Jan-C. Meyer 11.05.2015, Noordwijk

SPACE SYSTEMS

Tentacles based clamping mechanism for ADR ASTRA 2015

Active Debris Removal – Mechanism

Mechanism Requirements

Requirements Categorisation

• The functionalities reveal three main categories of requirements necessary to provide a full picture of the system. These are as follows:

- Mechanism system requirements
- Target interface requirements
- Chaser interface requirements

Driving Requirements

Trade-off and baseline selection

Trade-off methodology and criteria

- Six categories of criteria
 - S/C interface rates the constraints put on the chaser platform
 - *Fexibility* indicates the mechanism's ability to adjust its position on the target
- Weights are determined by pairwise comparison between the criteria

Trade-off options (1/3)

Boom tentacle

Trade-off options (2/3)

tentacle

Three booms tentacle

Trade-off options (3/3)

Option I

tentacle

Trade-off results

- Score range is 1 to 10
- Three options with high scores – C, G, I
 - Option G is an evolution of option C
 - Option I is specifically designed for e.Deorbit platform
 - Option I can be realised with two tentacles only
- Option I is chosen as baseline

Option A Option B Option C Option E Option F Option G Option H Option I

Baseline design overview

Multi-body Simulation (MBS)

MBS Model Description

• Two step methodology:

- Worst-case identification
- Detailed analysis for mechanism component sizing
- Worst-case is determined by finding the combination of parameters that maximises the x-component of *Torque1* and *Torque2*
- Feasibility of solution is constrained by HDRA maximum holding torque
- Design parameters and requirements are adapted to create feasible solution

MBS worst-case visualisation

Isometric view

Side view fitting the camera to global reference Front view fitting the camera to the Chaser

Mechanism Design

Design overview

- Two tentacles
 - Two booms each
 - Connected by a rotary actuator
 - One linear actuator for lateral extension each
 - Two HDRMs each
- Four linear actuators for target clamping

section A - A

Mechanism components

Mechanism operations

Stowed Sequential boom tentacle deployment Reduction of deployment shocks тс Simpler handling of perturbations by AOCS Deploying Time for deployment is (practically) not limited Error - from all states ADRM sensor confirmation Easier failure handling ADRM sensor confirmation Capturing consists of two parts: **Ready-for-capture Operational Failure** Capture (HDRA) **FDIR** procedure **AOCS** command Clamping (LEMA Z) Abort command Capturing Release **ADRM Sensor confirmation FDIR procedure** Deployment Locked TC

Function tree

- F1: Capture target Tentacles
- F2: Release target Open tentacles
- F3: Establish rigid connection Brakes + preload mechanism
- **F4: Operate on host satellite** Power, data, and mechanical interfaces
- F5: Survive launch and space environment HDRM + environmental specifications

Conclusions and outlook

Step	Description	Step	Description	Step	Description
1.0	LEMA Development	1.6	QM Manufacturing	4.0	Mechanism Development
1.1	Detailed design	1.7	QM Testing	4.1	Preliminary Design
1.1.1	Non-Back drivability	1.8	QM Test Documentation	4.2	Detailed Design
1.1.2	Lateral stiffness	2.0	Structural Components Development	4.3	Analysis
1.1.3	Load capability	2.1	Detailed design	4.4	QM Manufacturing
1.2	Analysis	2.2	Analysis	4.5	QM Testing
1.3	BB Manufacturing	3.0	Mechanism Electronics Development	4.6	QM Test Documentation
1.4	BB Testing	3.1	Electronics design		
1.5	BB Test Documentation	3.2	Software design		
		3.3	Simulation		

Conclusions and outlook

- Definition of a clamping mechanism has been performed
- Component sizing supported by multi-body simulation
- Operational and functional design
 - Including FMEA
- Mechanism and technology development roadmap
- Validation test plan including
 - Test facility identification
- Further evaluated for evolving e.Deorbit mission

The presented activity was part of an ESA contract under the Basic Technology Research Programme. It is part of the Clean Space Branch 4 Roadmap.

Image: www.faz.net

Jan-C. Meyer 12.03.2015, Noordwijk

SPACE SYSTEMS

Tentacles based clamping mechanism Mechanism Final Presentation Days