

Contents

- Thales Alenia Space Italia Expertise in Robotics
- STEPS2 Project
- Robot Management Framework
- ROvers eXploration facilitY
- GNC and Manipulation

The activities subject of this presentation have been performed in the frame of STEPS program - Systems and Technologies for Space Exploration - a research project co-financed by Regione Piemonte (Piedmont Region) within the Phase 2 of P.O.R. - F.E.S.R. 2007-2013 EC program.

13/05/2015

Thales Alenia Space Italia Expertise in Robotics

Exomars

System Studies (Sample Fetching Rover, Phootprint, Inspire, ...)

OPEN

METERON

STEPS2: Systems and Technologies for Space Exploration – Phase 2

4

STEPS 2

R&D programme co-funded by EU and Regione Piemonte (POR FESR 2007/2013) to design target flight hardware, and to develop a ground prototype and functional testing

Consolidate Piedmont Aerospace District

To accelerate the innovation of aerospace technology within the Region and reassuring its worldwide excellence

Technological Development

Continue the technological development in strategic areas with the objective to pass from a TRL 3 to 5/6 in order to be ready for possible **in-orbit validations** in the short-medium term

Technology Transfer

To ensure that technological developments are accessible to a wider range of users who can then further develop and exploit

13/05/2015

STEPS2 Technologies

13/05/2015

OPEN

to any third party without the prior written permission of Thales Alenia Space - © 2013, Thales Alenia Space

STEPS2 "Rover Surface Navigation"

- Reference Mission Scenario:
 - Sample Canister Identification
 - Traverse/Exploration Phase
 - Sample Canister Acquisition and Storage
- Key Technologies:
 - Robot Management Framework
 - ROvers eXploration facilitY
 - Research Robots
 - Modular Robot Control Software

Ref.:

13/05/2015

Robot Management Framework – Architecture

Integration, Validation and Verification of Robotic Technologies and Algorithms.

13/05/2015

OPEN

ThalesAlenia

Robot Management Framework – Modules Hierarchy

- 5 Modules Types:
 - Resource Modules
 - Coordination Modules
 - Actuator Modules
 - Sensor Modules
 - External
- Modules hierarchy is deployed according to the Robotic system complexity
- Modules can be deployed on local and remote machines

Modularity, Scalability

13/05/2015

Ref.:

Robot Management Framework – Modes FSM

- Operational Context:
 - DryRun, with simulated Hardware
 - Operative, with Hardware-in-the-loop
- **Execution Context:**
 - Debug
 - Debug Version of Modules states are used
 - Debugger module is active to inject failures into the system
 - Mission
 - Release version of the Modules states are used
 - Debugger module is inactive

RunTime Re-Configuration, FDIR, Mission Rehearsal and Validation

ROvers eXploration facilitY (ROXY) - Area

- ~400 m² terrain playground reproducing visual and morphology characteristics of a Mars area (reconfigurable)
- Workshop and Control Room hosted in Deployable Office Boxes

ROvers eXploration facilitY (ROXY) – Research Robots

13/05/2015

Ref.:

OPEN

ThalesAlenia

GNC – Continuous Navigation

- Perception in motion
- >> DEM and NavMap Generation
- Fast Path Planning / Re-Planning
- Reliable Localization

GNC - DEM Generation with Double ToF Sensor

- Multiple Point Cloud Acquisition
- Point Cloud Re-Projection
- Noise Filtering
- Confidence Filtering
- Adjustable DEM Spatial Resolution

13/05/2015

GNC – DEM Fusion

Local DEM 3

- Weighted on sensor reliability
- Noise Filtering
- Distant Region Reconstruction
- Robot Occlusion Compensation

to any third party without the prior written permission of Thales Alenia Space - © 2013, Thales Alenia Space

GNC – Relative Localization

- Localization Data Fusion from Wheel Encoders + IMU + Visual Odometry
- Visual Odometry based on Stereo Vision and OpenSource Libraries
- Tests Results:
 - Synthetic Data Set: overall 6D accuracy better than 2%
 - ROXY outdoor facility: overall 6D accuracy better than 5%

13/05/2015

GNC - Visual Tracking

- Track a selected object in the scene
- Monocular Vision for 2D tracking
- Stereo Vision for 3DOF position estimation
- Machine Learning algorithm to build object model
- Use Cases:
 - Rover Guidance
 - Localization w.r.t an unknown object
 - RDV&D (medium range)

Visual Target Tracking GUI

GNC – Marker Tracking

- Track Single or Multiple Marker Tables
- 6DOF Pose Estimation
- Use Cases:
 - Visual Servoing
 - Rover Guidance
 - Localization w.r.t. a Known Object (e.g. Lander, Rover)
 - RDV&D (Short Range)

Marker Tracking GUI

to any third party without the prior written permission of Thales Alenia Space - © 2013, Thales Alenia Space

Manipulation – Visual Servoing

Uses the visual feedback of marker tracking to control the arm

approaching an object

- Use Cases:
 - Sample/Object Identification and Handling
 - Structured Environment Interaction (e.g. lunar infrastructures maintenance)
 - RDV&D Capture/Berthing Phase

STEPS2 Robotics Team – Thank You

13/05/2015

OPEN

ThalesAlenia

Contacts and References

Authors Contacts:

- TAS-I: Andrea Biggio, <u>andrea.biggio@thalesaleniaspace.com</u>; Carmine lanni, <u>carmine.ianni-somministrato@thalesaleniaspace.com</u>
- UniGE: Sandro Torelli, <u>sandro.torelli@dibris.unige.it</u> Alessandro Sperindè, <u>alessandro.sperinde@dibris.unige.it</u> Enrico Simetti, <u>simetti@dibris.unige.it</u>
- PoliTO: Federico Salvioli, federico.salvioli@polito.it Luca Vercellino, luca.vercellino@polito.it Basilio Bona, basilio.bona@polito.it

References:

- Elkady A., Sobh T. (2012), Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography. Journal of Robotics, Volume 2012.
- Calisi D., Censi A., Iocchi L., Nardi D. (2008), OpenRDK: a modular framework for robotic software development. *The 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.*
- Joyeux S., Schwendner J. (2014), Modular Software for an Autonomous Space Rover. *i-SAIRAS 2014.*
- Biggio A., Merlo A., Tramutola A. (2012), Test Bench for Robotics and Autonomy: Advancements in Navigation for Space Exploration. *i-SAIRAS 2012.*
- Simetti E. et al (2011), A new software architecture for developing and testing algorithms for space exploration missions. *Intelligent Service Robotics volume 4(2)*, Springer-Verlag, pp135-146.
- Simetti E. et al (2010), A Portable Object Oriented SW Framework for Real-Time Control of Robot and Multi-Robot Systems. In Control Themes in Hyperflexible Robotic Workcells (Eds. F.Basile, P.Chiacchio), CUES, pp129-143.
- Biggio A. et Al. (2015), Validation and Verification of Modular GNC by means of TAS-I Robot Management Framework in outdoor ROvers eXploration facilitY. *ASTRA 2015*.
- Kitt B., Geiger A., Lategahn H. (2010), Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. *Intelligent Vehicles Symposium 2010.*
- Geiger A., Ziegler J., Stiller C. (2011), StereoScan: Dense 3D Reconstruction in Real-time. *Intelligent Vehicles Symposium* 2011.
- Medina A., Pradalier C., Paar G., Merlo A., Ferraris S. (2011), A servicing rover for planetary outpost assembly. ASTRA 2011.

13/05/2015

Ref.:

