Model Based Robot Software Development

Jakob Schwendner
DFKI Bremen & Universität Bremen
Robotics Innovation Center
www.dfki.de/robotics
robotics@dfki.de
Motivation

- Robot complexity and task complexity is growing
- Costly development
- How to handle the complexity?
 - Modules
 - Models

Modules allow reuse – Models say how
Robot Development

• Process should be
 ▪ **Structured** – development process
 ▪ **Reproducible** – design & behaviour
 ▪ **Scalable** – in system and development complexity
 ▪ **Dynamic** – on-line reconfigurability

• Three different views
 ▪ Behaviour
 ▪ Hardware
 ▪ Software
Robot Development - Behaviour

- Process should be
 - Structured
 - Reproducible
 - Scalable
 - Dynamic

- Three different views
 - Behaviour
 - Hardware
 - Software
Robot Development - Hardware

- Process should be
 - Structured
 - Reproducible
 - Scalable
 - Dynamic

- Three different views
 - Behaviour
 - Hardware
 - Software
Robot Development - Software

- Process should be
 - Structured
 - Reproducible
 - Scalable
 - Dynamic

- Three different views
 - Behaviour
 - Hardware
 - Software
DROCK Project

Goal: Design and implementation of a framework and tools for robot programming.

- Objectives:
 - Modelling of robotic structure
 - Mapping of tasks onto execution units
 - Execution and monitoring with dynamic reconfiguration
 - Tools to support the development
 - Evaluation of toolset in demo scenario and user study
Challenges

- Modelling
 - Consistent models
 - Practical focus on robotic problems
- Mapping
 - Requires robot specific heuristics
 - Deployment on heterogeneous units (CPU, uC, FPGA)
- Execution
 - Monitoring in heterogeneous environment
 - Decision on reconfiguration
 - Distributed supervision
Tools

Modelling Tools → Behaviour Models → Execution Framework
Modelling Tools → Software Models
Modelling Tools → Hardware Models

Behaviour
Software
Hardware

Design Time → Run Time
State of the Art

- ROS (Robot Operating System)
 - Implicit component model
 - Low-resistance workflow – ad-hoc development
 - Topic based communication
- Orocos RTT
 - Implicit component model
 - Point to point connections
 - Real-time capable
- GenoM
 - Explicit component model
 - Capable of generating Behaviour Interaction Priority (BIP)
- Rock
 - Explicit component and network model
 - Orocos RTT as Middleware
 - Dynamic run-time reconfiguration
Robot Construction Kit (ROCK)

- www.rock-robotics.org
- rock.opendfki.de
- github

- Development started in 2008
- Running on more than 12 Robots at DFKI/RIC
- In use by ESA ESTEC, Space Applications, Marum, Geomar, etc.
- 199+ library packages (internal + external)
- 136+ component packages
- 80 messages / month on rock-dev@dfki.de
- 30 active members on mailing list in last 6 months
Industrial Applications

- Industrial robotics will change
- Complex tasks – human shared environments
- Model based approach
 - Robust
 - Generic instantiation
 - Generic failure handling
 - Verification
 - Component level testing
 - Correct by construction
 - Model inference
- Industrial Use
 - Space
 - Off-shore
 - Human shared

NASA / JPL

Oceaneering

BMW AG