
larly important for estimating pose in a robust estimation
framework, as the cardinality of each random sample is
directly related to the total number of samples that need
to be drawn in order to find a solution with acceptable
confidence. On the other hand, being unable to combine
more than the minimal number of correspondences, min-
imal solutions ignore much of the redundancy present in
the data.

5.1. Monocular robust pose estimation with non-
linear refinement

This section describes in more detail our approach for
pose estimation from a single image. Starting with
a set of 2D-3D point correspondences, a preliminary
pose estimate is computed first and then refined iter-
atively. This is achieved by embedding a P3P solver
into a RANSAC [27] framework that uses the MSAC re-
descending cost function for hypothesis scoring [29]. Ap-
plied to the problem of pose estimation, RANSAC repet-
itively draws random quadruples of points and uses one
triple with the P3P solver of [26] and the fourth point
for verification to obtain a pose estimate. The best scor-

ing pose hypothesis is retained as RANSAC’s outcome
and used to classify correspondences into inliers and out-
liers. By minimizing the reprojection error pertaining
to all inliers, the pose computed by RANSAC is next
refined to take into account more than three correspon-
dences. Since it involves a non-linear objective func-
tion, this minimization is carried out iteratively with the
Levenberg-Marquardt (L-M) algorithm [30], as will be
explained shortly.

Denoting by K the 3 x 3 intrinsic calibration matrix and
n corresponding 3D-2D points by M; and m;, the pose
computed with RANSAC is refined by using it as a start-
ing point to minimize the cumulative image reprojection
error defined as

min Y d(K - [R(r)[£] - M; — mp)", ()
=1

where t and R(r) are respectively the sought translation
and rotation matrix parameterized using the Rodrigues
rotation vector r, K - [R(r) | t] - M; is the predicted pro-
jection on the image of the homogeneous point M; and
d(x,y) denotes the reprojection error, i.e. the Euclidean
distance between the image points represented by vectors
x and y. The Jacobians required by L-M were provided
analytically by performing symbolic differentiation of the
objective function in Maple and automatically generating
source code for their computation. The formulation in (1)
assumes that no gross outliers (i.e. mismatched) points
exist among the employed data. This is because the em-
ployed squared distance allows a single very erroneous
observation to have a devastating effect on the total re-
projection error and hence to its minimizer. In practice
it is very difficult to guarantee the absence of outliers,
therefore the non-linear refinement should be applied af-
ter RANSAC to ensure that the influence of outliers is
mitigated.

5.2. Binocular pose refinement

Estimating the pose as described in Sect. 5.1 employs a
single image. To improve accuracy with little additional
overhead, a second image can be employed and the esti-
mation can be extended to the binocular case by combin-
ing the reprojection error in two images. More specifi-
cally, assuming that two calibrated cameras are available,
monocular pose estimation is carried out independently
for each image as in Sect. 5.1. Knowledge of the camera
extrinsic calibration parameters allows the pose of one of
the cameras (e.g. right) to be related to that of the other
(e.g. left). Indeed, if the pose of the left camera is defined
by R and t, the pose of the right camera equals RsR and
Rt + t,, where Rg and tg correspond to the pose of the
right camera with respect to the left. Assuming a rigid
stereo rig, Rg and tg remain constant and can be esti-
mated offline via extrinsic calibration. The most plausi-
ble left camera pose is determined via the minimization
of the binocular reprojection error that consists of two ad-
ditive terms, one for each image. Denoting the intrinsics



%

Figure 2: The first two frames from the simulated stereo-
scopic sequence. Image courtesy of Marcos Avilés,
GMV.

for the left and right images by K* and K, the binoc-
ular reprojection error for n corresponding points in the
left image and m in the right is defined as:

2

min (Z dK" - [R(r) [t] - M; — m]) + 2)

r,t
D d(K" - [RR() [ Ryt + £] - M, — m] )2> |
j=1

where t and R(r) are the sought translation and rotation,
K% - [R(r)|t] - M; is the projection of homogeneous
point M in the left image, K - [R;R(r) | Rst + t] -
M is the projection of homogeneous point M; in the
right image and m}", m} are the 2D points corresponding
to M; and M, in the left and right images, respectively.
The minimization in Eq. (2) is performed with the L-M
algorithm, employing only the inliers of the monocular
estimations to ensure resilience to outliers.

It is noted that (2) circumvents the error-prone recon-
struction of points via triangulation and does not limit the
baseline of the two views nor calls for sparse feature or
3D point matching. It can also be extended to an arbitrary
number of cameras. One possibility for initializing the
minimization of (2) is to start it from the monocular pose
computed for the left camera. However, this initializa-
tion does not treat images symmetrically as it gives more
importance to the left image. Therefore, if the pose with
respect to the left camera is erroneous, there is a risk of
the binocular refinement also converging to a suboptimal
solution. To remedy this, the refinement scheme is ex-
tended by also using the right image as reference and re-
fining pose in it using both cameras, assuming a constant
transformation from the left to the right camera. Then,
the pose yielding the smaller overall binocular reprojec-
tion error is selected as the most accurate one.

6. EXPERIMENTAL RESULTS

The accuracy of the VO pipeline presented in Sections 3-
5 was evaluated with the aid of a simulated stereoscopic
sequence for which the ground truth egomotion is pre-
cisely known. Towards this end, a sequence of synthetic

images with a resolution of 512 x 384 pixels and a field
of view of 66° x 52° was employed. The first stereo
pair of this sequence is shown in Fig. 2. The stereo
system had a baseline of 12 ¢m and moved in a suffi-
ciently textured simulated environment with a speed of
6 cm per frame. The motion was predominantly in the
forward direction combined with a shallow turn to the
right. In the following, HARRIS+BRIEF will refer to
Harris corners coupled with BRIEF descriptors. More-
over, due to the fact that SIFT features and descriptors
comprise a very popular combination for feature extrac-
tion and matching [31], we have chosen to include the
SIFT+SIFT detector/descriptor combination in the com-
parison. By doing so, we can directly quantify the impact
on performance of a more powerful (but also more com-
putationally expensive) combination. To demonstrate the
improvements brought about by the binocular pose es-
timation of Sect. 5.2, HARRIS+BRIEF was also tested
with the monocular pose estimation scheme of Sect. 5.1.

For each detector/descriptor and pose estimation choice,
the camera motion was estimated for 363 stereo frames.
This number of frames corresponds to a total travelled
distance slightly less than 22 m and a change in orienta-
tion of about 9.5 ° degrees. Since the remaining parame-
ters involved in pose estimation were kept unchanged in
all cases, all observed differences in performance should
be attributed to the different detector/descriptor and pose
estimation algorithm choices.

For each stereo pair, the incremental motion with respect
to its previous pair was estimated and then transformed to
the world coordinate system which was taken to coincide
with that of the left camera in the first stereo pair. Given
an estimated rotation R and translation f, the error with
respect to the true motion R, t consists of a translational
and rotational component, defined respectively as

trace(R’lﬁ) -1
2

|t —t||,  arccos(

) 3

Thus, the translational error is the Euclidean distance be-
tween translation vectors, whereas the rotation error cor-
responds to the amount of rotation about a unit vector that

transfers R to R.

Figures 3a and 3b illustrate respectively the transla-
tional and rotational errors pertaining to the binocular and
monocular variants of HARRIS+BRIEF as well as to the
binocular SIFT+SIFT. As can be clearly seen from them,
binocular pose estimation with the HARRIS+BRIEF de-
tector/descriptor combination comes at the cost of re-
duced accuracy compared to SIFT+SIFT. On the other
hand, HARRIS+BRIEF has considerably lower compu-
tational requirements (e.g. it is about 32 times faster than
SIFT+SIFT in our C code) and is amenable to efficient
implementation for real-time performance, which makes
it attractive for use in VO estimation. For example, our
implementation of binocular VO with HARRIS+BRIEF
runs at 4 fps on an Intel Core 3GHz without any special
hardware optimizations (e.g. SSE). Furthermore, HAR-
RIS+BRIEF yields a relative translational error that is
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Figure 3: Translational and rotational errors for the motion estimated with monocular HARRIS+BRIEF and binocular
HARRIS+BRIEF & SIFT+SIFT. The well-known drift due to error accumulation over time is evident.

still less than 2%. It should also be noted that the er-
rors for the binocular HARRIS+BRIEF are much lower
compared to those for the monocular HARRIS+BRIEF
combination, sharply exposing the improvements in ac-
curacy gained by the binocular pose estimation scheme.
It is stressed that all reported errors correspond to the raw
output of VO, i.e. no attempt was made to temporally
smooth the motion estimates with windowed bundle ad-
justment or similar procedure.

Sample dense reconstruction results from the application
of plane sweeping with 101 depth planes and a 15 x 15
correlation kernel to the images of Fig. 2 are shown in
Fig. 4.

7. CONCLUSION

The paper has presented our on-going efforts for vision-
based mapping and localization solutions for use by Mar-
tian rovers. Future work will address the merging of par-
tial dense reconstructions into larger environment repre-
sentations and the incorporation of VO outputs as priors
in a visual simultaneous localization and mapping (vS-
LAM) framework.
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