
Observation Scheduling Objectives 

John Bresina A. Morris William R. Edgington 
Recom Technologies Florida Institute of Technology Recom Technologies 

NASA Ames Research Mail Stop: 269-2 
Moffett Field, CA 94035-1000 USA 

{bresina, , wedgingt}@ptolemy.arc.nasa.gov 

Abstract 

In this paper, we present a novel approach that 
enables the automatic generation of high qual­
ity schedules with respect to a given objective 
function. The approach involves the combina­
tion of two techniques: GENH, which automati­
cally generates a search heuristic specialized to 
the given problem instance, and HBSS, which 
employs the heuristic as a bias within a stochas­
tic sampling method. We empirically investi­
gate the performance of these techniques, in­
dividually and in combination, within a real­
world application of observation scheduling. 

Introduction 
In this paper, we present a novel approach that enables 
the automatic generation of high quality schedules with 
respect to a given objective function. The approach 
inv?lves a combination of two techniques: GENH [7], 
wh1ch automatically generates a search heuristic special­
ized to the given problem instance, and Heuristic-Biased 
Stochastic Sampling (HBSS) [2], which employs a given 
heuristic as a bias within a stochastic sampling method. 
These approaches have been implemented within the As­
sociate Principal Astronomer (APA) system, which pro­
vides management support and improved observation 
scheduling for fully automatic, terrestrial telescopes. 

Deriving search heuristics that are both accurate and 
computationally is a difficult endeavor for 
most problems. This is especially true when not just 
any solution is acceptable and the heuristic is further re­
quired to find a high quality solution. Furthermore, the 
larger the class of problem instances, the more difficult 
it is for a search heuristic to perform consistently well 
over the class. 

GENH was 
of a domain 

motivated the idea that the role 
should be limited to ~~·,~•~•u•hr.~ 

to the changing position of the celestial targets as well 
as the addition or modification of the observation re-
quests. the search heuristic that well 
for one may not do so well for 
the next one. Since it to find a heuris-
tic that well across the wide range 
instances, the automation of this task GENH is im-
portant for this scheduling application. 

The number of feasible schedules of 
vations for a day is on the order of , 
such large spaces, it is very that anv 
heuristic can yield a globally optimal schedule via greedy 
search. The underlying assumption behind the HBSS 

approach is that strictly adhering to a search heuris­
tic often does not yield the best solution and, therefore, 
that off the heuristic path can prove fruitful. 
Within HBSS, the balance between heuristic adherence 
and exploration is controllable by the user. The accu­
racy of the search heuristic is an factor in 
choosing the balance to use; typically, the 
less accurate the heuristic, the weaker the bias towards 
heuristic adherence should be. Another important fac­
tor is the amount of solution generation time available; if 
there is not much time available, then exploration must 
be limited and a bias is recommended. 

The outline of the rest of the paper is as follows. We 
first briefly present background on the application do­
main, and we next present the GENH and HBSS tech­
niques. Then we empirically demonstrate the improve­
ment yielded by the two techniques, individually and in 
combination. The improvement is with respect to the 
original dispatch scheduling technique encoded in the 
telescope controller. In the last section, we offer some 
concluding remarks. 

Observation Scheduling Domain 

The input to the APA observation scheduler is a set of 
requests, the Automatic Telescope In-
struction Each of 



interval. On a given night, an observation can only be 
executed during the intersection of the observation's in­
terval and that interval of darkness. Enablement 
is also affected by the moon - each observation includes 
a constraint regarding whether the moon must be up, 
down, or either. Furthermore, even those observations 
that are enabled when the moon is up cannot be exe­
cuted when its observation are too close to the 
moon. We refer to the time interval (for a 
during which an observation can begin execution as its 
enablement interval. The primary preference is 
the relative priority that an astronomer assigns to each 
observation request. On many nights, not all of the 
sible requests can be executed; these relative ,.,.,,"'"'t"'" 
help determine which subset to execute on a given night. 
Each observation takes around five minutes to 

and between 60 and 140 observations can be 
executed a 

We formulate this 

search tree node '""''"'""'""'"t" 
of the APA scheduler is to find a sequence of observations 
that achieves a good score to the objective 
function. For further domain details, see [3; 5]. 

The ATIS standard also an heuristic dispatch 
which can be used to select the next observation 

to execute. The policy is expressed as four selection 
rules: priority, number-of-observations, nearest-to-end­
window, and file-position. -When the controller has fin­
ished executing an observation, it first determines the 

enabled observations and then these 
in the sequence given to select one. rule 

is used to break ties that remain from the application 
of those that preceded it. If the result of applying any 
rule is that there is only one observation remaining, that 
observation is selected for execution and no further rules 
are applied. Since there can be no file-position ties, the 
dispatch policy is deterministic. 

ATIS dispatch is a robust scheduling method that has 
been used fairly successfully for several years to schedule 
automatic photoelectric telescopes at Fairborn Observa­
tory before the development of the APA. (See [6] for a 
performance evaluation of ATIS dispatch.) The dispatch 
decisions are determined purely locally, without look-

by contrast, the APA uses a search-based sched­
uler (for APA scheduler details, see [4]). 

The GenH Technique 
In this we describe the GENH technique, first 

introduced in GENH 
search heuristic that is "~-''"""'u"'"''"' 
lem instance. For observation "'-L«ou•uL.,u5 

GenH(objective, attributes, requests) 
begin 
{generate seed} 
bestH = random...seed(attributes) 
best...score = eval(bestH) 
{initialize boundary variables} 
boundary.= 0.5 
granularity= 0.1 
{ until granularity minimum exceeded} 
.,..,,..,.,,,t: until granularity < 0.004 

each attribute separately} 
each A E random...order(attributes) 
candidates = neighbors(bestH, A, 

granularity, boundary) 
if (3 H E candidates such that 

eval(H) < best...score) 
then update best_H and best_score 

endfor 
{reset boundary variables} 
boundary = boundary / 5.0 

= granularity / 5.0 

Figure 1: The version of the GENH heuristic generation 
algorithm in the reported The 
function eval invokes the scheduler the ob-
jective function to the resulting 

a space of candidate heuristics. GENH solves an opti­
mization problem, defined as follows. The candidate so­
lution is { < w; > I E [0, 1] and = 1}; 
i.e., the set of all weight vectors such that each weight 
is in the interval [0, 1] and the sum of the weights equals 
1. GENH's evaluation of a candidate heuristic is the ob­
jective function score of the schedule found via greedy 
search using that candidate. 

GENH uses local search (also called repair search) to 
conduct a search through S. In a local search space, 
each node corresponds to a solution candidate, and for 
each node, a neighborhood function defines a set of neigh­
bors, each of which corresponds to a local modification of 
the candidate solution. A simple local search process, re­
ferred to as iterative improvement, starts at a randomly 
generated "seed" at each decisions point, chooses 
the of the current node that most improves the 
current evaluation score. 

Many variants of local search techniques were tried 
within GENH. We here a simplified version that 
was used in the reported this algo-
rithm is shown in GENH 
initial seed 

and then .uv.u.uau«.u•.%, 

then evaluated. GENH's evaluation of a candidate 
the APA scheduler on the 



with the given objective function (accomplished by the 
eval function in the figure). 

In GENH's search space, the neighbors of a node are 
generated by adjusting the weight of a selected at­
tribute and then dividing each weight by the sum of the 
weights so that the resulting vector sums to 1 (accom­
plished by the neighbors function in the figure). The 
best neighbor resulting from tuning one attribute is the 
starting point for the adjustments made to the next se­
lected attribute, until all the attributes have been singly 
tuned. In the reported experiment, the attributes are 
processed in a random order. 

The set of adjustments to the selected weight is based 
on two parameters: a boundary parameter which deter­
mines the maximum adjustment (increment or decre­
ment) to the weight's current value, and a granularity 
parameter which determines the set of ( uni­
formly distributed) between these bounds. After each at-
tribute has been tuned the granularity and bound-
ary parameters are and the entire set of at-
tributes is tuned again. On each iteration a smaller 
neighborhood of the current best heuristic is searched 
with a finer granularity. The search terminates when the 
granularity parameter exceeds user-specified minimum. 

In the reported the 
ter is initialized to 0.1 and the boundary is 
initialized to 0.5. If the initial value for the weight se­
lected for is v, the set of neighbor values con­
sidered is { Vn = max(O, v - 0.5) + k x 0.1 I Vn ::::; 

min(l, v + 0.5)}, where k is an integer. After each it­
eration, both parameters are divided by 5; there 
is a constant upper bound-on the number of neighbors. 
Thus in the second iteration, the set of neighbor values is 
{vn =max(O,v-O.l)+kx0.02 J Vn min(l,v+O.l)}. 
In the reported experiment, the was terminated 
when the granularity parameter is less than 0.004 (i.e., 
after three iterations of the repeat loop). 

The HBSS Technique 
In this section, we describe the Heuristic-Biased 

Stochastic Sampling (HBSs) algorithm, first introduced in 
[2]. Within HBSS, the desired balance between heuristic 
adherence and exploration in the search space is deter­
mined by specifying a bias function and a ranking func­
tion. Both of these functions enable the user to encode 
information about the heuristic function; this additional 
knowledge is employed search to tailor the guid-
ance the 

The ranking function enables the encoding of informa-
tion what relevant distinctions to make within 
the range of heuristic function. The ranking function 

the heuristic's into classes 
and determines of the 
between classes. The 
ing of information reE~ar•dn:tl! 
tic and the amount of that is desired. A 

bias tends to follow the heuristic's advice more 
often and to farther off the 

HBSS-iterate(root, heuristic_fnc, bias_fnc) 
begin 
currenLstate = root 
nodes= successors(root) 
repeat until empty(nodes) 

current_state = HBSS-select(nodes, 
heuristic_fnc, rank_fnc, bias_fnc) 

nodes = successors( current_state) 
endrepeat 
return current_state 
end 

HBSS-select(nodes, heuristic_fnc, rank_fnc, bias_fnc) 

score nodes with heuristic_fnc 
rank nodes with rank_fnc based on scores 

nodes with bias..fnc based on ranks 
normalize weights to yield selection probabilities 
select node stochastically according to probabilities 
return selected node 
end 

Figure 2: HBSS-iterate performs one iteration of the 
HBSS algorithm, and HBSS-select is used at each de-
Clswn within where successors 
returns the states from application of each ob-
servation enabled in the state. 

The algorithm for generating one sample, or schedule, 
is given in Figure 2; this version assumes that the search 
tree has finite branching and finite depth, as is the case 
for our domain. At each decision point, the alternative 
choices are scored to the given heuristic func­
tion, and each choice is assigned a rank, according to 
the given ranking function, based on these scores. We 
assume that ranks are positive integers and that the top 
rank is 1. The given bias function is then used to assign 
a non-negative real-valued weight to each choice based 
on its rank. The assigned weights are then normalized 
by dividing each one by the sum of the weights. The 
normalized weight for an alternative choice represents 
its probability of being selected; a choice is selected ac­
cording to these probabilities by a weighted stochastic 
process. 

A typical ranking function is one that puts choices 
with equal heuristic scores into the same equivalence 
class and then assigns these classes consecutive integers. 
A typical family of bias functions are the polynomial bias 
functions defined as polyn = r-n, where r is the rank 
and n is the polynomial degree. 

3 illustrates how HBSS-select works. In this 
"'"'"'-""1 "'-'-''"'·"'1.wo, at each decision 

three choices which are =~·'~''"'u 
ble in the shows how 
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Figure 3: Example of solution probability distribution induced by HESS-iterate with a poly1 bias of 1/r on an 
hypothetical tree. In the tree, nodes are labeled with the assigned rank, arcs are labeled with the selection probability, 
and the bottom numbers indicate the probability of reaching the corresponding leaf node. 

rank and each arc is labeled with the selection 
probability. The number below each leaf of the 
tree is the probability of reaching that which is the 
product of the selection probabilities of all the arcs in 
the path from the root node to the leaf node. Hence, the 
incremental application of HBSS-select induces a prob­
ability distribution over the space of possible solutions. 

Typically, the HBSS-iterate routine is executed some 
number of times, based on the available schedule gener­
ation time, and the best schedule with respect to the 

function found is returned. It is difficult 
to predict which bias function is to yield the best 
performance on a given problem, a heuris-
tic and a given number of samples. One approach to 
ameliorating this problem is to use more than one bias 
function and alternate on each sample. This would allot 
an equal number of samples (within 1) to each bias func­
tion regardless of the number of total samples. Within 
the APA scheduler, a "sample proportion" can be spec­
ified for each bias function so that uneven computation 
shares can be allotted. In the reported experiment, we 
use this multi-bias HBSS approach with poly2 , poly3 , 
and poly4 , each getting an equal share of samples. 

Experiment Methodology 

In this we describe the methodology of the com­
putational experiments, which were carried out within 
the observation scheduling class. One of the 

is to test the that adap-

To test our hypothesis, one of the scheduling meth-
ods employed is a deterministic technique 
based on ATIS in the second section). 
The dispatch policy was simulated as search with 
the "dispatch heuristic". 0.625 x + 
0.3125 x run count+ 0.0625 x enablement time. 
attribute run count is the number of times the observa-
tion occurs in the current schedule and the at-
tribute enablemeni time is the time remaining 
in the observation's enablement interval. Lower prior-

numbers indicate more importance, and lower values 
are also preferred for the run count and enablement time 
attributes; hence, a lower heuristic score is better. 

For the test cases, we selected a set of problem 
instances over the 251 day interval of Julian Dates 
[2450400, 2450650]. This range of instances assures vari­
ation in problem characteristics (specifically, with re­
spect to load capacity and phase of the moon). The 
objective function is the weighted summation of two 
attributes: one which penalizes enabled observations 
that are missed in the schedule based on their priority, 
and one which prefers schedules that minimize the av­
erage airmass of the scheduled observations. The 
ity is as lOPmax-P(mo), where the 
summation is over all observations mo, P(mo) is 
the priority of observation mo, and Pmax is the max­
imum priority in the observation set. The average air-
mass is calculated as A(so) x D(so) -dusk), 
where the summations are over all observa-
tions so, A(so) and is the 
duration of so. based on the se-
cant Of the Ct::lt::»\,U}Jt:: ~rmn>~>n 

function are 100 



with respect to the priority penalty attribute than an­
other, then it will have a better objective function score 
no;;c»•-U'~"" of the airmass score; hence, the 

break ties between schedules 
that have the same penalty score. 

The set of candidate attributes for GENH includes the 
attributes contained in the heuristic, as well as 
an additional attribute, airmass. The reason for includ­
ing the additional attribute is to GENH's abil­
ity to examine arbitrary collections of attributes and to 
weed out noneffective ones. 

We carried out a comparative analysis of the following 
four 

• Greedy Dispatch: Deterministic greedy search using 
the dispatch heuristic 

@ Greedy GenH: Deterministic greedy search using the 
problem's GENH heuristic · 

• HESS Dispatch: Multi-bias HBSS using the dispatch 
heuristic 

® HESS GenH: Multi-bias HBSS using the problem's 
GENH heuristic 

The comparisons of interest are the following: ( i) Greedy 
GENH vs.. Greedy Dispatch, ( ii) HBSS Dispatch vs. 
Greedy Dispatch, (iii) HBSS GENH vs. Greedy GENH, 
and (iv) HBSS GENH vs .. HBSS Dispatch. 

On each problem instance in the test suite, the per­
formance of each of the four techniques was evaluated 
as follows. For the two deterministic techniques, the 
performance evaluation is the objective function score 
of the single schedule generated. For the two stochas­
tic sampling methods, five runs of 15 samples each were 
performed. Hence, the poly2 , poly3 , and poly4 bias 
functions are each employed on 5 samples. For each run, 
the best objective function score from the 15 samples is 
collected; the performance evaluation is the average of 
these five best scores. 

Interpretation of Results 
In this section, we discuss the empirical results gathered 
thus far in our ongoing inv:estigation. The performance 
results for the four, above comparisons are illustrated in 
Figures 4 and 5. Rather than illustrating the compar­
isons in terms of the objective function scores, they are 
illustrated with respect to each of the unweighted at­
tribute scores, in order to more closely examine the dif­
ferences between the four techniques.. Since the weighted 
priority dominates the average 
airmass, the performance w.r.t. the objective function 
score exactly mirrors the performance w.r.t. the un-
weighted 4 illustrates improve-
ment w.r .. t. 5 illustrates the 

average airmass. Since lower scores 
ImDt()VE:m(~nt of technique A over tech­

'"v'""""''"'"' as B's score - A's score, and a 
'1"Y1"'",.."""""'"'r't indicates the of B 

lmDr<)Ve:m~~nt is utilized in 

The two plots in the first (top) row of Figure 4 show 
that for all but 3 of the 251 problem instances, the 
heuristic GENH '""'·'u'""""a 
the dispatch heuristic when both were used in 
search. For the three exceptions (JDs 2450480, 
and 2450543), either an equally (or better) heuris-
tic did not exist in GENH's space or else GENH 
failed to find one within the limitations of the specific 
search strategy 

The two second row show on 
every problem instance, HBSS with the 
tic was able, in 15 to find a o""'•""'·'""'"' 
better schedule than the solution. 
the first two rows indicates that both HBSS 

individually almost 
improvement over 

The bottom two rows in the illustrate how the 
combination of HBSS and GENH compares to each tech-

The results in the third row 
how much HBSS and the results 

plotted in the fourth row much GENH 
helps HBSS. The right in the third row shows that 
on 5 problems, HBSS was not able to find, within 15 sam­
ples, a schedule as as the one GENH found. The 
left in that row shows that HBSS did not often 
GENH - it did so on 13 of the 251 however, 
it significantly helped on the three problems for which 
GENH did much worse than greedy dispatch. This is an 
indication that HBSS and GENH are 

The results plotted in the last row indicate that GENH 
helped HBSS on 87 problems, hurt HBSS on 12 problems, 
and had no affect on the remaining 152 problems. This 
suggests that giving HBSS a head start with a better 
heuristic can help it find better schedules, but that HBSS' 

. performance is not strongly dependent on the quality of 
the heuristic - which was one of the intended features 
of HBSS' design! We expect that the greater the number 
of samples used by HBSS, the less sensitive it will be to 
heuristic inaccuracy .. 

\Ve now turn our attention to the secondary scheduling 
objective: minimizing airmass. The four comparative 
analyses with respect to the average airmass attribute 
are shown in 5 .. The two plots in the figure's top 
row illustrate performance of HBSS and GENH indi-
vidually, and the two plot in the bottom row illustrate 
the performance of the two techniques in combination. 

The right plot in the top row indicates that HBSS gains 
the over with to 
the priority penalty at the cost of increased airmass. 
In contrast, GENH makes this tradeoff much less often 
and, furthermore, GENH usually improvement over 

dispatch as welL 
of the 

in that row indicates 
rnT,rrmPn">nT. transfers to the HBSS 

"""·np,rt to 



suits (shown in the bottom row of Figure 4) that GENH 
can sometimes improve HBSS' priority scores, indi-
cate that HBSS GENH are complementary. 

6 illustrates GENH's e., the heuris-
tic attribute weights, over the test problem class. The 
sparseness of the for the heuristic attributes for 
priority and enablement time indicate that often GENH 
chose a zero thus the attribute from 
the heuristic. 
on 173 of the for the 
and on 162 problems for enablement time; whereas it 
only happened twice for the airmass attribute and only 
once for run count. The average for the four at-
tributes are as follows: airmass: run count: 0.296, 
priority: 0.061, and enablement time: 0.048. 

These results help GENH does so well with 
to the airmass 

with 

such on 
objective attribute differs from the priority heuristic at­
tribute. The latter can be evaluated on either a 
complete or schedule since it is defined in terms 
of what is included in the schedule. Whereas the former 
is the more global property of what is from the 
(complete) schedule. It is due to interactions 
among the attributes and specifics of the observation re­
quest that a scheduler which locally optimizes with 
respect to airmass schedules that also score 
well with respect to the global priority objective. 

Conclusion 

In this paper, we described two approaches to improving 
schedule generation with respect to the domain-specific 
objectives. GENH improves schedule quality by improv­
ing the search heuristic, and HBSS improves schedule 
quality by making better use of a given search heuristic. 
The results demonstrate the superiority of an adaptive 
scheduling approach and suggest that HBSS and GENH 
are complementary in the following respects: 

• HBSS can compensate when GENH misses the mark 
and produces an heuristic worse than dispatch. 

e GENH enables HBSS to the score 
and, 

and secondary 
over dispatch without sacrificing 
thus, to ,..,..,,.-,..,...,,"' both the 
scheduling 

When HBSS in practise, the intent is to first 
search and then to run HBSS for the 

solution time in an to find 
a better solution via informed vAif-'H->'H•>HV,c<. 

within the APA scheduler we can use any combination 
the four solution discussed our current 

We intend to explore other search strategies within 
GENH, e.g., a multistart approach in which multiple 
GENH iterations are run, each with a different random 
seed. We also intend to how the number of 
HBSS samples affects the between GENH and 
HBSS. to address multi-

resource and 
over achieved by the combination 
GENH should become even more '"~'•'u.mAHH 

Thanks to Stuart Rodgers, who played a major role 
in the original development of GENH. Thanks also to 
the APA project team's former members: Mark Drum­
mond, Keith Swanson, and Ellen Drascher, and our col­
laborators: Gregory Henry (Tennessee State University), 
Donald Epand (Fairborn Observatory), and Louis Boyd 
(Fairborn Observatory). 
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