
ASTRA 2015

CAPTURING NETS FOR ACTIVE DEBRIS REMOVAL: A FOLLOW-UP MICROGRAVITY EXPERIMENT DESIGN TO VALIDATE FLEXIBLE DYNAMIC MODELS

Medina, A., Cercós, L., Stefanescu, R. (GMV, Spain/Romania),
Benvenuto, R., Lavagna, M. (Politecnico di Milano, Italy),
González, I., Rodríguez, N. (PRODINTEC, Spain),
Wormnes, K. (ESA/ESTEC)

ADR AND CLEAN SPACE INITIATIVE BACKGROUND

EXPERIMENT DESIGN

NET DYNAMICS SIMULATOR

PARABOLIC FLIGHT SET-UP

ADR AND CLEAN SPACE INITIATIVE BACKGROUND

- Nowadays ADR techniques appears as solution to mitigate effects of the space debris (5000 satellites in orbit, 16.000 objects tracked by US Space Surveillance Network, 200 on-orbit fragmentations since 1961, 700.000 objects larger than 1cm; 4 recorded examples of collisions).
- NASA/ESA studies have demonstrated that 5/10 objects per year must be removed from LEO orbits.
- ESA Clean Space initiative focuses in four different branches:
 - Eco-design, Green technologies, space debris mitigation and
 - Space debris remediation
- Between other techniques, throw-nets is a promising technology for capturing non-cooperative debris (whit difficult grasping by robotic arms).
- ESA is funding current **PATENDER** (**Net Parametric Characterisation and Parabolic Test**) activity to develop a simulator for the capture of large space debris with a throw net, and to validate it through a parabolic flight experiment.

ADR AND CLEAN SPACE INITIATIVE BACKGROUND

EXPERIMENT DESIGN

NET DYNAMICS SIMULATOR

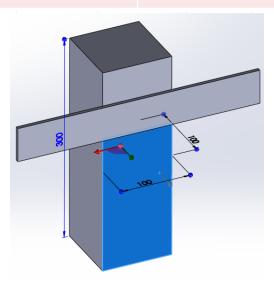
PARABOLIC FLIGHT SET-UP

EXPERIMENT DESIGN (1/3)

Scaled nets (parabolic flight)

- Dynamically scaled nets:
 - Representing on-orbit load conditions
 - Representative of 24m and 36m nets
 - Material trade-off and selection
 - Space qualified
 - Mechanical properties (foldable, strength, etc.)
 - Experiment requirements

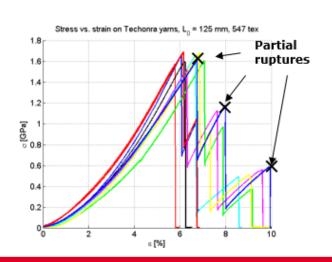
TECHNORA



Spliced connection for bullets

Technora net (5cm mesh)

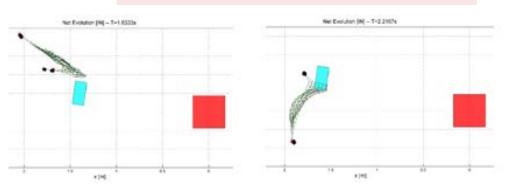
Property	Value	
Geometry	Planar/Square	
Size	0,9x0,9 m 0,6X0,6 m	
Mesh	0,05/0,025 m	
Thread	0,001 m	
Material & Manufacturing	Technora (black) Knotted	
Bullet link	Splice (0,15 m)	

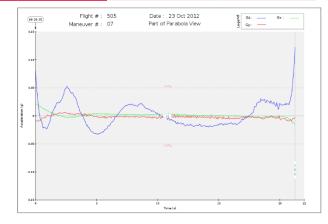


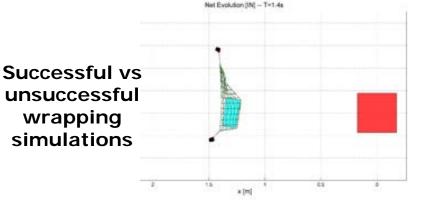
Simplified mockup of Envisat body (1:40 scale)

EXPERIMENT DESIGN (2/3)

- Net material testing at PoliMi labs:
 - To characterize fiber ropes mechanical properties, reducing number of uncertain parameters during model validation
 - Tensile tests and dynamical mechanical testing to identify
 - Young's modulus, breaking strength and knots strength retention
 - Axial, torsional and bending stiffnesses and dampings


Young's modulus [GPa]	25.367
Breaking stress [GPa]	1.626
Breaking strain [%]	6.43
Knot breaking stress [GPa]	0.536
Axial stiffness per unit length [N]	9.84·103
Torsional stiffness per unit length [Nm2]	2.94·10-6
Bending stiffness per unit length [Nm2]	1.34·10-6
Axial damping ratio [-]	0.106
Torsional damping ratio [-]	0.079
Bending damping ratio [-]	0.014


EXPERIMENT DESIGN (3/3)


- Parabolic flight conditions implies:
 - Residual accelerations (non-perfect microgravity)
 - Apparent accelerations (Coriolis, centrifugal)
 - Air drag
- Design drivers:
 - Maximize chances of target hitting occurence
 - Completely deploy the net
 - Compliance with acquisition set-up

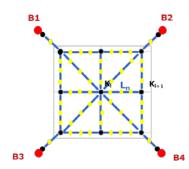
Net shooting velocity [m/s]	Net shooting angle [deg]	Target Distance [m]
≈ 1	≈ 21	≈ 1,3

ACCELERATI ON	MAXIMUM VALUES	AXIS
Disturbance [m/s²]	≈ ±0.5	Z axis
Coriolis [m/s²]	≈ +0.06	Z axis
Centrifugal [m/s²]	≈ ±0.005	X axis
Air drag [m/s²]	≈ 10^-6 ÷10^-7	- V axis

ADR AND CLEAN SPACE INITIATIVE BACKGROUND

EXPERIMENT DESIGN

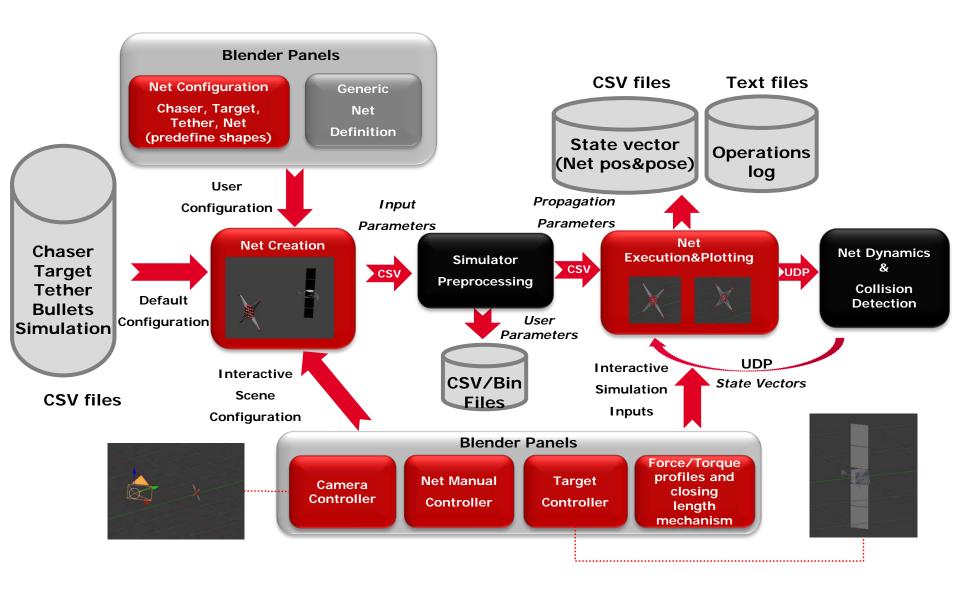
NET DYNAMICS SIMULATOR


PARABOLIC FLIGHT SET-UP

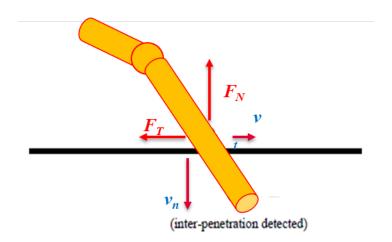
NET DYNAMICS SIMULATOR

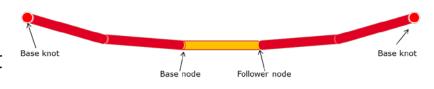
- Three-layer architecture:
 - Net dynamic models:
 - Linear Kelving-Voight modelling

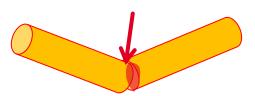
 $T_{ij} = \begin{cases} \left[-k_{ij} \left(\left| \mathbf{R}_{ij} \right| - l_{nom} \right) - d_{ij} \left(\mathbf{V}_{ij} \cdot \widehat{\mathbf{R}}_{ij} \right) \right] \widehat{\mathbf{R}}_{ij} & \text{if } \left| \mathbf{R}_{ij} > l_{nom} \right| \\ 0 & \text{if } \left| \mathbf{R}_{ij} \leq l_{nom} \right| \end{cases}$

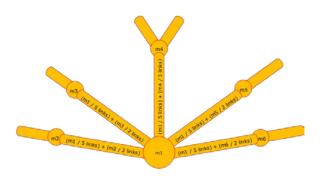

- Orbital dynamics
- Net arbitrary shapes, thether, closing mechanism
- Net dynamic applications:
 - Autocoding of Matlab/Simulink Net dynamics
 - Collision detection through Bullet Physics engine
 - Collision dynamics through dedicated algorithms

- Graphical User Interface (GUI):
 - Based in Blender (3D capabilities)
 - User-interaction trhough Python scripts

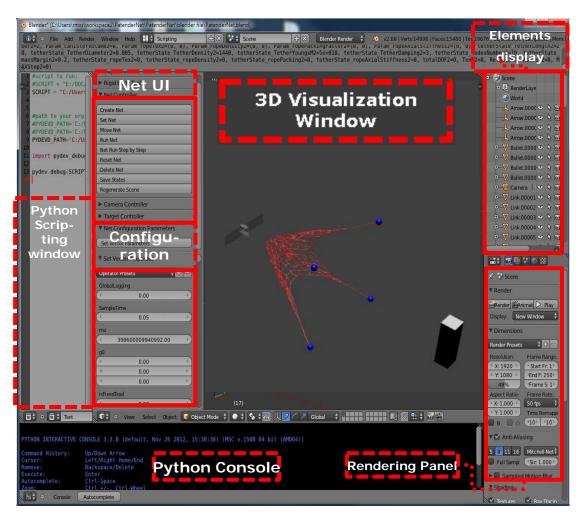

SOFTWARE ARCHITECTURE OVERVIEW




CONTACT DYNAMICS


- Collision detection computed by Bullet engine based in cylinders
- Discarding collisions between adjacent links
- Determination of cylinder masses from the net particles
- Computation of contact dynamics following Hippmann algorithms based on stiffness, damping and friction forces.

Discarded collisions


$$\boldsymbol{F}_{N} = -(k_{n} \cdot s_{n} + c_{n} \cdot |\boldsymbol{v}_{n}|) \cdot |\boldsymbol{v}_{n}| |\boldsymbol{v}_{n}|$$

$$F_T = -k_C \cdot |F_N| \cdot v_t / |v_t|$$

PATENDER SIMULATOR

■ **Blender** environment provides a framework for the visualization of 3D objects composed by the following elements:

3D Visualization window:

- Knots, nodes, bullets (type: "spheres")
- Links/Threads (type: "cylinder")

User Interface

Net commands and configuration panels

Python scripting window

Connection to the scripting files

Elements display

Vizualisation of all the elements in the scene

Rendering panel

Image and video recording

Python Console

Interactive console

ADR AND CLEAN SPACE INITIATIVE BACKGROUND

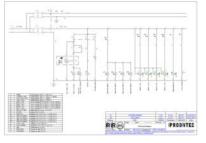
EXPERIMENT DESIGN

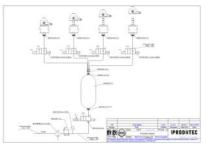
NET DYNAMICS SIMULATOR

PARABOLIC FLIGHT SET-UP

NET LAUNCHING SYSTEM (1/2)

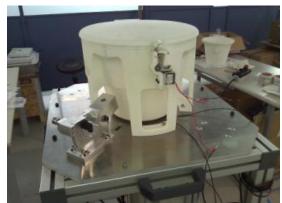
Assembly Test Design Manufacturing



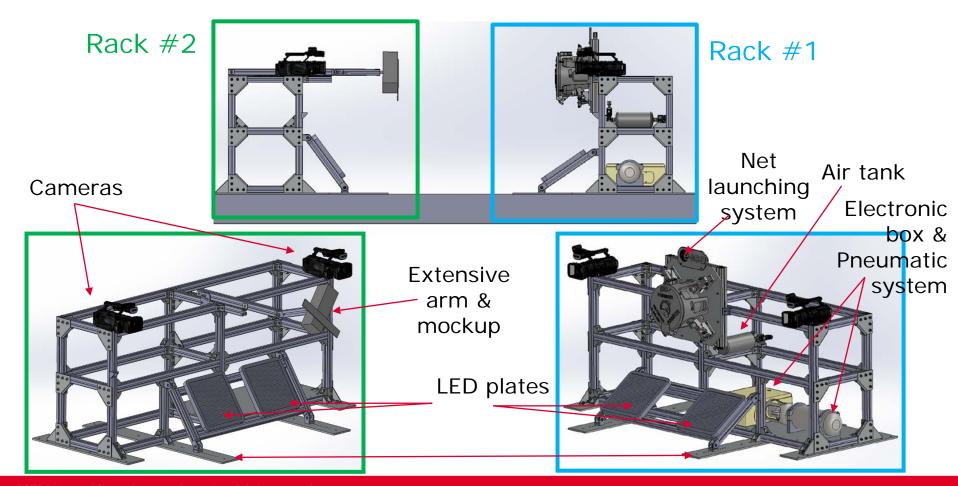


NET LAUNCHING SYSTEM (2/2)

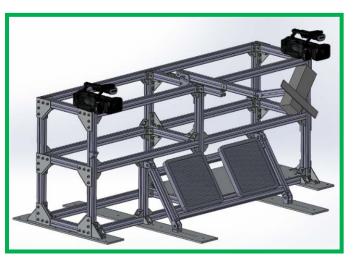
Whole system



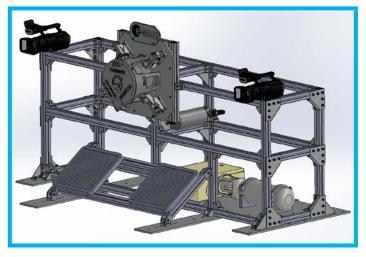
Canister



Canister and cover support

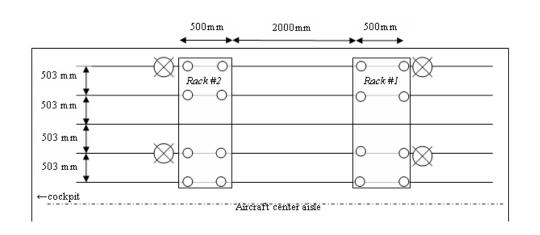

PARABOLIC FLIGHT SET – UP (1/2)

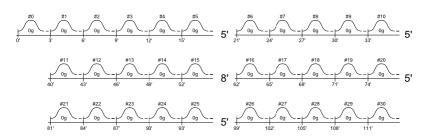
- Set of two racks with dimensions (LxWxH) 500 x 2000 x 810 mm.
- Overall flight set up: 3000 x 2000 x 1500 mm
- Adjustable Mock-up position (vertical and horizontal).

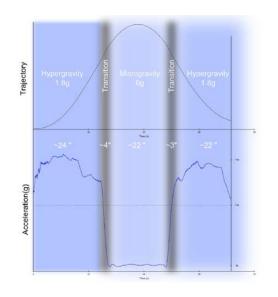

PARABOLIC FLIGHT SET – UP (2/2)

Rack #2

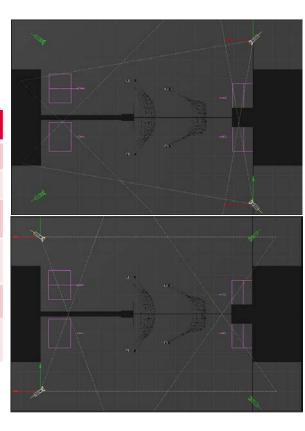
Rack #1



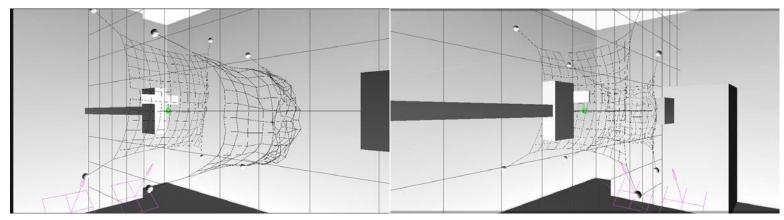



NOVESPACE PARABOLIC FLIGHT

- Participating in the 62nd ESA parabolic flight campaign VP 116 (June 9th 2015)
- Six set of 5 parábolas (31 in total)
- Microgravity periods of 22s
- Intensive assessment of hazard risks
- Patender experiment:
 - Use of 5 nets+mockups
 - Deployment time of 2-3s
 - Net reload operations between breaks

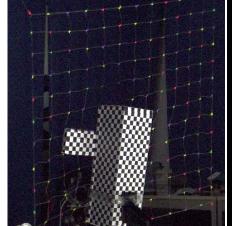


3D RECONSTRUCTION (1/3)


Acquisition set-up design drivers:

- Stereo coverage (FoV, focal length, position/orientation)
- Resolution: knot size / pixel size > 6
- Limit blurring (shutter)

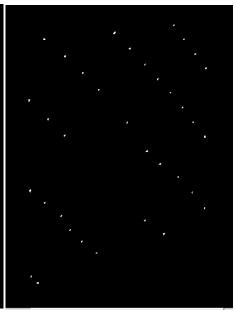
Setting	Value	
Cameras	4x Sony NEX FS700	
Resolution	4K (4096x2160)	
Frame rate	60 fps	
Shutter speed	1/1000s – 1/1500s	
Focal length	14	
Iris	F4	

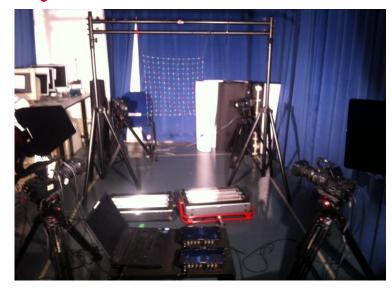


Focus depth of field

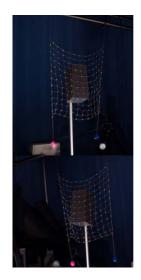


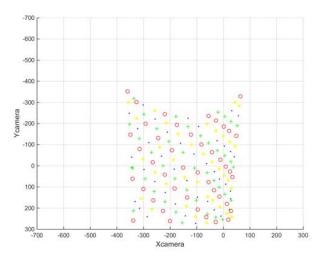
3D RECONSTRUCTION (2/3)


- Reconstruction process: based on net colourcoding
 - Requires uniform background
 - Requires strong illumination (led lights to cope with PF safety rules)
- Reconstruction steps:
 - Raw processing for white/gain correction
 - Colour segmentation and filtering RAW Image
 - Points cloud reconstruction and stereo matching
 - Open net topology reconstruction
 - Tracking back/forward (ICP + constraints)



Binary image


3D RECONSTRUCTION (3/3)


- Preliminary ground tests to validate
 - Reconstruction process
 - Cameras set-up and settings
- Calibration performed a priori through doublefaced chessboard
- Camera synchronization through audio signal
- Partial wrapping reconstruction: accuracy decreases when points are occluded from both stereo-pairs (only estimates are possible)

ADR AND CLEAN SPACE INITIATIVE BACKGROUND

EXPERIMENT DESIGN

NET DYNAMICS SIMULATOR

PARABOLIC FLIGHT SET-UP

- ADR using thrown-nets is a promising technology:
 - Need of a validated simulator to demonstrate its effectiveness.
 - The PATENDER activity will implement such simulator:
 - Accurate and fast simulation capabilities.
 - Validated through a parabolic flight campaign (TRL 5).
 - Using a space representative scaled net and satellite mockup.
 - Net motion trajectory will be recorded in super-slow motion mode by four synchronized high-speed video cameras.
 - The 3D trajectory of relevant points will be then reconstructed using stereo matching and triangulation.
 - Preliminary on-ground tests have already proved the capability of the net launching system and the 3D reconstruction.
- Further work is devoted to the performance of the parabolic flight and the cross-validation of results.

Thank you

The PATENDER Team

SIMULATION RESULTS

