Robotic Capture and De-Orbit of a Tumbling and Heavy Target from Low Earth Orbit

Steffen Jaekel, R. Lampariello, G. Panin, M. Sagardia, B. Brunner, O. Porges, and E. Kraemer (1)
M. Wieser, R. Haarmann, and M. Pietras (2)
R. Biesbroek (3)

(1) German Aerospace Center (DLR), Robotics and Mechatronics Center
(2) OHB System AG
(3) ESTEC
Introduction – Space Debris

Note: Artist's impression; size of debris exaggerated as compared to the Earth

Source: ESA
Introduction – Space Robotics

- Future and already deployed robot applications in space:

 - **In-space robotic assembly (ISRA):** SSRMS, SPDM
 - **EVA assistance:** SSRMS, Robonaut, DLR’s Justin, (small) satellites for inspection: SPHERES
 - **Robotic exploration:** MER’s
 - **On-orbit servicing (OOS)** for prolonging lifetime of operational satellites, repair & refuel (RRM), extend or upgrade functionality (Hubble)
 - Hot topic: OOS for active debris removal from LEO or re-orbiting into graveyard orbit in GEO (DEOS)

 - **Dexterous manipulators** play essential role robotic manipulation in space – based on DLR’s 7-DoF lightweight robot (LWR) → Rokviss (middle) and 7-DoF space manipulator (bottom) with impedance control concept
Challenges of Robotic Spacecraft
Intelsat VI Capture on STS-49 (NASA)

Source: Youtube (edited)
Challenges of Robotic Spacecraft for OOS

- In general: complex contact operations in **close-proximity**

- **Unintended contact** can lead to unsuccessful capture

- **uncertain environment** (target not prepared for servicing)

- Free-floating dynamics: manipulator has **direct physical feedback** on its floating base

- Consequences:
 - Upon contact with capture tool, capture needs to be assured
 - High Attitude and Orbit Control System (AOCS) requirements
 - Distributed control problem, integrated spacecraft: Satellite turns into **Space Robot**
 - High computation power demands
Robot Capture Technology

1. Capture Operations
2. Arm Technology
3. Arm Camera System for Visual Servoing
4. Gripper
5. Stabilization
6. Clamping Device
e.Deorbit - Capture and Stabilization with a 7-DoF Robotic Manipulator
Arm Technology

- 7-DoF, total length of approx. 4m
- Max. nominal torque of 160Nm
- Torque-based impedance control concept for compliant grasp
- Redundant mechatronic design
- Gripper for capturing Ariane launch adapter ring of ENVISAT
- Stereo-camera system at arm wrist for visual servoing
Joint Technology

- Integrated joint design from ROKVISS heritage with motor, brake, gear, position and torque sensor, and sensor electronics
- Electronics integrated in arm assembly
- EtherCAT bus system for single joint actuation in case of joint failure
Workspace Analysis

- Capability map – quantification of possible discretized directions in subspace
- Analysis and verification of arm kinematics
- Accounts for self-collision
Workspace Analysis – Joint Failure
Manipulator Camera System

- Edges on adapter ring used for model-based tracking
- Vertical stereo layout
- Grasp point visible throughout the approach and grasp process
Simulation of Arm Approach

- Approach from 1m distance (gripper to grasp frame)
- Only the ring structure is used for tracking
- Simulation yields grasp point estimation error
Visual Servoing Simulation Results – Stereo

- Visual Servoing using 4-DoF-estimation (rotation around center of cylinder and tangential translation are fixed), however all relevant dimensions for successful grasp are covered

- Translational error **below 1mm**, rotational error **below 0.2deg**
Gripper Design
Robotic Grasp Simulation

- Haptic real-time simulation using the Voxelmap-Pointshell (VPS) algorithm
- Two kinds of models: voxel model (adapter ring) and pointshell model (gripper) with surface normal vectors, 3mm resolution both
- Penalty-based method for calculating interaction force (buoyancy)

- Although not optimal for the given problem, it yields a qualitative analysis of capture
e.Deorbit - Haptic Grasp Simulation with the Voxelmap-Pointshell (VPS) Algorithm
Robotic Grasp Simulation – Results (Position)

- Plot: position of dynamic two-finger gripper bracket
- Gripper is pulled towards the ring
Robotic Grasp Simulation – Results (Force)

- Plot: interaction forces acting on dynamic two-finger gripper bracket
- Vertical and horizontal forces pull gripper towards the final grasp force
Rigidization

- Relative motion is actively damped out with the arm
- High robustness w.r.t. residual relative motion between satellites
Clamping Mechanism

- Seat on top of ENVISAT with aligned COG’s
- achieve stiff connection
- arm only for re-positioning
- Robust to surface unevenness and flexibility
Ready for De-Orbit...
The future of robots in space…

robotic exploration satellite servicing EVA support
Development Approach

- Independent joint testbed
- DLR free-floating dynamics simulator with gravity compensation device (rope setup)

- SoftwareL On-orbit verification of framework on ESA cubesat mission OPSSAT - simultaneous operation of robot control and additional avionics functions such as AOCS

![DLR HiL-OOS-Simulator (free-floating dynamics)](image1)

![OPS-SAT](image2)
AOCS Reaction to Arm Movement

- Arm introduces disturbance forces and torques on its satellite base

- Disturbances must be smaller than capabilities of AOCS during stabilized approach

- Simulated AOCS reaction shows that resulting error in
 - Position < 6mm
 - Orientation < 0.5deg

- Does not bring targeted grasp point out of FoV of arm camera
Capability Map

- **Reachability Map**: discretized structure describing reachable poses of robots end-effector
- Method of analysis accounts for
 - Robot kinematics
 - Self-collision
- Reachability index quantifies how well can a robot operate in a small subspace (voxel) of its workspace.
- The index is a per-voxel absolute measure of how many of the discretized directions are reachable by the end-effector.
- Within the blue area the end-effector has excellent manipulability for grasping, green indicates insufficient reachability
Visual Servoing Simulation - Summary

- Very accurate stereo results (position below 1mm, rotation below 0.2deg)

- Sufficient results for mono-matching (position below 5mm, rotation below 0.2deg)

- Mono results deal as worst-case assumption for updated error budget

- Hardware-in-the-loop tests with adapter ring mockup and realistic lighting advised for further mission phases to check effects reflections (MLI & radiator tape)
Visual Servoing Simulation Results – Mono

- Translational error **below 5mm**, rotational error **below 0.2deg** during final approach

- Used as worst-case assumptions for updated error budget
Robotic Grasp Simulation – Summary

- Execution of multiple start configurations with representative errors in all axes
- The gripper was never pushed out, in contrast it was pulled towards the ring through the inclined area of contact
- VPS method is not optimal for the given full force closure problem, only limited realness through
 - Temporal discretization (real-time), one cycle (1ms) computation time
 - Spatial discretization (model detail)
 - Oscillations when grasped
 - Internal forces are not equalized
- However, direction of generated force is empirically proven to be accurate
- Simulation could show general feasibility of chosen approach