CNES robotics activities:
Towards long distance on-board decision-making navigation

S.MORENO

sabine.moreno@cnes.fr
Contents

I. Introduction
 1. Context
 2. Definition

II. CNES activities
 1. Perception
 2. Localisation
 3. Navigation

III. Conclusion
I. Context

Objective = full autonomous navigation on-board rovers

- close visible targets → ground in the loop
 - board systematic interventions in the decision protocol make steps slower
 - limited average speed
- distant targets → on-board decision-making required
 - Speed only limited by energy considerations

NASA rovers: MERs / MSL

- 8.7km / 120 sols
 → up to 40m/sol
- Different navigation modes
 - distance to the goal,
 - nature of the soil,
 - ...

<table>
<thead>
<tr>
<th>Navigation modes</th>
<th>% total distance</th>
<th>Average speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct driving</td>
<td>~25%</td>
<td></td>
</tr>
<tr>
<td>Blind Goto Waypoint</td>
<td>~40%</td>
<td>133 m/h</td>
</tr>
<tr>
<td>Autonav</td>
<td>~25%</td>
<td>12-35 m/h</td>
</tr>
<tr>
<td>Visodom</td>
<td>~9%</td>
<td>12 m/h</td>
</tr>
</tbody>
</table>
I.2. CNES AN architecture

AN architecture

- Perception
 - Stereobench, 3D modeling
- Localisation
 - Wheel odometry + VME
- Locomotion
- Navigation
 - Kinematics maps building
 - Path & Perception planning

On-board computation

- Optimised algorithms (“ready to fly” at functional level)
II.1.a. HW Perception Tools

- Stereo-benches for short term missions
 - Optimized characterisation process
 - Stereo base measurement methods
- Stereo-benches for future missions
 - Wider FOV
- Tools for tests & validation
 - MGSE = precise 3D measurement
 - cf “Dense stereo-vision algorithms validation and tuning using laser scanner hi-resolution reference models”, ASTRA2011
 - Light version under validation
 - Outdoor campaigns
II.1.b. SW Perception Tools

- **Hi-dynamics cameras (>8bits)**
 - Robustness
 - Radiometric correction
- **Algorithms adaptation for an OBC configuration with more memory available**
 - More accurate models of the environment
 - Spare computation time
 - ex: images rectification
 - Better precision for the 3D reconstruction
 - More accurate radiometric correction

![Screenshot of the CNES 3D reconstruction tool](image-url)
II.1.b. SW Perception Tools

- Accurate stereo-base measurement
 - Better knowledge of the scale factor
 - Better reliability of the navigation

- Multi-resolution stereo-vision
 - Faster
 - More robust in poor light conditions

- Exomars project requests
 - Algorithms validation
 - Rec3D tests
 - Campaign planned for summer 2013 to quantify the reconstruction performances
II.2.a. Recent Localisation activities

- **Wheel odometry**
 - Based on rovers kinematics
 - Used on-board for CNES campaigns
 - Increase of performances expected thanks to specific locomotion sensor (velocimeter)
 - R&D ongoing activity

- **VME**
 - cf “Vision-Based Motion Estimation for the ExoMars Rover”, ISAIRAS 2010
 - Campaigns for validation & robustness (autumn 2010)
 - Precision: relative localisation error <1% after 100m
 - Report delivered to ESA in early 2011
II.2.b. On-going & planned Localisation activities

- **VME**
 - Algorithms adaptation for increased OB memory
 - Increased precision
 - Reduced computation time
 - Test & validation with images taken on-board a moving rover
 - New localisation architecture evaluation
 - Cooperation between odometry/VME/sun sensor/data fusion
II.3.a Recent Navigation activities

- Numerous improvements on AN SW
- Statistics tests on simulator
 - ~100km travelled
- Campaign for validation & robustness (autumn 2011)
 - Report delivered to ESA in early 2012
- ESTEC-CNES Remote Experiment #2
 - cf “ESTEC-CNES Remote Experiment”, ASTRA 2011
- CNES Mars yard DTM model
 - Cross-validation ESA/CNES
II.3.b On-going Navigation activities

- Algorithms adaptation for increased OB memory
 - Increase of the NavMap size:
 - local knowledge (~14x14m)
 - → up to 1 sol traverse (~100x100m)
 - NavMaps = bitmaps directly issued from DTM

- Short term Path Planning
 - PP under kinematic constraints
 - Traj = curve instead of straight lines
 - FRA*, D*
 - DTM label: rover cross capabilities better taken into account
 - Kinematics + clearance
II.3.b On-going Navigation activities

- Long Distance Navigation
 - Maps updated at each Path&Perception Planning step (~4m)
 - Store NavMaps up to mission size
 - Vectorial representation of the NavMaps → TopoMaps
 - Save memory for storage
 - All previous knowledge available at each PP step
 - avoid dead-end loops,
 - enable (automated) secured return to landing site
 - Data fusion → multi-resolution :
 - Merge with precomputed maps
 - Merge with ground data (avoidance areas)
 - Algos compatible with currently available memory & CPU
II.3.b On-going Navigation activities

NavMap(t)

NavMap(t+1)

NavMap(t+2)
II.3.b On-going Navigation activities

NavMap(t)

NavMap(t+1)

NavMap(t+2)
II.3.b On-going Navigation activities

NavMap(t) → NavMap(t+1) → NavMap(t+2)
II.3.b On-going Navigation activities

NavMap(t) → NavMap(t+1) → NavMap(t+2)
II.3.b On-going Navigation activities
II.3.b On-going Navigation activities

NavMap to TopoMap
II.3.b On-going Navigation activities
II.3.c Means for Navigation activities

- IARES
 - Rover delivered in 1997
 - 17 +2 dof
 - Still used for tests
II.3.c Means for Navigation activities

- **ARTEMIS**
 - New rover, delivered in 2011, currently being assembled
 - Close to Exomars kinematics
 - Architecture mainly based on off-the-shelf components
 - Cheaper
 - Easier maintenance
II.3.c Means for Navigation activities

Simulator

- Improvements since last version provided to ESA:
 - Fog,
 - New vehicle,
 - Stones,
 - New perspectives,
 - Real time shadowing,
 - MNT refreshment,
 -
II.3.c Means for Navigation activities

- Simulator
 - Improvements since last version provided to ESA:
 - Fog,
 - New vehicle,
 - Stones,
 - New perspectives,
 - Real time shadowing,
 - MNT refreshment,
 -
II.3.c Means for Navigation activities

- Simulator
 - Improvements since last version provided to ESA:
 - Fog,
 - New vehicle,
 - Stones,
 - New perspectives,
 - Real time shadowing,
 - MNT refreshment,
 - ….
II.3.c Means for Navigation activities

- Simulator
 - Improvements since last version provided to ESA:
 - Fog,
 - New vehicle,
 - Stones,
 - New perspectives,
 - Real time shadowing,
 - MNT refreshment,
 -
II.3.c Means for Navigation activities

- Simulator
 - Improvements since last version provided to ESA:
 - Fog,
 - New vehicle,
 - Stones,
 - New perspectives,
 - MNT refreshment,
 -
III. Conclusion

- Numerous improvements of CNES technologies available for:
 - Exomars project,
 - R&D for future missions,
 - Some of the sample return requirements already met (Topo Maps),
 -

- Adaptation of these technologies/subsystems to other/various robotics applications/missions:
 - Ground modeling (landing, probe approaching phase, ...),
 - In orbit modeling (non cooperative objects, ...),
 - Short & long distance localisation (landing, robotics in orbit, ...),
Thank you for your attention.

Any questions?