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Abstract 

This paper describes a preliminary concept 
demonstration of an automated capability to 
analyze telemetry data to mainte-
nance requests and use information to 
generate a maintenance plan. In this ca­
pability, real-time downlinked telemetry data 
from a reusable spacecraft would be ;m;~•v·y,pn 
to determine appropriate maintenance goals. 
These goals would then be used to develop a 
maintenance plan to be implemented upon ar­
rival of the spacecraft. This capability would 
allow pre-positioning of resources and would 
lead to shorter turnaround times for the ve­
hicle, increasing the fleet utilization rate and 
thusly leading to lower costs. 

The Highly Reusable Space Transportation 
(HRST) program targets development of technolo­
gies leading to highly reusable space transporta­
tion systems which will provide extremely low cost 
access to space [HRST95, HRST96). As part of 
this program, we have been developing and demon­
strating advanced scheduling systems for the rapid 
generation and revision of plans for maintenance 
and refurbishment of highly reusable launch vehi-
cles. In this real-time telemetry down-
linked either or after 
would be analyzed to automatically generate a set of 
maintenance requests. These maintenance requests 
would then be transformed into a refurbishment 
plan an automated planning and 
tern which would account for available ""~'·u!Ju"'u 
and resources as well as the intricacies of the refur-
bishment of the 

sion systems (this operations flow is shown below in 
Figure 1). 

The end for automating this process is to 
allow a turnaround of several days for the HRST 
spacecraft to support a flight frequency on the or­
der of one flight per 1-2 weeks. As a comparison, 
the space shuttle refurbishment process currently 
takes approximately 65 days with a flight frequency 
of once per 4 months. It is worth noting that 
while automated planning and scheduling is already 
used extensively in ground processing for the Space 
Shuttle [Zweben 1994, Deale 1994], one difference 
is that highly reusable space transportation is be­
ing designed with the central goals of: reducing the 
turnaround time for the determi-
nation of maintenance and sim-
plifying the required maintenance activities them­
selves. If the maintenance schedule can be gener­
ated using in-flight telemetry then the refurbish­
ment process can be speeded even further by allow­
ing for downlinking of requests for pre-positioning 
of equipment and resources to minimize schedule 
delay. 

Once the actual maintenance plan has been gen­
erated, the planning tool continues to be of use 
in two ways. in many cases there can be 
several mutually exclusive maintenance activities 
which can be performed next. Via lookahead and 
critical path analysis, automated scheduling soft­
ware can determine the next activities to enable 
the minimal schedule execution 
time). (such 

and 

In to test and validate this 
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Figure 1: Information Flow for Automated Maintenance Request Generation and Planning 

we built a preliminary proof of concept prototype 
which was demonstrated in the fall of 1996. This 
prototype consisted of two main modules (as previ­
ously described in Figure 1): 

l. The telemetry analysis module, which analyzes 
real-time telemetry and produces a maintenance 
request; and 

2. the maintenance plan generation module, which 
accepts the maintenance request and generates an 
appropriate maintenance plan. 

For 
the Envelope 
ror Relaxation 
DeCoste 

maintenance requests, we used 
and Monitoring using Er-

(ELMER) [DeCoste 1997a, 
ELMER uses statistical rna-

chine to learn and refine input­
conditional limit functions from historic and/or sim­
ulated data. These limit functions define context­

within which 

the HRST domain. Thus, to functionally demon­
strate our prototype, we defined (artificial) map­
pings from the abnormalities detected by ELMER 
in the Shuttle data to maintenance requests relevant 
to our HRST planner models. 

In the development of the maintenance plan gen­
eration module for the prototype, we used the AS­
PEN and scheduling [Fukunaga et 
aL 1997]. The ASPEN planning and scheduling 

1s a domain planning 
and scheduling application framework to 
support a wide range of planning and scheduling 

For the HRST nrr.Tr.T•<rn<> 

for the proposed Rockwell 
International led for the X-33 Reusable 
Launch Vehicle program. While these 

to be the same f-'"'"~uuu::" 
HRST 



Maintenance 
Module 

In our HRST prototype, ELMER is used 
to each datum in the u,,,vu.uu 

time-series data stream 
and each as either abnormal outside the 
learned bounds) or normaL Each class of abnormal­
ity 
is then 

historic to reflect NVntCJVt_Q~>rl Learn-
ing detectors instead of manually 
ing them can pv""''·'""'"J be both cheaper and more 
accurate. 

Given the 
data that are 

volumes of testbed and inflight 
becoming increasingly common in 

domains, there is much promise 
can be feasible, The primary is­

sue is a fundamental need to appropriately balance 
the cost of analyzing false alarms against the risks 
of missing significant faults. 

Below we summarize some of the key ideas be­
hind the ELMER techniques, with some emphasis 
on how it tries to avoid false alarms while still re-
taining sufficient accuracy. 

Motivations Behind ELMER 
In practice, automated monitoring of spacecraft 
relies heavily on limit-sensing and simulation. 
Limit-sensing compares time-evolving sensor values 

high and low alarm limits. For the sake 
of minimizing the run time cost of monitoring, the 
numbers of false "nuisance alarms", and the costs of 

these limits are 
ically predefined, static, and relatively wide 
"red-lines"). Alternatively, simulation 
computes limits at the cost of 
dynamic models that are to 

and execute. Unfortunately, limit-sensing 
tends to be toci alarms) and sim-

(false 

our intuitions that sim­
ple limit-sensing can if we find limits 
that are context-sensztive functions and we limit­

of the raw data. 
multiple npJ•<;:n,ort.l 

learning bounds on both a raw sensor and 
on its derivative) is that that can allow each bound 
can be relatively loose (to reduce false 
collectively they still detect most 
faults. that fact that 
many faults manifest themselves as many anoma­
lous data across many times. Many tasks do not 

a fault as earlier as 
so risks false 

alarms. 
In our early exposure to Shuttle opera-

we discovered that of-
uuu)o!.c:u the red-lines for some sensors 

up or down between flights, to account for both nui-
sance false alarms and for realizations that 
some limits were wide. ELMER can be 
viewed in part as a means for automating such a 
process via machine 

Summary Techniques 
We define the bounds estimation problem as follows: 

Definition 1 (Bounds estimation) Gwen a set 
of patterns P, each specifying values for inputs 
x 1 , ... , x d and y generated from the true un­
derlying function y = f(x 1 , ... , XD) + E, learn high 
and low approximate bounds YL = h(xl, ... , xz) and 
YH = fH(xl, ... , Xh), such that YL ::; y::; YH gener­
ally holds for each pattern, according to given cost 
functzons. 

We allow any 1 ::; l ::; d, 1 ::; h ::; d, d 2: 1, D 2: 
0, making explicit both our expectation that some 
critical inputs of the generator may be completely 
missing from our patterns and our expectation that 

may be irrelevant or useful in 
uu.uu''iS only one of the bounds. 

For each envelope sensorS, we compare its actual 
sensed value at each time t+1 to its 
predictions (YH and YL). To 
will usually discuss learning only 
the low bounds case is 
alarm occurs when YH is below the 
y, and a non-alarm occurs when YH 2: We will 
call these alarm and non-alarm denoted 

IPI = 



We can favor non-alarms over 
values for the 

factors where > PH n. This is anal-
ogous to the more common use of nonstandard loss 
functions to risk minimization in classifica­
tion tasks. 

1 and R gives 
us the standard class of Minkowski-R errors, where 
R=2 standard error and R=l 

classic robust estimation 
effects of outliers). 

We focus here on linear regression 
to bounds 

reduces the 

(i.e. YH ·= 
both 

closed-form solution 
cost, we use an iterative 

batch linear regres­
performance of the Newton 

to that of the classic 
sion. Conveniently, 
method becomes aua.n.,"'v 

closed-form solution 
tion (SVD) in the special 

1, RHn 

RLa Even for asymmetric R 
and P values, we have found the result-

from SVD to be useful as initial seed weights. 
For such seeding allows =0 to a 
non-trivial result for lower-bounding. Otherwise, 
with initial weights of all 0, PHn =0 would result in 
zero error (since EJLI would be 0) and thus training 
would immediately with the constant result of 
YL=O. 

The complexity of linear regression is cubic in the 
number of For our application domains the 
number of sensors and transforms we wish to con-
sider as in the hundreds or thou-
sands. m ELMER must 
use heuristics to focus on promising candidate in-

that the main in ELMER 
is not to necessarily fit the data subopti-
mal but and reasonable input subsets can 
often suffice. 

We have found some heuristics sim-
ilar to classic forward subset selection 
to be useful in we compute 
scores for each candidate sensor based on their cor-

on the validation data set starts to smce 
that suggests that is beginning to occur. 

More fundamentally, our approach requires 
search over the of and R and P val-

we have no optimal method of per-
this search. we check combi-

"v"'ul.av.tH.) useful values and 
these choices typically 

include E 20}, E 
{1, 0.1, om, 'and 
PHa E {1, 1000} The selection criteria involves not 
only the relative alarm versus non-alarm errors, but 
also other user such as lev­
els of false alarm rates for each sensor. Once 
this does not result in but it does 

way to find reasonable ones. Fur-
we also been 

alternative which avoid this search over 
R and P space altogether. 

The Maintenance Scheduler 
The maintenance planner portion of our prototype 
used the ASPEN planning and scheduling 
We now describe the ASPEN 
scheduling framework, the ASPEN modeling lan­
guage, and the specific RLV model encoded. 

The ASPEN System 

ASPEN (Automated Scheduling and Planning EN­
vironment) is a reusable, configurable, generic plan­
ning/scheduling application framework designed to 
enable rapid development of automated schedul­
mg for NASA applications,. An applica­
tion framework [Pree 1995] is a class library (i.e., a 
reusable set of software components) that provides 
the functionality of the components found in proto-

instances of a particular application domain. 
Frameworks anticipate much of an application's de-

which is reused in all based on 
the framework. In order to facilitate code reuse, 
ASPEN (as with many frameworks) incorporates 

"design . This a 
icant reduction in the amount of code necessary to 

"''"'u1•cuc successive systems. 
The reusable rtYrnrvw,,.n 

dude: 



Figure 2: Asymmetric cost functions for high and low bounds. 

Parameters: PH a ,PHn ,PLa ,PLn 2: 0; RHa ,RHn ,RLa ,RLn 2: 1. 

• A temporal reasoning system for expressing and 
maintaining temporal constraints; 

• A set of search engines for constructing, repairing, 
and optimizing plans/schedules; 

• Linear Programming utilities for optimizing 
schedule preferences; and 

• A graphical interface for visualizing plans and 
schedules (for use in mixed-initiative systems in 
which the problem process is interactive). 

ASPEN is currently being utilized in the develop­
ment of an automated for com­
manding the New Millennium EO-I satellite and a 
naval communications as well as for proto­
type schedulers for the-ground maintenance for the 
Reusable Launch Vehicle and a design analysis tool 
for the Pluto Express spacecraft. 

Models in ASPEN 

In order to use the ASPEN scheduling system, 
a modeling language is used to specify domain­
specific constraints and activities. 3 shows 
part of a domain model specified in the ASPEN 
modeling language. 

Within the ASPEN modeling language, the prin­
cipal elements are: activities, resources, and states. 
Activities are the basic items being scheduled. In 
the RLV application, activities are maintenance 
steps required to refurbish the hardware, or setup 
steps necessary to support such operations. For ex­
ample, each of the subsystems has refurbishment 
activities for various Resources are fi-
nite elements whose is limited and hence 
their use must be coordinated. Within the RLV 
domain, resources 
of workers with maintenance 
locations which allow access to a 

Activity prevalve..removal { 
duration = [15, 20] 
slot 

= subsystem) 
( ss = subsystem) 

use 1 

reservation 
must_be purged 

must_be illuminated 
} 

Resource hydraulic_lift { 
type non-depletable 

1 
} 

State_Variable prevalve { 
states unpurged 

purged to..and_back unpurged 
} 

Figure 3: of ASPEN 
(part of the Reusable Launch Vehicle maintenance 
model). This describes an for the 
prevalve of an engine subsystem. 

to feasibility of activities. For example, in the RLV 
application, a state variable could model whether 
a hatch is open, whether a piece of equipment is 
powered on, or whether a valve is open. 

To ground these concepts, the figure above shows 
a maintenance activity from the RLV model rep-­
resenting a removal step. This step must 
be 



resources. 

The RLV Maintenance Scheduling 
Domain 

In the prototype demonstration of the maintenance 
planning element, we utilized test maintenance pro­
cedures developed by Rockwell International during 
the Phase 1 competition of the Reusable Launch 
Vehicle Program which ended in July 1996. Specif­
ically, we used the maintenance procedures devel­
oped for the L02 and LH2 propulsion systems for 
the X-33 Reusable Launch Vehicle. These proce-
dures were then modeled in ASPEN planning 
and et 1 997]. The 
procedures derived for uJ.CuwcaLlu 

the test articles provided a rich 
Propulsion System Maintenance In all, 
the testbed involved refurbishment of 2 major sys­
tems with 16 subsystems, with a total of approxi­
mately 700 lowest level activities in a (all 
subsystems) refurbishment The model that 
we developed for schedule generation involved: 576 
activity types, 6 resources, and on average 6 state, 
resource, and precedence constraints per activity. 
In this application we allowed maintenance requests 
to request either refurbishment of "IJ'"'-'u!c 

terns or major systems. In order to schedule the 
maintenance requests the ASPEN system used a 
forward dispatch which 
used knowledge of the precedences of activ-
ities in the plan. The resultant scheduler was able to 
generate schedules for smaller refurbishment prob­
lems (8 subsystems, 358 activities) in approximately 
8 minutes. 

Discussion and Conclusions 
The current prototype does not substantially vali­
date the viability of automated maintenance request 

and maintenance Rather it 
serves to illustrate the possibility of such a 

concept. In order to validate the concept, a more 
demonstration would need to be per-

formed with several differences. the re-
should use actual relevant engi-

i.e. the same data which currently 
to determine mainte-

data to maintenance 
more detailed and realistic model 

A 

[Deale et al. Zweben et al 1994] and testbed 
work on RLV maintenance scheduling [Allen 1996]. 

This paper has described a proof of concept 
demonstration of automated analysis of engineering 
data to generate maintenance requests for highly 
reusable space transportation and automated plan­
ning and scheduling of such requests using an au­
tomated planner. This demonstration highlights 
the possibility of such an approach to reduce 
turnaround times for space transportation systems -
thus allowing a higher utilization rate, reduced fleet 
size, and hence reduced operations costs. While the 
initial prototype was significant further 
work is needed to validate the viability of the con­
cept. 
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