
Planning and Scheduling for Regional Validation Centers

Robert Cromp
Code 935

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

cromp@sauquoit.gsfc.nasa.gov

Abstract

Early in 1997, Code 935 at NASA/Goddard Space
Flight Center installed the prototype version of i~s
Regional Validation Center (RVC) system at four um
versity sites. The RVC system is a framework for ac
quiring, processing, indexing, storing and retrieving
satellite image data. This paper describes the plan
ning and scheduling components of the RVC, which
are responsible for sequencing algorithms to produce
products and for assigning computational resources to
those sequences.

Introduction
Over the past decade, computer science researchers in
the Applied Information Sciences Branch, Code 935,
NASA/Goddard Space Flight Center have developed
an end-to-end scientific spatial database management
system called the Intelligent Information Fusion Sys
tem (IIFS) (Cromp, Campbell, & Short 1993)(Short
et al. 1995) with the express purpose of develop
ing, incorporating and evaluating state-of-the-art tech
niques for handling EOS-era scientific data challenges.
Since 1989. the IIFS has been based on an object
oriented d~tabase which is used to store metadata
about large scale data holdings. The metadata itself
is organized to enable fast, efficient access to the ap
propriate data sets. To handle image data, our re
search group has developed an innovative spatial data
structure known as a sphere quadtree (SQT) that more
naturally data acquired globally. Addition
ally, we have developed a number of fast tech~iques
for automatically extracting information about Image
content, enabling users to query for pertinent da~a
sets based on the features of scientific interest withm
the images themselves. The IIFS includes a plan
ner j scheduler j dispatcher module (the PSD). th~t mon~
itors and assigns system resources for processmg the
data flow, including all processing of higher level prod
ucts and extraction and assembling of metadata.

The IIFS is a domain-independent search for
volumes of data. We have

in an end-to-end remote sys-
~h'"'~·OO satellite data as the satellite passes

John
Global Science and Technology, Inc.

6411 Iv:y Lane, Suite 300
Greenbelt, MD 20770

bane@gsti.com

from horizon to horizon, and users the capability
to query for data products a graphical interface.
The resulting system is known as a Regional Validation
Center (RVC).

Earlier this year, Code 935 at m-
stalled a version of the RVC at four

of Maryland/Baltimore

ern LU>UH>!dJlld.

of Southwest
Each site

acts as its own customizes
the system to match their own remote sensing appli
cations.

The RVC is intended to start out as a small,
low-cost way to capture, process, index, store, and re
trieve satellite with the potential to grow
in capability as its data store and the needs of its
users grow. The initial configuration at our prototype
sites consists of a COTS satellite dish with an associ
ated PC-class control computer, a medium-power Unix
workstation to process the data and store the meta
data, and a small robot tape drive to store the data and
products. If an RVC needs more storage or processing
power, it can simply add more Unix workstations as
resources (see below).

Users at an RVC organize their system around a cen
tral theme, customizing the RVC software by devel
oping and registering specific algorithms which serve
to organize and enable retrieval of the RVC's data
holdings. Given the finite availability of computing
resources, and the complexity of chaining per-
missible in an it is essential that the a.uu''-'''"

planning and scheduling occur to satisfy the users in a
timely manner.

The must be able to r~><mrmn
goal-directed mode to handle users'
data-driven mode whenever new data is ""''""'""~
a satellite We at nPrtr.rm

these in the

Database 1+-----il't Planner Scheduler 1+----+-1 Dispatcher Mass
Storage

Block of the components of the RVC system. Each block in the diagram represents
a process; the RVC is a that coordinates the efforts of its parts by passing information
via network sockets.

The components function as follows:

Access Clients - connect to the Database to submit
queries and product Currently we have
implemented one access client for users called rvci
and two maintenance/curator clients called and
resource. The current access clients are written in
Tcl/Tk.

Database - an object-oriented database holding the
metadata for observations as well as descriptions of
compute resources and programs the RVC can use to
generate products. Actual image data is not stored
in the database; it lives in the Mass Store and is re
ferred to in the database via URL. The current RVC
database is a application using ObjectStore.

Planner - a system that accepts product requests and
generates sequences of algorithms that will fulfill the
requests. Product requests come in as lists of goals
(types of products) and initial conditions (which ob
servations to use and what products derived from
those observations are available). Plans are passed
to the scheduler as directed acyclic graphs of algo
rithms linked together by temporary files represent-

the inputs and outputs of the programs. The
current RVC planner is Simple Non-Linear Planner
(SNLP) (McAllester & Rosenblitt 1991), chosen
marily because it is small and hence easily u1,Ju1uc•u.

SNLP is written in Lisp.

Scheduler that
resources

and binds
to them so

maintains a
it do its

'"'""""''"""'"'"' from a pro-
and Distri-

ager (TMM) temporal constraint system. TMM and
DADS are written in Lisp.

Dispatcher - a system that polls the Scheduler for
that are ready to launches them

on the resources they are bound to, monitors their
progress and reports their status back to the Sched
uler. The current RVC dispatcher is a ap
plication.

Resources computers registered with the Scheduler
which can be used to execute plans. Currently the
RVC can use any system running Unix as a resource.

Mass Store - file systems associated with resource
machines where the RVC stores processed products.

All the parts of the RVC communicate with each
other by passing commands and responses structured
as S-expressions. S-expressions are easily generated
and parsed by the different programming environments
within the RVC (Lisp, C++, Tcl/Tk), and have
enough structure to easily encode complex messages.

Example Product Generation A typical product
generation within the RVC starts with a message like
this, which is a request from an Access Client to
ate a product of type AVHRR1 from any
available from observation 350, deliver
to an anonymous FTP site on my-host:

(PROCESS
(OID 350)
(GOALS

(GOAL (TYPE "AVHRR1") (FTP "my-host"))))

The Database takes the
what it knows about
the message

(PROCESS
(ELEMENT (OID 350)

•u•~"""'E>'"' adds m
forwards

(ATTRIBUTES
(PLATFORM "NOAA-12" (SENSOR "AVHRR")
(FILE "file: I /foo/mass/Q19971641043 .LO..HRPT")
(DATE (YEAR 1997) (MONTH 6) (DAY 13)

(HOUR 12) (MINUTE 8) (SECOND 32))
(ROWS 4497) (COLUMNS 2048)
(BITS_FER_FIXEL 10)
(STORED..HITS_FER_FIXEL 16))

(EXI STING_TYPES
(ALGORITHM (NAME "NOAA-12 AVHRR")

(FILENAME
"file: //foo/mass/Q19971641043. LO..HRPT"))))

(PID 18)
(GOALS

(GOAL (TYPE "AVHRR1") (FTP "my-host"))))

The PSD creates a plan to generate the requested
product, allocates compute resources to execute it, and
queues the resource-bound plan for execution, then in
forms the database that the product will be generated:

(MESSAGE (PID 18)
(TYPE PROCESS) (STATUS SUCCESSFUL))

The PSD dispatches and monitors the of
~~uas ~.w~ ~ ~
PSD informs the database that the requested products
are now available for anonymous FTP at the URLs in
the FILES clause:

(MESSAGE (PID 18)
(TYPE PROCESS....STATUS) (STATUS SUCCESSFUL)
(FILES

"ftp: //my-host/pub/NOAA12..AVHRR1. gz"))

The database then e-mails the URLs to the request
mg user.

How the PSD Works
Resource Registration The PSD views its domain
as sets of resources and algorithms. Resources and al
gorithms are made available to the PSD by registering
them: a curator clients sends the PSD an S-expression
describing the new capability, the PSD unrolls it into
an internal model, and then goes out across the net-
work to else it needs to use the re-
source or and
store executables).

A resource is a the PSD may use to store files
and run programs. Resources are
composed of a CPU type and one or more disk
types. Here is an used to
resource:

(NEWJRESOURCE (DID 113)
(ETHERNET (HOST ..NAME DANVILLE. GSFC. NASA. GOV)

(IP ..ADDRESS "202 .170.170 8")
(FDDI (HOSTJNAME DANVILLE-F.GSFC.NASA.GOV)

(IP ..ADDRESS . 170. 170.)
(ARCHITECTURE

(MODEL "9000/735"))

(OPERATINGSYSTEM
(TYPE "HP-UX") (VERSION "B. 10. 10"))

(ANONYJI!OUS.YTP (FTP ..DIRECTORY "/pub"))
(DATA..DIRECTORIES

(DIRECTORY (NAME "/lost/rvc...online")
(FILE....SYSTEM_TYPE ONLINE))

(DIRECTORY (NAME "/mnt4/rvc.nearline")
(FILE....SYSTEM_TYPE NEARLINE)))

(EXECUTABLES..DIRECTORY "/usr /local/rvc/bin2"))

This description has one of everything the PSD con
siders to be a resource: a CPU (ARCHITECTURE and
OPERA riNGSYSTEM clauses), an area for anonymous FTP
(used to make products available to the outside world),
disk space for scratch storage while running programs

ONLINE DATA..DIRECTORY) and disk space for long-
term (the NEARLINE DATA..DIRECTORY).
The takes this resource and
from it four scheduler resource nP•,rrm

for examples).

(SCRIPT-ADDRESOURCE
:PRETTY-NAME "danville.gsfc.nasa.
:NAME (COMPUTATION HP DANVILLE.GSFC.NASA.GOV)
:ATTRIBUTES ()
:AVAILABILITIES ((0 3616053101 1)))

(SCRIPT-ADDRESOURCE
:PRETTY-NAME "danville.gsfc.nasa.
:NAME (STORAGE DISK FILE-SPACE DSK22744)
:ATTRIBUTES (DANVILLE.GSFC.NASA.GOV)
:AVAILABILITIES ((0 3616053101 1997022)))

Each scheduler resource has a NAME in a hierarchical
space, a set of ATTRIBUTES in addition to its name,

and a set of AVAILABILITIES describing how much of
the resource can be used and at what times as a list of
(start-time end-time quantity) specifications.

CPUs are named as (COMPUTATimi cpu-type domain
name) Since the original resource de.'.icription didn't
specify an availability, the PSD assumes the resource is
"always" available, from zero seconds to the scheduler's
horizon, arbitrarily years from now. CPUs have one
unit; as resources they are either free or busy. This'
model is simplistic, but not too bad given the nature
of most image-processing code.

Disk storage is named as (STORAGE DISK purpose
. The domain names of machine(s) that

can access the storage are on ATTRIBUTES list.
Disk availability is measured in lK byte blocks.

Resources are
name, list of

scheduler then matches the
<Lj;!.<:tlll,~L the available resources to come up with candi-

For a for any HP CPU would
have (COMPUTATION HP) as its NAME field.

3

put files. Algorithms may have parameters and ancil
lary files. Here is an S-expression used to register a

(NEILALGORITHM
(ALGORITHM "navTIROS12")
(ARCHITECTURE

(MAKE "HP") (MODEL "9000/770"))
(OPERA TING..SYSTEM

(TYPE "HP-UX") (VERSION "B. 10.01"))
(EXECUTABLE-FILENAME

"exec://danville/mass/HP/RDCnavTIROS")
(EXECUTABLE..SIZE 107108)
(AUTHOR "Allen Lunsford (Hockey Legend)")
(ARGUMENTS

(ARGUMENT (USAGE INPUT_FILE)
(DATA_TYPE "TIRDSAUX12")
(SWITCH "-iAUX")
(PARAMETER "TIROSAUX12"))

(ARGUMENT (USAGE INPUT_FILE)
(DAT.ILTYPE "EPHEM")
(SWITCH "-iEPHEM")
(PARAMETER "EPHEM"))

(ARGUMENT (USAGE OUTPUT-FILE)
(DATA_TYPE "TIROSDROPOUT")
(SWITCH "-oDROPOUT")
(PURPOSE PRODUCT ..GENERATION))

(ARGUMENT (USAGE OUTPUT-FILE)
(DATLTYPE "GRID")
(SWITCH "-oGRID")
(PURPOSE PRODUCT ..GENERATION))))

This description tells the PSD everything it needs to
know to use this nrr;O'r:>rn

~ the name and location of the executable in the mass
store if it needs to install it on a resource machine
before running it (EXECUTABLE-FILENAME

• the type of computer it runs on (ARCHITECTURE and
OPERATING ..SYSTEM clauses, identical to the ones in the
resource description above).

• the number, order, and type of any arguments it
takes (ARGUMENT clauses). The current PSD file typ
ing system is deliberately simple: file types are sym
bolic tags in a flat type space. This turns out to be

enough information for a to be able to
chain

The PSD takes this algorithm description and gen
erates from it a SNLP plan

(DEFSTEP
:PRECOND

'((DATA-TYPE ?DID TIROSAUX12 ?11120)
?DID EPHEM ?!1130))

:ACTION
'("exec://danville/mass/HP/RDCnavTIROS"

"-iAUX" ?I1120 "-iEPHEM" ?I1130
"-oDROPOUT" ?01140 "-oGRID" ?01150)

:ADD
' (DATA-TYPE ?DID TIROSDROPOUT ?01140)

1

In the plan step, the ?I variables represent input file
names and the ?0 variables file names;
the ?DID variable holds the ID of an observa-
tion. The SNLP database fact (DATA-TYPE observation
id file-type file-name) means that file-name contains data
of file-type derived from observation-id; thus the plan
step says that given files of types TIROSAUX12 and
EPHEM, executing RDCnavTIROS will create files of types
TIROSDROPOUT and GRID.

In addition to the plan generated from regis-
tered the PSD has several hand-coded plan
steps to handle moving files into and out of the
mass store, and delivering them to anonymous FTP
sites so users can retrieve them. for is
the plan step used to fetch a typed file from the mass
store:

(DEFSTEP
:PRECOND

'((ON-SERVER ?DID ?TYPE ?CFILENAME))
:ACTION

'("gunzip-if-needed.script"
-I ?CFILENAME -0 ?FILENAME)

:ADD
'((DATA-TYPE ?DID ?TYPE ?FILENAME)))

And here is the step used to deliver a typed file to a
FTP site:

(DEFSTEP
:PRECOND

' (DATA-TYPE ?DID ?TYPE ?CFILENAME))
:ACTION

'("ftptourl.script" ?CFILENAME ?FTPDEST)
:ADD

'((FTP-RESULT.?OID 7 TYPE ?FTPDEST)))

gunzip-if-needed.script and ftptourl.script are
shell scripts that can perform their function on any
Unix machine; they need to be installed before a ma
chine is registered with the PSD as a resource.

We now have enough plan steps to build complete
plans to generate image products and return them to
users. The PSD generates the planner initial condi
tions from a given observation oid by querying the
database for the existing product types it has in the
mass store for each of those types becomes a fact of
the form:

(ON-SERVER oid file-type filename)
A user request for a product of

from oid turns into the goal clause:
(FTP-RESULT

the initial
SNLP allows it to "'"'''"'""r"'

file-type derived

Resource Allocation After
the scheduler takes over and

For each step in the
Sched-

finish times, their relationship to other tasks, and the
amount and of resources needed while

store:

(SCRIPT-ADDSUBTASK
:DID 141486
:TASK 14148
:INVOCATION

sub task for the
of from the mass

"exec://danville/gunzip-if-needed.script
file://danvillev/incoming/Q19971641043

-o /scratch/TASK-14148/TEMPFILE-17471"
:PREDS 141481)
:SUCCS (141487)
:MIN-DUR 1
:MAX-DUR 600
:RESOURCE-REQUIREMENTS

((1823745
(COMPUTATION)

NIL 1 :UNIQUE)
(1823746

(STORAGE DISK FILE-SPACE)
NIL 100000 :BEGINS)))

Note particularly the RESOURCE-REQUIREMENTS, which
is a list of (id-number resource-name resource-attributes
quantity temporal-scope) specifications. Since this task
is a shell script, it can run on any computer (if it needed
an HP machine, it would have asked for (COMPUTATION
HP)), and it needs the computer only for the duration
of the task (the :UNIQUE tag). It moves a 100 MB file
from the mass store to local disk, and the file stays
there for future tasks to use (the :BEGINS tag; the task
that deletes this file will have a with a
:ENDS tag to free the resource).

Once ali the plan steps have scheduler tasks asso
ciated with them, the scheduler is turned loose, and
it tries to match the resource requirements with the
resources it has registered. If it succeeds, the PSD
can walk the resulting resource specifications and use
them to fill in the blanks in the plan, mainly generating
temporary directory and file names for intermediate re
sults. At this point, any tasks with no predecessors are
marked in the temporal database as ready-to-run.

and Execution The PSD
'-''-'l'""~'"''""" that polls the scheduler at fixed

(ten seconds or so), telling it to update its
clock and asking it if anything new is
Tasks that are ready are launched on the resources
bound to them remote shell call in most
with a small them as

when the dispatcher next polls for them. When all the
tasks of a complete successfully, the scheduler no
tices and sends a PROCESS COMPLETE status If
a task executes for longer than its MAX-DUR, the
uler will notice when the dispatcher its clock;
it can then report the error.

Experience with Current

The current fielded RVC
prototyping mode by
terns that have been
since 1989. Our goal was to a into
the hands of real users as quickly as possible, to get
feedback from them to future As
could be expected with any we to make
design compromises and work around limitations in our
tools to get the out the door. We discuss some
of those problems and our solutions to them below.

Planning SNLP turned out to be a useable tool for
the simple plans we had to for RVC product
generation. SNLP itself accounts for about half of the
PSD's cycles. Much of this is due to the fact that SNLP
is implemented for students to and
with; it is coded for clarity more than high efficiency.

In particular, SNLP will sometimes run off and do
much more work than necessary to plans, and
there is no easy way to make it more efficient. For
example, given a goal set asking for N file types and
a plan step that had those types in its outputs, SNLP
will generate N candidate plans, one for each output
file. These plans look equally good to SNLP, so it
will keep them all, and generate N x 1) plans at
the next stage, ultimately ending up with N! identical
plans.

Scheduling The DADS-based scheduler performs
quite impressively. The Honeywell TMM core algo
rithms are very scheduler resource allocation
takes up at most one fourth of the PSD's cycles- about
five seconds overhead on a typical twenty minute image
product job.

The biggest problem we had with the scheduler was
that we used it in a multi-threaded environment,
and it wasn't with that in mind. The prob-
lem was that events from the
dispatcher, status reports from the execution moni
tor) needed to access and update the resource
database, and there was no locking on that data struc
ture. Often what looked from the outside like simple
requests, like a task what its earliest start time
was, turned out to exclusive access to the tem-
poral database. The PSD was
for months until we realized
ble after we set up a prcJce:ss-Jlo
using tasks it before

Costs
some worry that

scheduling would be too expensive computationally
that the PSD would consume a significant fraction of
a resource machine's memory and cycles for little ben
efit. This has turned out not to be the case.

The cost of having planning and scheduling in the
RVC is small relative to the cost of running a typi
cal image processing job. The Allegro Common Lisp
executable containing the PSD is the largest single pro
gram in the RVC system, but it has turned out to be
a well-behaved application and a good neighbor as far
as system paging is concerned, even without any se
rious tuning. The system takes about twenty seconds
to plan, schedule, dispatch and monitor a typical pro
cess request generating a basic set of image products
from a TIROS or GOES data file; running the entire
process takes about twenty minutes, so the overhead
of the PSD is not significant.

The benefits of having planning and scheduling in
the RVC are currently not as large as they could be, but
are expected to grow as the system matures and is used
to solve larger problems. The planner and scheduler
are both underutilized in the current system.

The planner currently solves problems that ·are
mostly within the capabilities of simpler tools like the
Unix make utility. The main things the RVC gets from
using a planner now are expressiveness and tolerance
of ambiguity: it is safe to register algorithms that al
low more than one way to create a given type of file,
because the planner can be relied on to choose the one
that is best according to its search strategy. The cur
rent system relies on this internally. When a product
derived from a given observation is requested, the sys
tem can deliver it to an FTP site for pickup in several
different ways:

• If the product has never been requested before, it
can run algorithms to generate it from precursors in
the mass store, then copy it to an FTP site.

e If the product is already in the mass store, it can
copy it directly from there to an FTP site.

• If the product is already at an FTP site, it can just
tell the user where it is.

The planner chooses an appropriate delivery method
by selecting the plan with the fewest steps that works
given the initial conditions for the observation.

The scheduler currently uses very coarse estimates
for algorithm time and space utilization; this means
the scheduler's estimates for how long a plan will take
to run or how much disk space it will need to finish are
educated guesses at best.

Plans
The rapid prototyping approach taken to develop the
RVC system appears to have succeeded. The first re
lease of the prototype RVC system was and

in about nine months. A
nr<>l"T>()l"l'!flnO" feedback from the VH!<.HH.U

RVC sites as well as other

completed and deployed at the various RVCs by the
middle of 1998.

A number of enhancements are slated for the
ner/scheduler module. Both the planner and sched
uler could do more in the RVC given more information
about their domains. The could be used to
generate plans from fuzzier of output re-

if it had a better model of what
The scheduler could more accurate esti-

mates of resource if it had a better model
of how algorithms use resources.

One of the most significant (and most difficult) im
prOvements will be in the addition of a hierarchical typ
ing system throughout the IIFS, replacing and extend
ing the current simple symbolic typing scheme. This
will require each output type to produce an accompa
nying metadata file which will be maintained by the
database. The planner will be able 'to pass specific at
tributes of this metadata to algorithms further along in
the chain when the product is part of an intermediate
step in producing a goal.

We are also cleaning up the PSD internally, adding
abstract interfaces to planning, scheduling, and dis
patching, to make it easier in the future to change
planning or scheduling tools if needed. We already
intend to try a different planner in the next major re
lease, Lansky's action-based planner COLLAGE (Lan
sky 1994).

We also need to improve the execution monitor, so it
can gather better resource utilization data. At present,
the scheduler is under-utilized in the PSD, primarily
because we currently can't give it good data about al
gorithm resource use. Having this data will be critical
for one of our long-range goals, which is to allow RVC
sites to share resources and cooperate in processing
data.

The biggest hurdle in making these enhancements
will be keeping them intelligible to the expected RVC
user community. We expect to have around sixteen
RVC systems out in the field by the time of the next
major release; the users will be experts in remote sens
ing, and must not be required to become experts in
computer science or AI to use their RVC.

References
Cromp, R. F.; Campbell, W. J.; and Short, Jr., N. M.
1993. An intelligent information fusion system for
handling the archiving and querying of terabyte-sized
spatial databases. In International Space Year Con
ference on Earth and Space Science Information Sys
tems, 586-597. American Institute of Physics.

Lansky, A. 1994. Action-based planning. In Pro
ceedings of the Second International Conference on
Artificial Intelligence Planning Systems. American
Association for Artificial Intelligence.

and D. 1991.
In the Ninth Na-

tiona! Conference on Artificial Intelligence, 634-639.
American Association for Artificial AU''~"'o~·UVV·

N.M.;

software version
Technology Center.

	1997-1_Part67
	1997-1_Part68
	1997-1_Part69
	1997-1_Part70
	1997-1_Part71
	1997-1_Part72
	1997-1_Part73

