
Repairing Plans On-the-fly

Drabble, & Austin
Artificial Intelligence Applications Institute

University of Edinburgh
80 South Bridge

Edinburgh EH1 1HN
United Kingdom

Tel: (+44) 131 650 2732 Fax: (+44) 131 650 6513
E-mail: drabble@cirl.uoregon.edu, j.dalton@ed.ac.uk & a.tate@ed.ac.uk

Even with the most careful advance preparation, and
even with inbuilt allowance for some degree of contin
gency, plans need to be altered to take into account
execution circumstances and changes of requirements.
We have developed methods for repairing plans to ac
count for execution failures and changes in the execu
tion situation. We first developed these methods for
the Optimum-AIV planner designed to support space
craft assembly, integration and verification at ESA,
and later deployed for Ariane IV payload bay AIV.
This system was itself based on our Nonlin and 0-Plan
planning algorithms and plan representation. We sub
sequently refined the methods for the 0-Plan planner
and incorporated plan repair methods into the system.
This paper describes the algorithms used for plan re
pair in 0-Plan and gives an example of their use. 1

Introduction

Even with the most careful advance preparation
and even allowing for some degree of contingency
pre-built into the plans, any plan being executed
in the real world will have to be adapted to take
into account execution circumstances and changes
of requirements. For example, a deep space probe
may require to adapt to new science experiments
as new information leads to further experiments.
Alternatively, cases such as Galileo have shown
that failures in the spacecraft's hardware may
need to be overcome by altering the current set
of tasks and plans.

project (Currie
Tate et. 1996)

Drabble is now a member of the
lnt;ellilgeJace Research LaDm·at<)ry,

during Phase II of the DARPA/Rome Laboratory
Planning Initiative (Tate, 1996a) was to develop
techniques to allow plans to be changed to take
into account modifications in the task require
ments and in the execution environment. The
techniques allowed a failure to be identified and
repaired with minimum impact on the rest of the
plan.

The basis for the techniques was first developed
for the Optimum-AIV planner (Aarup et. al. 1995;
Tate, 1996b) designed for spacecraft assembly, in
tegration and verification support at ESA and later
deployed for Ariane IV payload bay AIV.

This paper will briefly describe some of the back
ground work on 0-Plan and Optimum-AIV, and
then describe the algorithms used for plan repair
in 0-Plan. The paper describes a demonstration
which was conducted in a command, planning,
and control environment of the us air force. The
task was to evacuate a number of foreign nation
als from the fictional island of Pacifica (Reece et.
al. 1993) and to transport them to safety. While
the example is not directly related to the space
domain, the demonstration does show how new
requirements and changes in the environment can
be integrated into an ongoing and executing plan
and would be of use in the solving problems such
as AIV, control of autonomous spacecraft, and lan
der missions.

Planning is a key issue in the management of the
assembly, integration and verification (AIV) activ
ities of a space project. Not only must technolog
ical requirements be met, but cost and time are
critical. There are costly testing facilities which
must be shared with other projects, and there is a
need to plan the coordination between a number of
participants (agencies, contractors, launcher au
thorities, users). A delay caused by one partici
pant normally leads to serious problems for others.
Managers at all levels of a space project are con
cerned with planning, and control closely the
progress of the work. However, it has been diffi
cult to find computer-based aids which
meet the needs of this application. General pur
pose project management software cannot repre
sent the wide range of factors to be taken into
account, and is too complex to be used to in
teractively modify plans during project execution
(Parrod et. 1993). this reason, the Euro
pean Space Agency commissioned the Optimum
AIV system which utilizes AI planning representa
tions and techniques (A:arup et. al. 1995; Tate,
1996b).

The system which was developed was based on
the earlier Nonlin (Tate, 1977) and 0-Plan (Cur
rie and Tate, 1991; Tate et. al., 1994b) planning
algorithms and plan representation. The following
techniques are used in Optimum-AIV:

e Optimum-AIV adopts a partially-ordered plan
representation, which supports causally inde
pendent activities that can be executed concur
rently.

• It searches through a space of partial plans,
modifying them until a valid plan/schedule is
found.

1!1 The system employs hierarchical planning. The
term hierarchical refers to both the representa-

the at levels, also

~ During plan specification and generation, the
system operates on explicit preconditions and
effects of activities that specify the applicabil
ity and purpose of the activity within the plans.
With this knowledge, it is possible to check
whether the current structure of the plan in
troduces any conflicts between actual spacecraft
system states, computed by the system, ac
tivity preconditions, which have been specified
by the user. Such conflicts would arise if one ac
tivity deletes the effect of another, thus remov
ing its contribution to the success of a further
activity. The facility for checking the consis
tency of the plan logic, by dependency record
ing, is not possible within existing project man
agement tools, which assume that the user must
get this right.

• Detailed constraints are associated with the
plan. These represent resource and tempo
ral constraints on the activities in the plan as
well as a more general class of global activity
constraints. The scheduling task in Optimum
AIV is considered as a constraint satisfaction
problem solved by constraint-based reasoning.
The constraints are propagated throughout the
plan, gradually transforming it into a realizable
schedule. Invariably not all of the constraints
can be met, such that some have to be relaxed
via user intervention.

• During planning, the system records the ratio
nale behind the plan structure; that is, user de
cisions on alternatives are registered. This is
used to assist during plan repair where the user
tries to restore consistency. Information can
then be derived about alternative activities, soft
constraints that may be relaxed, and potential
activities that may be performed in advance.

• Test Failure Recovery Plans are available as
plan fixes to enable the plan to be brought back
on track after the failure a test during the
assembly and integration process. The same

p.cu~"'-"'·ES methods used to generate a
to assist in

way

repair

Following an evaluation of Optimum-AIV at ESA,
it has been reported (Parrod et. al, 1993) that the
system is in use for planning the production of the
vehicle equipment bays of the European Ariane
IV launcher. It was reported that the system was
chosen by the Araine IV project team due to the
following:

• the wealth of information which can be provided
to and used by the tool to describe the con
straints inherent in the AIV activity.

., the quality of support provided by the tool to
allow resource conflicts to be resolved.

~ the clear representation of information and the
interactive capabilities which enables engineer
ing management to access several planning sce
narios on-line.

111 the fact that Optimum-AIV provides a single so
lution to problems of managing the plan, sched
ule, and allocation of resources amongst com
peting vehicle equipment bays which are con
currently being assembled.

Optimum-AIV provides a rich plan representation
and aids to allow for the editing of AIV planning
information and a wide range of constraints on the
process. This information forms a basis for plan
generation, checking of plan logic, and analysis
of plans. Facilities are available to allow for the
interactive repair of executing plans when tests
indicate failures of components under assembly
and integration. Optimum-AIV is an example of a
deployed application of a number of AI planning
techniques.

0-Plan Demonstration and Scenario
Description

A demonstration experiment was performed
which showed 0-Plan (Tate et. al., 1996) solv

of tasks from an integrated com-
control scenario to the

Lncu~'"·"' of Non-combatant

(Reece et. al. 1993). The aims of the demonstra
tion were to show:

., 0-Plan reacting to changes in the environment
and identifying those parts of the plan
were now threatened by these changes.

e 0-Plan reacting to changes in the overall task
by integrating new plan requirements into the
plan.

The types of plan repairs explored in this demon
stration include responses to failures of trucks
due to blown engines and tyres and the inclu
sion of new task objectives, such as to pick up
an extra group of evacuees. The Pacifica sce-
nario for is a simplifi-
cation of a real problem of interest to
the DARPA/Rome Planning Initia-
tive (Tate, 1996a). schema library for
this domain contained 12 schemas which defined
alternative evacuation methods: trucks or heli
copters, fuel transport aircraft, etc. The
plans generated contained an average of 20 ac
tions and were developed in approximately 40-60
seconds. Four different repair plans were used in
the demonstration:

• Three cases repairing a broken engine on a
ground transport:

- The engine can only be fixed by a repair crew
which is dispatched from the Pacifica airport
at Delta with a tow truck. The ground trans
port is then towed to Delta for repairs. The
evacuees remain with the ground transport
while it is being towed.

- The failure of the transport occurs in a time
critical situation and there is insufficient time
to tow the broken transport to Delta. The
evacuees are moved from the broken ground
transport by helicopter to Delta and the
transport is abandoned.

- The failure transport occurs in a time
the evacuees are

* One case reparing a blown tyre on a ground
transport:

- The driver of the ground transport can fix the
tyre by the side of the road. The effect of the
repair action is to delay the ground transport
by a fixed amount of time.

In addition, a closely allied Ph.D student project
by Glen Reece developed a more comprehensive
reactive execution agent called "REA" (Reece,
1994; Reece and Tate, 1994) based on the 0-Plan
architecture. It has been used to reactively mod
ify plans in response to operational demands in a
simulation of the Pacifica island in the context of
a NEO.

0-Plan Repair Algorithms

The plan-repair mechanisms allow 0-Plan to in
tegrate a number of pre-assembled repair plans
e.g., to repair a blown engine, or to repair a flat
tyre-into an ongoing and executing plan. Al
though the integration was performed by the plan
ning agent, the techniques and methods could eas
ily have been added to the capabilities of a sepa
rate execution agent- as in Reece's REA.

0-Plan's internal plan representation contains two
tables used by the plan repair algorithms to de
termine the consequences of failures: the Ta
ble of :rv:Iultiple Effects (TOME) and the Goal
Structure Table (GOST). Plans contain actions
(nodes), and actions can have effects. Effects can
take place at either end of an action: (begin_of)
or (end_of). Each effect is recorded in the TOME

by an entry of the form (pattern) = (value) at
(node-end). For example, (colour_of ball) =
green at end_of node-1.

When an action depends on an effect asserted ear
lier, that is recorded in the GOST by an entry
of the form (condition-type) (pattern) = (value)
at (condition-node-end} from (contributor-node
ends). This specifies a protected range: (pattern)
= (value) is asserted at .one of the contributor-

node-1).

These tables are maintained by the 0-Plan TOME

and GOST Manager (TGM) - a plug in constraint
manager in the 0-Plan Architecture (Tate et. al.
1996). A plan repair is required when one or more
of the GOST entries are broken-i.e. a contribu
tor of a GOST entry is not asserted as expected,
or an external world event occurs and has extra
effects that break a protected range by undoing a
required effect.

Plan repairs are dealt with by a number of knowl
edge sources-pieces of code which deal with a
specific aspect of the planning problem. The
knowledge sources are responsible for determining
the consequences of unexpected events, or of ac
tions that do not execute as intended, for deciding
what action to take when a problem is detected,
and for making repairs to the effected plan.

0-Plan maintains an agenda of "issues" that need
to be resolved in the plan. For each type of issue,
there is a corresponding issue handler (called a
knowledge source in 0-Plan). The top-level con
trol structure in 0-Plan is a loop that repeatedly
selects an issue from the agenda and calls the ap
propriate knowledge source. When describing al
gorithms below, we will therefore sometimes speak
of "posting" an agenda entry, where the issue type
is represented by the knowledge source name (Ks
CONTINUE-EXECUTION, KS-FIX, etc.)

The two types of problems that are dealt with by
the repair mechanisms can now be described in
more detail:

• Execution Failure:
An execution failure occurs when one or more
of the expected effects at a node-end fail
to be asserted. For example, the node
end corresponding to the end of the ac
tion Check_out_ground_transport should as
sert that the status of the engine and tyres
is fine: (engine_status gt1) = working and

) = This may not
action has not executed cor-

to satisfy the preconditions of a later action.
For the evacuation of people from an
outlying city can only precede if the tyres and
engine the ground transport continue to func
tion correctly.

~t Unexpected World Event:
Unexpected events cause effects in the world
which can make planned actions fail. For ex
ample, a landslide event may have the effect
(road_status Abyss_to_Barnacle) = closed
and this would interfere with any action requir
ing the road to be open.

The description of the algorithms of the execu
tion and plan repair system is divided into three
main sections. The first describes how the sys
tem maintains an execution fringe of the node
ends awaiting execution; the second describes how
the system deals with plan failures; and the third
describes how it handles unexpected world events.

Further details of the algorithms and the demon
stration experiments is given in Drabble et. al.
(1995).

Maintaining the Execution Fringe and
"Necking" the Plan

An activity is represented in an 0-Plan plan as
a node with two ends (time points). Conditions
and effects can be attached to either end of a node
and are monitored by the execution system. The
system reasons purely in terms of conditions and
effects at node-ends and not in terms of their as
sociated activities or events2 .

The "execution fringe" is the list of node-ends
currently ready for execution. A node-end is
ready when all node-ends that must execute be
fore it in the partially ordered plan have com
pleted execution. 3 When ready, it can be dis
patched for execution. That involves sending a

2This allows plug in temporal constraint managers to be
employed such as Tachyon (Stillman et. a!., 1996) or TMM
(Boddy, 1996).

3 This check considers both links explicitly in the
and constraints maintained a Time-Point Net-

and other in constraint man-

message to an execution agent, which in turn
sends messages to a world simulator. The sim
ulator maintains a picture of the world in which
execution is taking place, for demonstration pur
poses. As actions begin and end in the world,
the demonstration simulator reports back to the
execution agent, resulting in success and failure
messages about the corresponding node-ends be
ing sent from the execution system to the plan
ner. When the planner receives a success or fail
ure message about a node-end, it marks the end
as having completed execution; and that may lead
to further node-ends being considered ready.4

By keeping track of which node-ends have finished
execution, the system maintains a context within
which replanning for plan repair can take place
and can establish a focus point when considering
where to insert repair actions-after all node-ends
which have executed and before any node-ends
waiting to execute. This point is known as the
plan's neck point and a single dummy node can
be added to the plan by the repair algorithm to
neck the plan at that point, when necessary.

Note that the "ready to execute" check for a node
end E considers only whether all the node-ends
that must execute before E have been executed,
regardless of whether the execution was successful.
It assumes that any. problems due to execution
failures or world events have been fixed, and it is
the responsibility of other parts of the system to
ensure that this is so.

A node-end that is ready can have its status set
back to not-ready after a plan repair, because the
repair may introduce new actions that must exe
cute first.

Dealing with Execution Failures

When an execution failure occurs at a particular
node-end, some of the expected effects may not
occur. They are returned from the execution mon
itoring system to the planning agent as a list of
failed-effects. The task of the planning system is

4 It is assumed that execution is not so
to

to fix plan so that any condition that needed
one of the failed effects as a contributor is satisfied
in some other way. The fix can be relatively simple
if there is already another contributor in the GOST

entry or if there is a suitable alternative contrib
utor already present in the plan. If these simple
fixes cannot be applied, then the system will at
tempt to add a new action to the plan. However,
if nothing requires the failed effects, then the ex
ecution "failure" can be ignored.

The main algorithm used by the system to track
execution and initiate repairs is as follows:

111 Mark the node-end as having been executed.

• If there are no failed effects, then a repair is not
needed.

• If there are failed effects then remove the TOME

entries that correspond to them.

111 Determine which GOST entries are affected by
the failed (removed) effects. If there are none,
then a repair is not needed.

• At this point there is a failure that must be
repaired.

- Search through the affected GOST entries in
turn. If a GOST entry has more than one con
tributor, check if any are still valid. If so,
reduce the contributor list; otherwise record
the GOST entry as truly broken.

- If no GOST entries are truly broken, then the
repair is complete.

• At this point, some GOST entries are truly bro
ken and result in "issues" that must be resolved.
For each of the broken GOST entries, post a KS

FIX agenda entry. When that agenda entry is
processed, the KS-FIX knowledge source will be
invoked, and it will consider two repair methods
for satisfying the condition in the broken GOST

entry:5

an existing
plan.

in

5The "fix" issue introduces a condition of type achieve
as described in et.

- Bring in additional actions (a repair plan)
which assert the appropriate effect. Any new
nodes will be linked after the neck point de
scribed above.

11 Post a KS-CONTINUE-EXECUTION to continue
execution after the fixes have been made.

Certain details of the repair depend on the type
of the condition recorded in the broken GOST en
try. In particular, a supervised condition (Tate
et. al. 1994a) is unlike all other types because it
requires that a (pattern) = (value) be
true across a range, rather than only at a single
point.

Suppose a broken GOST entry g has the form
supervised p = v at e from (c). Then c is a
node end that asserts p = v, and p = v must be
so not only at node-end e (which is all that other
condition types would require) but also at node
ends between c and e that are spanned by the con
dition. These are the siblings of c and e that are
explicitly linked between c and e, or the descen
dants of such siblings, where two node-ends are
siblings if they were introduced as sub-actions of
the same action.

Broken supervised conditions are handled as fol
lows:

• Create a new dummy node d to act as the "de
livery point".

• Link d after the neck point, before e, and before
all node-ends that are spanned by the condition
and have not yet been executed.

• Change the GOST entry to list d as the con
tributing node-end, and give p = v at d as an
effect in the TOME.

11 Post a KS-FIX to re-establish p = v at d.

World Events

When a significant event that is not in the plan
occurs in the world, it is reported to the planner
as a time, an event pattern, and a list of effects
(of form (pattern) = (value)). For instance, the
occurrence of a landslide might be reported as:

event {landslide} with effects
{status road-a} blocked,
{status road-b} = blocked;

Events are treated the same way as plan activities
except they are not placed in the plan until they
have occurred. The effects may break GOST ranges
in the plan and if so, the planner must try to sat
isfy those conditions some other way. However,
even if no GOST entries are broken, the planner
needs to add a node to represent the world event.
This is because, even if the event's effects don't

any now, they may matter later
on.

The new event node represents something that has
definitely and already happened. So it must be
linked after all node-ends that have already been
executed and before all -node-ends that have not
yet been executed.

The algorithm for dealing with unexpected world
events is as follows:

• Add an event node, E, to represent the world
event. Link it as described above. Mark E as
having already been executed.

• Edit the GOST to remove any contributors that
can no longer contribute, and get a list of the
truly broken GOST entries. A contributor is re
moved when:

- the condition is at a node-end that has not
been executed,

- the contributor is a node-end that has been
executed, and
the unexpected world-event has a conflicting
effect.

e Add the world event's effects at end_of E.

• If there were no truly broken GOST entries,
then we are finished. Otherwise, Post a KS
CONTINUE-EXECUTION to continue execution
after the fixes have been made. (The fixes will
be made by processing the KS-FIX agenda en
tries.)

Conclusions

This paper has shown that current AI planning
and scheduling techniques have reached the point
where they can be deployed in real-world applica
tions. This means real plan execution in the face
of uncertainty and changing circumstances must
be dealt with. Systems such as Optimum-AIV and
0-Plan have shown that they provide valuable
support to human users in identifying the point
of failure in a plan and suggesting appropriate re
pairs. The techniques described in this paper to
support plan repair are general enough to be ap
plied in a wide variety of planning and scheduling
applications.

Acknowledgements

The 0-Plan project is sponsored by the Defense
Advanced Research Projects Agency (DARPA) and
Rome Laboratory, Air Force Materiel Command,
USAF, under grant number F30602-95-l-0022.
The 0-Plan project is monitored by Dr. Northrup
Fowler III at the USAF Rome Laboratory. The
u.s. Government is authorised to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright annotation hereon.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing official policies or en
dorsements, either express or implied, of DARPA,
Rome Laboratory or the u.s. Government.

References

(eds. Zweben, M. and Fox, M.S.), pp. 451-469,
Morgan Kaufmann.

Boddy, M.S. (1996) Temporal Reasoning for
Planning and Scheduling in Complex Domains:
Lessons Learned, in Advanced Planning Technol
ogy, pp. 77-83, (Tate, A., ed.), AAAI Press.

Currie, K. and Tate, A. (1991) 0-Plan: the Open
Planning Architecture, Artificial Intelligence Vol.
52, pp. 49-86, Elsevier.

Drabble, B. (1995) Applying 0-Plan to the NEO
Scenarios, Appendix 0 in Tate, A., Drabble, B.
and Dalton, J. (1995), An Engineer's Approach to
the Application ofKnowledge-Based Planning and
Scheduling Techniques to Logistics, Final Techni
cal Report RL-TR-95-235, Rome Laboratory, Air
Force Materiel Command, Rome, New York. Also
available as DARPA-RL/0-Plan/TR/23 dated
July 1995.

Parrod, Y., Valera, S. (1993) Optimum-AIV, A
Planning Tool for Spacecraft AIV, in Preparing
for the Future, Vol. 3, No. 3, pp. 7-9, European
Space Agency.

Reece, G.A., (1994) Ch~racterization and Design
of Competent Rational Execution Agents for Use
in Dynamic Environments, Ph.D Thesis, Depart
ment of Artificial Intelligence, University of Edin
burgh, November 1994.

Reece, G.A. and Tate, A. (1994) Synthesizing
Protection Monitors from Causal Structure, Pro
ceedings of the Second. International Conference
on AI Planning Systems (AIPS-94), AAAI Press,
Chicago, USA, June 1994.

Reece, G.A., Tate, A., Brown, D. and Hoffman,
(1993) M., The PRECiS Environment, Paper pre
sented at the ARPA-RL Planning Initiative Work
shop at AAAI-93, Washington D.C., July 1993.
Also available as University of Edinburgh, Arti
ficial Intelligence Applications Institute Technical
Report AIAI-TR-140.

Stillman, J., Arthur, and Farley, J. (1996) Tem
poral Reasoning for Mixed Initiative Planning,
in Advanced Planning Technology, pp. 242-249,

ed.),

Tate, A. (1977) Generating Project Networks,
Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-77), pp. 888-893,
Cambridge, MA, USA, Morgan Kaufmann.

Tate, (1996a) Advanced Planning Technology,
AAAI Press.

Tate, (1996b) Responsive Planning and
Scheduling Using AI Planning Techniques, Trends
and Controversies, IEEE Expert - Intelligent Sys
tems and Their Applications, Winter 1996.

Tate, A., Drabble, B. and Dalton, J. (1994a) The
Use of Condition Types to Restrict Search in an
AI Planner, Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94),
pp. 1129-1134, Seattle, USA, August 1994.

Tate, A., Drabble, B. and Kirby, (1994b), O
Plan2: an Open Architecture for Command, Plan
ning and Control, in Intelligent Scheduling, (eds,
M.Zweben and M.S.Fox), Morgan Kaufmann.

Tate, A., Drabble, B. and Dalton, J. (1996), A
Knowledge-Based Planner and its Application to
Logistics, in Advanced Planning Technology, pp.
259-266, (Tate, A., ed.), AAAI Press.

	1997-1_Part77
	1997-1_Part78
	1997-1_Part79
	1997-1_Part80
	1997-1_Part81
	1997-1_Part82
	1997-1_Part83
	1997-1_Part84

