Recent / On-going Projects

- **SPHERES**
 - Synchronized, Position, Hold Engage and Reorient Experimental Satellites
 - Established in 2001-2002 by MIT, in partnership with NASA, DARPA, and Aurora Flight Sciences
 - Enables experimental research on autonomous GN&C algorithms critical to complex space missions
Recent / On-going Projects

- ISS-SPHERES
 - Microgravity
 - 6 DOF
 - Propulsion
 - 12 CO₂ thrusters
 - TI DSP
 - programmed in C code
 - 167 MHz
 - 16 MB RAM
 - EKF-based navigation
 - IMU
 - ultrasonic beacons
Recent / On-going Projects

- **Machine Vision for Uncooperative Targets (SPHERES)**

Recent / On-going Projects

- **Machine Vision for Uncooperative Targets (SPHERES)**

 - Data collection
 - 10 RPM intermediate axis spin
 - Offline map creation
 - using a laptop (45 min)

Recent / On-going Projects

- Machine Vision for Uncooperative Targets (Envisat)

Recent / On-going Projects

- Machine Vision for Uncooperative Targets (ISS-TriDAR)

Recent / On-going Projects

- Attitude Stabilization with Visco-Elastic Tether

Recent / On-going Projects

- ISS Stabilization for Robotic Free-Flyer Capture

Optimal Trajectory Guidance for Spacecraft Robotic Servicing Missions

Jian-Feng Shi and Steve Ulrich
Department of Mechanical and Aerospace Engineering
Carleton University
Ottawa, ON, Canada

Andrew Allen
Guidance, Navigation and Control Department
MacDonald, Dettwiler and Associates Ltd. (MDA)
Brampton, ON, Canada
Optimal Trajectory Guidance

- Problem Statement

- Meets boundary conditions
- Avoids physical constraints
- Respects performance limits
- Minimizes the path length
Two-step Approach

- First step (sub-optimal solution)

 identify admissible trajectories as quickly as possible.

 \[
 f_{BC_1} = (x(t_0), \dot{x}(t_0)) = 0 \\
 f_{BC_2} = (x(t_f), \dot{x}(t_f)) = 0 \\
 f_{c_i}(x(t), \dot{x}(t), \ddot{x}(t)) \leq 0, \quad \forall i \in [1, n], \quad \forall t \in [t_0, t_f]
 \]

- Second step (optimal solution)

 uses any remaining computation time to refine the solution towards the optimal path (minimize length).

 \[
 S = \int_{x_0}^{x_f} ds = \int_{t_0}^{t_f} \sqrt{\dot{x}(t)^2 + \dot{z}(t)^2 + \ddot{z}(t)^2} dt
 \]
Augmented Cost Function

\[J = f_s^2(S) + \sum_{j=1}^{n} K_j \max_{t \in [t_0, t_f]} f_{c_j}^2 \]

The relative weights need to be chosen to ensure that the constraint violations dominate the cost function.

Once a solution is found that drives the second term to zero, then the resulting trajectory is admissible.
Algorithm Overview

- Parameterize the trajectory with Legendre polynomials to simplify the nonlinear, constrained optimization problem.
- Define the constraints appropriately, such that a simple gradient descent search strategy will find the optimal solution.
- Start optimization with initial guess that meets the boundary conditions.
- Enforce the BCs by a projected gradient algorithm to quickly find sub-optimal solutions.

\[
x_i A C \delta C = \left[I - P_{BC} \left(P_{BC} P_{BC}^T \right)^{-1} P_{BC} \right] \delta C
\]
Optimal Trajectory Guidance

Initial guess

Trajectory at 42 iterations

Trajectory at 45 iterations

Trajectory at 55 iterations

Trajectory at 65 iterations

Final trajectory at 100 iterations
Optimal Trajectory Guidance

ISS-SPHERES

- Static obstacle test
 - 0.3 m spherical obstacle
 - max. acceleration = 0.05m/s²
 - 17 seconds of computation time
Optimal Trajectory Guidance

- Translating Constraints

Optimal Trajectory Guidance

- Translating Constraints

Translating and Rotating Constraints

- Modeling of the geometric constraint (i.e., target satellite)

Loral FS1300

- 196 bodies
- 17 bodies
- 3 bodies
Optimal Trajectory Guidance

- Translating and Rotating Constraints
 - Safety buffer
Optimal Trajectory Guidance

- Translating and Rotating Constraints
 - Motion envelope traced out by boundary points
Optimal Trajectory Guidance
Conclusions

Summary

- Recent and on-going research projects related to uncooperative proximity operations GN&C were overviewed.

- A real-time trajectory guidance law to solve the proximity operation problem in the vicinity of an uncooperative, complex, spinning, spacecraft was proposed.

- The performance was evaluated in a numerical simulation environment for both a slow tumbling and a fast spinning target.