
for

Project Scheduling

Alex Aldas

The Boeing Company
13100 Space Center Blvd.

Houston, Texas 77059
Alex.Aidas@boeing.com

Abstract
As modern engineering projects grow more complex in
nature, proper usage of available resources has become
increasingly important. Inefficiencies in a scheduling
engine could leave a project overdue and over budget. As a
result, schedule density and schedule makespan have been
drawn to the forefront of the planning and scheduling
community. This paper does not try to solve the overall
scheduling problem of maximizing resource usage, but
rather explores the use of a post-process optimization
scheme that attempts to shorten project makespan and
increase resource usage through the use of slack
distribution.

Introduction

In recent years the National Aeronautics and Space
Administration (NASA) has undergone a culture change
within its operations to one of "faster, better, cheaper."
This philosophy has propagated into every facet of NASA,
but arguably none so much as the planning and scheduling
community.

The production of large, complex, one-of-a-kind
products is costly in-of-itself. Unnecessarily
schedules that do not fully utilize available resources can
have a dramatic effect on the overall cost of a given
project. A reduction in project makespan by as little as one
day has a potential cost savings in the tens to hundreds of
thousands of dollars. Therefore, the goal of the scheduler
in assembly operations would be one of minimizing project
makespan without lowering the quality of the schedule.

Mission planning and scheduling a different
flavor of the resource constrained project scheduling
problem (RCPSP). Here no product is assembled, nor is
there a defmed network of Rather, mission
planning involves the scheduling of or groups of

which may contain and/or resource
constraints. Effective to maximize
the number of

the

has a direct impact on the cost and efficiency of the project.
This paper does not attempt to explain the methods used to
schedule such but rather it a post-process
schedule strives to further
condense any feasible schedule. a "'"''·'"''"''"'
excess slack is redistributed and later extracted. The final
schedule has a decreased time and resource idle
which to

Resource Constrained Project Scheduling

A resource constrained project problem is
defmed by a set of tasks, which operate on a set of finite
capacity resources. Each task can contain any number and
variety of constraints imposed. The goal of such a problem
is to defme a schedule in which all constraints are satisfied
while some objective to
minimize project makespan. schedule which satisfies
all the constraints is labeled as feasible, while any feasible
schedule whose makespan is as short as the shortest known
feasible schedule is labeled as optimal.

Schedule Packing

Schedule packing is a post-process optimization scheme
meaning that it attempts to further an existing
feasible schedule with respect to assignment density. As

the algorithm is independent of the method used to
generate the feasible schedule. While it does not perform
scheduling itself, it drives a scheduler to select a task,
unschedule it, and re-schedule it on the timeline. Schedule
packing can be performed on any feasible schedule so long
as the scheduler has the of "locking" a schedule
and individual
tasks. It is the of the scheduler to
insure that all constraints are satisfied in the re-sc11ectuung

way to schedule
let us take the most trivial of all

1 4
T2 1----ll"i

0 0
1--------+-1 T6

D- Task Duration, Time Units
R- Required Number of Resources
T- TaskiD

cases: resource, with constant initial over
time. For this we will defme a resource R with a
constant 10. Our project, in 1,
consists with tasks I 1 and milestones.
Each task has associated with it a duration, in time a
required number of resources and a task ID. Performing
a sort by name, followed by a sort by predecessors on the
task list and scheduling each task in the first available
interval feasible results in the feasible
schedule illustrated in Figure 2.

Our initial schedule has a makespan of 4 time units. If
we were to track our resom:ces, not enforce resource
constraints, we could achieve a schedule makespan of 2
time unit1'L the added length to the project duration
is due to resource constraints rather than technological
(precedence) constraints. I o shorten the makespan of this
schedule we must be able to resolve critical resource
constraints within the schedule.

Schedule packing begins with our initial feasible
schedule. The algorithm proceeds as follows:

• Select aU tasks.
• Sort by latest scheduled end time (secondary sort by

latest start time in case of a tie).
• Starting from the top of the task list, unschedule

each task and reschedule it into the right most
feasible intervaL

The results of the above process on our initial feasible
3. What we have done is

our initial schedule to
hand the

mSJ)eC1tiOn of 3, the
unit.

the entire 1 time unit
results in a new feasible schedule with a maike:spa.n of 3
time units.

The next
further?

qm~sti:on is can this new schedule be
indication of whether a schedule

RC

RU , 6 3

Figure 2: Initial feasible schedule

Figure 3: Right shifted schedule

has the potential of being packed is to examine the slack
associated with the begirming task(s) of a project If any of
the beginning tasks has a slack time greater than zero, then
the project can potentially be packed. Our initial schedule
in Figure 2 indicates that task T4, a beginning task since Tl
is a milestone, has a slack time of 1 time unit. This
indicates that our initial schedule has the of being

After performing schedule packing on our initial
schedule, we fmd that all of the beginning tasks, T3,
and T5 have a slack time of zero. Since all of the
beginning tasks have a slack time of zero, the resulting
schedule has probably been packed as much as possible.

Schedule Packing with Real

aircraft assembly, the scheduling of a single sub-assembly
can have as many as 1,164 tasks scheduled against 226
resources. In addition, the availability of skilled labor is
usually a function of shift and contract work.

Our scheme as described above is inadequate for
packing complex projects. The primary reason for this
short-coming is because we cannot simply pack the
schedule against the right-hand fence and then slide the
whole schedule back towards the left-hand fence. This
would only be possible if all resources used within the
project have a constant initial availability. Since most real
world projects do not have this property, we must extend
the schedule packing scheme to handle the generic case of
variable resource availability.

By sorting and rescheduling against the right-hand fence
we attempt to distribute slack among tasks so that resource
conflicts can be broken. The result is a "packed" schedule
crammed against the right-hand fence. If we perform the
exact same operation but in the reverse direction, i.e., sort
by earliest scheduled start time and schedule into the left
most feasible interval, we are effectively "sifting" tasks
into "slack holes" left by the shift right operation. Further
"sifting" will result in a steady-state schedule which is
packed in both directions. Further shifting will produce the
same initial schedule.

To summarize the generalized schedule packing
algorithm:

• Select all tasks.
e Sort by latest scheduled end time (secondary sort by

latest start time in cas5! of a tie).
• Unschedule and re-schedule each task into the right

most feasible interval.
e Sort by earliest scheduled start time (secondary sort

by earliest finish time in case of a tie).
• Unschedule and re-schedule each task into the left

most feasible interval.

The generalized schedule packing scheme is
independent of project structure, resource availability, and
resource requirements. It' can be used on any feasible
schedule so long as the underlining scheduler is capable of
unscheduling and rescheduling a single task into left-most
and right-most feasible intervals.

Benefits of Schedule Packing

The degree to which schedule packing can reduce project
makespan is a function of several variables including: 1)
quality of the initial schedule and 2) variability in resource
availability.

Initial schedules that are near optimal contain a limited
amount of slack for which schedule packing can be
utilized. Since slack is what the algorithm uses to pack
tasks against each of the project fence dates, a schedule
with a large amount of slack is more apt to reductions in
schedule than a initial
schedule.

* Note: Simple Feasible Interval (Sfl) scheduler used with a sort by

predecessor dispatch order. SP = Schedule Packing

Table 1: Compression analysis for benchmark tests

Schedules that contain a high degree of variability in
resource availability usually result in projects with
numerous resource conflicts. While schedule can
eliminate some of these conflicts, its is
limited.

To examine the degree of compression that schedule
packing provides, a set of benchmark tests2 that emulate
real-world assembly projects was chosen. The analysis
consisted of tests 2, 3, and 4 within t.>te 12 test data set
Each test contained 575 tasks to be scheduled against 17
resources simple resource modeling - single mode
with precedence, labor and zone constraints. Results from
the benchmark tests are presented above in Table 1.

While this data set is a fair example of an assembly
process, in practice we have found that the constraints
modeled are much more complex than those found in the
benchmark tests. Additionally, resource availability is not
as "cleanly" defined. Modern assembly processes may
move between two and three shift operations and may pull
additional resources based upon contract needs. As a
result, resource availability histograms appear more like
skylines than simple step functions.

To test schedule packing in real world projects, an
aircraft sub-assembly with a degree of constraint modeling
and resource utilization typical of modern complex
assembly operations was chosen. The "live" data set
included 169 tasks to be scheduled against 42 resources.
Resource requirements were modeled in a multi-modal
form and included advanced modeling techniques such as
interruptibility, grouping, linking, and timeline exclusivity.
The results of the test are displayed in Table 2.

Makesvan, hh:mm % Compression
Baseline Schedule 115h:45m -
Baseline Schedule+ SP 98h:9m 15.2

* Note: Schedule generated by TimePiece©. SP = Schedule Packing.

Table 2: Schedule packing :results on aircraft sub­
assembly scheduling.

2 Benchmark tests can be found at

"good"
has a resource
corresponds to a decrease in schedule u"'"'"''~-'"'-"·
schedule ~'"'v"-'""" was described in the context

it has been used

similar results.

scheduling operations
and on-orbit operations

Conclusion

While

Schedule packing is a post-process optimization algorithm
that drives a scheduling engine to compress any existing
feasible schedule so long as the scheduling engine is
capable of enforcing all task constraints. It has been shown
in practice to reduce the schedule of
initial schedules by 15-20%. In a time where proper
resource management is of high priority, schedule ..., -,;u.,,,_
provides a simple schedule improvement scheme
of today' s schedulers can employ to obtain a
resource utilization

References

Wiest, J. D. 1964. Some Properties of Schedules for Large
Projects with Limited Resources. Operations Research.
12(3):395-418.

3 F-18 Avionics Integration Lab, The Boeing Company (FRMS©)

4 SpaceHab Operations (COMPASS"')

	1997-1_Part8
	1997-1_Part9
	1997-1_Part10
	1997-1_Part11

