Model Predictive Traction and Steering Control of Planetary Rovers

Rainer Krenn, Andreas Gibbesch, DLR RMC
Giovanni Binet, GMV
Alberto Bemporad, IMT

ASTRA 2013
16 May 2013
ESTEC, Noordwijk
Model Predictive Control (MPC) - User Point of View

- Well-known from process control of plants
 - Large number of states x and algebraic variables z
 - Small number of controls u
 - Slow system reaction, long latency
- Idea: Model based prediction of process evolution and selection of optimal control inputs
 - Goals
 - Min. process time
 - Min. energy consumption, etc.
 - Constraints
 - Limitations of control inputs
 - Safety issues
 - Product quality (terminal constraint)

<table>
<thead>
<tr>
<th>ORCSAT S/C Rendezvous Application</th>
<th>T_s</th>
<th>Prediction Horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit Synchronization TG</td>
<td>10min</td>
<td><250min</td>
</tr>
<tr>
<td>Impulsive Nominal TG</td>
<td>5min</td>
<td><100min</td>
</tr>
<tr>
<td>Forced Terminal TG</td>
<td>3s</td>
<td>45s</td>
</tr>
</tbody>
</table>

Source: BASF, Press Release

Source: ESA
RobMPC* – Planetary Rover Locomotion Application

- MPC control solutions for rover control hierarchy
 - Guidance
 - Off-line generated collision free reference path
 - Computation of collision free contingency path, if the rover has left the safety corridor
 - Trajectory control
 - Generation of rover trajectory (velocity domain)
 - Traction and steering control
 - Wheel velocity and steering angle coordination
 - Actuator control inputs
- Verification with functional engineering simulator (FES)
- Results:
 - Better control performance w.r.t. classical reference controllers
 - Seamless interaction within control hierarchy

* ESA Contract ESTEC/ITT AO/1-5979/09/NL/JK;
 S. Bennani, E. Bornschlegl
* G. Binet, R. Krenn, A. Bemporad; MPC for Planetary Rovers;
iSAIRAS 2012
Traction and Steering Control with MPC

Outline

1. MPCSoFT
2. User Model
 - Prediction model
 - Optimization goals
 - Constraints
3. RobMPC Test Results
 - Nominal tests
 - Robustness tests
4. ExoMars BB Test Results

MPC

- Kinematics Independent MPC
- Trajectory Control
- Desired COM Velocity Vector $[v_x, v_y]$

Kinematics Specific MPC

- Traction & Steering Control
- Desired Steering Angles
- Desired Wheel Velocities

Non-MPC Device Specific Controllers

- Steering Angle Ctrl
- Wheel Velocity Ctrl

Frequencies:
- 10 Hz
- 100 Hz
- 1000 Hz
MPC Traction & Steering Control Implementations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EGP Rover (RobMPC)</th>
<th>ExoMars Breadboard Rover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rover</td>
<td>[Image of EGP Rover]</td>
<td>[Image of ExoMars Breadboard Rover]</td>
</tr>
<tr>
<td>Environment</td>
<td>Functional Engineering Simulator</td>
<td>Planetary Exploration Lab (DLR)</td>
</tr>
<tr>
<td>Bounding box volume (L/W/H)</td>
<td>2246 / 1580 / 1505 mm</td>
<td>1600 / 1370 / ~800 mm</td>
</tr>
<tr>
<td>Total weight</td>
<td>880 kg</td>
<td>90 kg</td>
</tr>
<tr>
<td>Track width (front/rear)</td>
<td>1041 / 1330 mm</td>
<td>1200 / 1200 / 1200 mm</td>
</tr>
<tr>
<td>Axle distance</td>
<td>1511 mm</td>
<td>640 / 720 mm</td>
</tr>
<tr>
<td>Steering axle</td>
<td>rear wheel steering</td>
<td>all wheel steering</td>
</tr>
<tr>
<td>Maximum velocity</td>
<td>0.35 m/s</td>
<td>0.03 m/s</td>
</tr>
<tr>
<td>Navigation sensor</td>
<td>IMU model</td>
<td>Camera based 3D pose tracking</td>
</tr>
</tbody>
</table>
MPCSoFt – QP Builder and QP Solver of User Model

- At each time t: Solve an optimal control problem over a finite future horizon of N steps
- Apply the first optimal move: u_t
- At each time $t + 1$: Get feedback and repeat optimization

$$\min \sum_{k=0}^{N(t)-1} \left\| y_{t+k} - r(t) \right\|^2 + \rho \left\| u_{t+k} \right\|^2$$ Quadratic costs

s.t. $x_{t+k+1} = f(x_{t+k}, u_{t+k})$ States

$y_{t+k} = g(x_{t+k})$ Outputs

$u_{\min} \leq u_{t+k} \leq u_{\max}$ Constraints on inputs

$y_{\min} \leq y_{t+k} \leq y_{\max}$ Constraints on outputs

Δ Solve a convex QP problem for all $x(t)$ w.r.t. Δu_k

- User model: Prediction model (state space model, LTV)

$$x_{k+1} = A(t,k,x(t))x_k + B(t,k,x(t))u_k$$

- User model: Goals and constraints

$$r_k \Rightarrow z_k = E_z(t,k,x(t))x_k + H_z(t,k,x(t))u_k + P_z(t,k,x(t))\Delta u_k$$

$$c_{\max} \Rightarrow c_k = E_c(t,k,x(t))x_k + H_c(t,k,x(t))u_k + P_c(t,k,x(t))\Delta u_k$$

$$d_N \Rightarrow d = C_N(t,x(t))x_{N(t)}$$
MPC Prediction Model: Equations of Motion

- Vehicle states:
 \[\mathbf{x} = \begin{pmatrix} v_{\text{long}} & v_{\text{lat}} & \omega_z \end{pmatrix}^T \]

- Control inputs:
 \[\mathbf{u} = \begin{pmatrix} \beta_1 & \beta_2 & \ldots & \beta_{n\text{Steering}} & \omega_1 & \omega_2 & \ldots & \omega_{n\text{Wheel}} \end{pmatrix}^T \]

- Equations of planar motion:
 \[
 m\ddot{v}_{\text{long}} = mg_{\text{long}} + \sum_{i=1}^{n_{\text{Wheel}}} F_{C,\text{long},i} \\
 m\ddot{v}_{\text{lat}} = mg_{\text{lat}} + \sum_{i=1}^{n_{\text{Wheel}}} F_{C,\text{lat},i} \\
 J_{zz}\ddot{\omega}_z = \sum_{i=1}^{n_{\text{Wheel}}} \left(r_{\text{long},i} F_{C,\text{lat},i} + r_{\text{lat},i} F_{C,\text{long},i} + T_{C,z,i} \right)
 \]

- Contact forces / torques are functions of:
 - Chassis kinematics, wheel shape
 - Soil parameters
 - Vehicle mass, gravity conditions
 - States of controlled actuators
 - Vehicle states, vehicle attitude

- Highly non-linear model, \(A \) and \(B \) by numerical linearization

- Prediction horizon \(N \leq 10 \) (sample rate ratio)
MPC Prediction Model: Contact Dynamics Model

- Load-sinkage relationship for soft soil proposed by Bekker
 \[
 \sigma = \left(\frac{k_c}{b} + k_\phi \right) z^n \cdot (1 + d v_{\text{Normal}})
 \]

- Mohr-Coulomb soil failure criterion
 \[
 \tau_{\text{max}} = \frac{c + \sigma \tan \varphi}{1 + \sigma}
 \]

- Formulation for shear stress by Janosi-Hanamoto
 \[
 \tau = \tau_{\text{max}} \left(1 - e^{-j/k_j}\right); \quad j = \int v_{\text{Shear}} \, dt_{\text{Contact}}
 \]

\[\sigma: \text{Contact normal stress}\]
\[\tau: \text{Contact shear stress}\]
\[z: \text{Vertical sinkage}\]
\[j: \text{Shear deformation}\]
\[k_c: \text{Cohesive modulus}\]
\[k_\phi: \text{Frictional modulus}\]
\[k_j: \text{Deformation modulus}\]
\[n: \text{Exponent of sinkage}\]
\[c: \text{Soil cohesion}\]
\[\varphi: \text{Angle of internal soil friction}\]
\[d: \text{Soil damping coefficient}\]
\[b: \text{Contact patch width}\]
MPC Optimization Goals

• Primary goals on states x
 • Achieve desired trajectory velocity
 $$\begin{pmatrix} v_{\text{long}} \\ v_{\text{lat}} \end{pmatrix} \rightarrow v_{\text{traj}} = \begin{pmatrix} v_{\text{long}} \\ v_{\text{lat}} \end{pmatrix}_{\text{traj}}$$
 • 2 DOF, heading angle not defined

• Secondary goals on control inputs u
 • Keep rover in rolling configuration
 $$u \rightarrow u_{\text{roll}} = u(\text{Ackermann})$$
 • Avoid sliding if not required
 • Avoid fancy configurations

• Controller tuning by goal weights
 $$\mathbf{r} = \begin{pmatrix} r_{\text{pri}} \\ r_{\text{sec}} \end{pmatrix} = \begin{pmatrix} W_{\text{pri}} v_{\text{traj}} \\ W_{\text{sec}} u_{\text{roll}} \end{pmatrix}$$
MPC Constraints

- Steering drive limits
 - Static steering angle limit due to end stops
 \[\beta_{\text{min}} \leq \beta \leq \beta_{\text{max}} \]
 - Dynamic steering angle rate limit due steering torque
 \[\omega_{\text{Steering, min}}(T_{\beta}) \leq \omega_{\text{Steering}} \leq \omega_{\text{Steering, max}}(T_{\beta}) \]

- Wheel drive limits
 - Dynamic velocity limit due to wheel torque
 \[\omega_{\text{Wheel, min}}(T_{\omega}) \leq \omega_{\text{Wheel}} \leq \omega_{\text{Wheel, max}}(T_{\omega}) \]
 - Dynamic acceleration limit due to wheel torque at current velocity
 \[\dot{\omega}_{\text{Wheel, min}}(T_{\omega}, \omega_{\text{Wheel}}) \leq \dot{\omega}_{\text{Wheel}} \leq \dot{\omega}_{\text{Wheel, max}}(T_{\omega}, \omega_{\text{Wheel}}) \]
RobMPC: Dynamic and Kinematic Environment (DKE) for Nominal Tests and Robustness Tests

- Multi-body dynamics model of EGP rover
 - Vehicle kinematics and dynamics
 - Actuator dynamics model
- SCM* (Soil Contact Model)
 - 3D soil contact model for MBS applications
 - Terrain topology DEM
 - Tire profile
- Sensor models
 - Vehicle attitude
 - Vehicle states
- MPC and reference controllers

* R. Krenn; G. Hirzinger; *Simulation of Rover Locomotion on Sandy Terrain - Modeling, Verification and Validation*; ASTRA 2008

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rover mass</td>
<td>880 kg</td>
<td>810</td>
<td>950</td>
</tr>
<tr>
<td>4x wheel mounting misalignment</td>
<td>0°</td>
<td>-0.5°</td>
<td>0.5°</td>
</tr>
<tr>
<td>2x steering drive time constant</td>
<td>0.19 s</td>
<td>0.17</td>
<td>0.21</td>
</tr>
<tr>
<td>4x wheel drive time constant</td>
<td>0.3 s</td>
<td>0.1</td>
<td>0.59</td>
</tr>
<tr>
<td>Terrain Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrain inclination</td>
<td>0°</td>
<td>0°</td>
<td>15°</td>
</tr>
<tr>
<td>Environmental gravity</td>
<td>3.71 m/s²</td>
<td>3.24</td>
<td>4.08</td>
</tr>
<tr>
<td>Frictional modulus</td>
<td>1.0e7</td>
<td>1.0e6</td>
<td>1.0e7</td>
</tr>
<tr>
<td>Cohesive modulus</td>
<td>0</td>
<td>0</td>
<td>1.0e4</td>
</tr>
<tr>
<td>Shear def. modulus</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Exponent of sinkage</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Cohesion of soil</td>
<td>0 Pa</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Internal friction angle</td>
<td>30°</td>
<td>20°</td>
<td>35°</td>
</tr>
</tbody>
</table>
RobMPC: Results of Nominal Tests

- Verification against reference controllers
 1. Conventional Ackermann control
 2. Ackermann control with PID velocity and heading angle control

- Control performance estimation using indicators
 1. Tracking error: Integral of square error ISE
 2. Control effort: Integral of absolute derivative of control signal

- Best performance achieved with MPC
 - Independent control of each actuator (6 controls vs. 2 for Ackermann control)
 - Optimal actuator coordination → Sliding
RobMPC: Robustness Tests

- Monte Carlo Simulations
 - Controller parameters: Nominal
 - DKE parameters: Varied
 - 100 simulation runs per campaign
 - Outputs used: Performance indicator values at end of each simulation

- 2 Monte Carlo campaigns
 - Random variation of vehicle parameters
 - Random variation of terrain parameters

- Evaluation:
 - Sorting of results by single parameter
 - Identifying trend \rightarrow sensitivity w.r.t. single parameter used for sorting

- Results:
 - Low sensitivity w.r.t. vehicle params
 - Moderate sensitivity w.r.t. terrain params
 - Always better than conventional Ackermann control

Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rover mass</td>
<td>880 kg</td>
<td>810</td>
<td>950</td>
</tr>
<tr>
<td>4x wheel mounting misalignment</td>
<td>0°</td>
<td>-0.5°</td>
<td>0.5°</td>
</tr>
<tr>
<td>2x steering drive time constant</td>
<td>0.19 s</td>
<td>0.17</td>
<td>0.21</td>
</tr>
<tr>
<td>4x wheel drive time constant</td>
<td>0.3 s</td>
<td>0.1</td>
<td>0.59</td>
</tr>
<tr>
<td>Terrain Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrain inclination</td>
<td>0°</td>
<td>0°</td>
<td>15°</td>
</tr>
<tr>
<td>Environmental gravity</td>
<td>3.71 m/s²</td>
<td>3.24</td>
<td>4.08</td>
</tr>
<tr>
<td>Frictional modulus</td>
<td>1.0e7</td>
<td>1.0e6</td>
<td>1.0e7</td>
</tr>
<tr>
<td>Cohesive modulus</td>
<td>0</td>
<td>0</td>
<td>1.0e4</td>
</tr>
<tr>
<td>Shear def. modulus</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Exponent of sinkage</td>
<td>1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Cohesion of soil</td>
<td>0 Pa</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Internal friction angle</td>
<td>30°</td>
<td>20°</td>
<td>35°</td>
</tr>
</tbody>
</table>
ExoMars Breadboard Rover Tests

- Is MPC approach applicable to real rover system?
 - ExoMars breadboard rover
 - Planetary exploration testbed DLR-RMC

- Is the MPC prediction model descriptive enough to capture the dynamics of the real system?

- Is the MPC prediction model simple enough to work under real-time operation conditions?
 - 100 Hz

- Is controller robust enough to deal with parameter uncertainties?
 - Actuator performance uncertainties
 - Soil parameter uncertainties

- Is controller robust enough to work with real sensor feedback?
 - Time derivative of pose tracking sensor signal

Answer: YES!
ExoMars BB Rover Tests
... More Results

- CPU time: ~ 2600 ns ($< 0.01 \%$)
- Deterministic process: QP < 50
- Transferability of results to space qualified computers?
Questions?