Clean Space
A new cross-cutting initiative of ESA

The Clean Space Team
15/04/2013
Index

Introduction

Clean Space
 Branch 3 Space debris mitigation
 Branch 4 Space debris remediation

Implementation

Conclusions
Introduction

Environmental concerns lead to:
- New legislations (REACH, RoHS, LOS)
- Competitive advantage due to green technologies
- Pressure on the space industry (risk of supply chain disruptions; requests from customers, operator clients, employees)

Concerns on the sustainability of the **exploitation of space**:
- Risk due to space debris
- News headlines worldwide (impact on the image of the space sector as a whole)

ESA, with the Clean Space initiative, will give a pro-active answer to the environmental challenges both on ground and in space, including its own operations as well as operations performed by European space industry in the frame of ESA programmes

ACTION IS NECESSARY TO TRANSFORM THREATS INTO OPPORTUNITIES
Clean Technologies
"contribute to the reduction of the environmental impact of space programmes, taking into account the overall life-cycle and the management of residual waste and pollution resulting from space activities"
Objective of the Clean Space Initiative

Guaranteeing the future of space activities by protecting the environment
Sustainability of space exploitation

- Simulations show that the number of debris keeps growing even if no further objects are launched
- World-wide actions by active debris removal (~5 objects per year)
- Risk of in-orbit collisions is increasing (e.g. Iridium-Cosmos)
- Substantial increase of the number of Collision Avoidance Manoeuvres
- Risk of an ESA satellites encountering a catastrophic collision in the next 50 years between ~7.5% and ~11%

On ground safety

- Uncontrolled re-entry of debris causes a risk for on-ground safety

Innovation

- Innovative technologies (e.g. capture, sensors) are necessary, synergies with other applications (e.g. satellite servicing, capturing asteroids)
- Possibility of new market for ADR
On average, 50 objects need to be removed to prevent one collision, optimised by selecting density hot-spots (in high altitudes)

Criteria for removal should be (a combination of):
- Collision probability [cross-section, population density]
- Altitude of the target orbit [lifetime of fragments]
- Mass of the target

Delays in starting ADR activities make ADR less effective
Develop **technologies** for space debris **rendezvous, capture and re-entry**

- Adopting a **system approach**, technology developments are planned to be focused on a mission for the controlled de-orbit of heavy objects
- Place European industry at a **forefront position** on anticipated future markets
Target Selection: metrics

- Orbit
- Legal issues
- RDV and capture
- Applicability to other targets
- Type
- Risk of collision
- Risk of ground casualty
- Consequence of damage caused by the ADR mission
Technologies

- SMART-OLEV
- Conexpress
- RObotic GEostationary orbit Restorer (ROGER)
- Three Ariadna research studies on novel space debris removal concepts (foams, ion beam shepherd, hybridsail), 2010-11
- SysNova, June-December 2012

Concurrent Design Facilities studies

- Envisat De-Orbit, March 2011
- e.Deorbit, September 2012
Recent and Ongoing ESA Activities

e.Deorbit – system options

- **Orbit**
 - Re-orbit to >2000 km
 - De-orbit to <600 km
 - Controlled re-entry

- **Propulsion**
 - Chemical (CP)
 - Electrical (EP)
 - Others (harpoon, clamp, etc.)

- **Capture techniques**
 - Robotic arm
 - Ion-beam shepherd

- **Clamping mechanisms**

- **Net**
Recent and Ongoing ESA Activities

e.Deorbit – selection of capture technology

<table>
<thead>
<tr>
<th>Rigid connections (push)</th>
<th>Soft connections (pull)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point contact</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple / distributed contacts</td>
<td></td>
</tr>
</tbody>
</table>

Recent and Ongoing ESA Activities

- **e.Deorbit – selection of capture technology**

Notes:

- Rigid connections (push)
- Soft connections (pull)
- Point contact
- Multiple / distributed contacts
Mature ADR technologies:
- Adapt and upgrade existing sensor suit to perform rendezvous with un-cooperative target
- Evaluate capture mechanisms (i.e. net, harpoon, clamping, robotic arm) and promote technology maturation
- Control of stack after capture, push or pulling approaches must be studied and developed
- Verification & Validation framework

System approach targeting an ESA S/C controlled re-entry:
- Phase A and B1 mission design
- Service oriented approach to ADR

Study alternative approaches for other targets:
- Stabilisation of tumbling targets
- Ion Beam Shepherd
Recent and Ongoing ESA Activities

- Preliminary system design for most promising options, identify the required technology roadmap, and investigate its (their) applicability to other ESA missions.

- Assessment of feasibility, programmatic, risk and cost aspects of a mission for the controlled de-orbiting and re-entry of a large, massive, un-cooperative target in SSO, using technologies analysed in previous CDF studies (e.g. tentacles, robotic arm, net).
Branch 4 Space Debris Remediation

Roadmap

- GSP ROGER
 - Envisat De-orbit
 - CDF Fast-track

- e.Deorbit CDF Study

- EDR - De-orbiting solutions
- Ion Beam Shepherd
- Tumbling modelling

- DEOS Phase A/B1
- DEOS Phase B2/C/D

- Proba 3
- CleanSpace One Phase A
- CleanSpace One Phase B/C/D

- Vision Based Navigation - Sensors development
- Advanced GNC

- Capture mechanism development and test
- Identification of ADR system validation and verification requirements
- Other technologies - Tumbling modelling, Detumbling solutions, Ion Beam Shepherd

- Operations Capability
- Launch

- Decision
- Standard approach
Step-wised approach to the implementation of Clean Space roadmaps

Selected activities have been proposed for implementation in 2013-2014 through ESA technology programmes

Discussions with European partners to exploit synergies is on-going

Talks with international partners for possible cooperation on ADR mission have been initiated
Priority activities, over the period 2013 to 2016, amounting to about 60 M€

<table>
<thead>
<tr>
<th>Branch 1 - Eco Design</th>
<th>4-6 Meuro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch 2 - Green Technologies</td>
<td>10-15 Meuro</td>
</tr>
<tr>
<td>Branch 3 - Debris Mitigation</td>
<td>15-20 Meuro</td>
</tr>
<tr>
<td>Branch 4 - Debris Remediation</td>
<td>15-20 Meuro</td>
</tr>
</tbody>
</table>
The Clean Space initiative is

- a cross-cutting theme within ESA's Technology programmes
- aiming at making ESA an exemplary agency in terms of terrestrial and space environmental protection
- containing technology activities presented grouped in roadmaps and proposing a series of technologies which will allow European space industry to:
 - effectively use resources
 - implement regulations
 - mitigate risks

- willing to turn an apparent threat into an opportunity for the entire space sector
Luisa Innocenti
Head of Clean Space Office
Email: luisa.innocenti@esa.int
T: +33 1 53 69 73 52

For further information
Clean Space website: esa.int/TEC/Clean_Space/
Email: cleanspace@esa.int

Thank you