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Even with the most careful advance preparation, and 
even with inbuilt allowance for some degree of contin
gency, plans need to be altered to take into account 
execution circumstances and changes of requirements. 
We have developed methods for repairing plans to ac
count for execution failures and changes in the execu
tion situation. We first developed these methods for 
the Optimum-AIV planner designed to support space
craft assembly, integration and verification at ESA, 
and later deployed for Ariane IV payload bay AIV. 
This system was itself based on our Nonlin and 0-Plan 
planning algorithms and plan representation. We sub
sequently refined the methods for the 0-Plan planner 
and incorporated plan repair methods into the system. 
This paper describes the algorithms used for plan re
pair in 0-Plan and gives an example of their use. 1 

Introduction 

Even with the most careful advance preparation 
and even allowing for some degree of contingency 
pre-built into the plans, any plan being executed 
in the real world will have to be adapted to take 
into account execution circumstances and changes 
of requirements. For example, a deep space probe 
may require to adapt to new science experiments 
as new information leads to further experiments. 
Alternatively, cases such as Galileo have shown 
that failures in the spacecraft's hardware may 
need to be overcome by altering the current set 
of tasks and plans. 

project (Currie 
Tate et. 1996) 

Drabble is now a member of the 
lnt;ellilgeJace Research LaDm·at<)ry, 

during Phase II of the DARPA/Rome Laboratory 
Planning Initiative (Tate, 1996a) was to develop 
techniques to allow plans to be changed to take 
into account modifications in the task require
ments and in the execution environment. The 
techniques allowed a failure to be identified and 
repaired with minimum impact on the rest of the 
plan. 

The basis for the techniques was first developed 
for the Optimum-AIV planner (Aarup et. al. 1995; 
Tate, 1996b) designed for spacecraft assembly, in
tegration and verification support at ESA and later 
deployed for Ariane IV payload bay AIV. 

This paper will briefly describe some of the back
ground work on 0-Plan and Optimum-AIV, and 
then describe the algorithms used for plan repair 
in 0-Plan. The paper describes a demonstration 
which was conducted in a command, planning, 
and control environment of the us air force. The 
task was to evacuate a number of foreign nation
als from the fictional island of Pacifica (Reece et. 
al. 1993) and to transport them to safety. While 
the example is not directly related to the space 
domain, the demonstration does show how new 
requirements and changes in the environment can 
be integrated into an ongoing and executing plan 
and would be of use in the solving problems such 
as AIV, control of autonomous spacecraft, and lan
der missions. 



Planning is a key issue in the management of the 
assembly, integration and verification ( AIV) activ
ities of a space project. Not only must technolog
ical requirements be met, but cost and time are 
critical. There are costly testing facilities which 
must be shared with other projects, and there is a 
need to plan the coordination between a number of 
participants (agencies, contractors, launcher au
thorities, users). A delay caused by one partici
pant normally leads to serious problems for others. 
Managers at all levels of a space project are con
cerned with planning, and control closely the 
progress of the work. However, it has been diffi
cult to find computer-based aids which 
meet the needs of this application. General pur
pose project management software cannot repre
sent the wide range of factors to be taken into 
account, and is too complex to be used to in
teractively modify plans during project execution 
(Parrod et. 1993). this reason, the Euro
pean Space Agency commissioned the Optimum
AIV system which utilizes AI planning representa
tions and techniques (A:arup et. al. 1995; Tate, 
1996b). 

The system which was developed was based on 
the earlier Nonlin (Tate, 1977) and 0-Plan (Cur
rie and Tate, 1991; Tate et. al., 1994b) planning 
algorithms and plan representation. The following 
techniques are used in Optimum-AIV: 

e Optimum-AIV adopts a partially-ordered plan 
representation, which supports causally inde
pendent activities that can be executed concur
rently. 

• It searches through a space of partial plans, 
modifying them until a valid plan/schedule is 
found. 

1!1 The system employs hierarchical planning. The 
term hierarchical refers to both the representa-

the at levels, also 

~ During plan specification and generation, the 
system operates on explicit preconditions and 
effects of activities that specify the applicabil
ity and purpose of the activity within the plans. 
With this knowledge, it is possible to check 
whether the current structure of the plan in
troduces any conflicts between actual spacecraft 
system states, computed by the system, ac
tivity preconditions, which have been specified 
by the user. Such conflicts would arise if one ac
tivity deletes the effect of another, thus remov
ing its contribution to the success of a further 
activity. The facility for checking the consis
tency of the plan logic, by dependency record
ing, is not possible within existing project man
agement tools, which assume that the user must 
get this right. 

• Detailed constraints are associated with the 
plan. These represent resource and tempo
ral constraints on the activities in the plan as 
well as a more general class of global activity 
constraints. The scheduling task in Optimum
AIV is considered as a constraint satisfaction 
problem solved by constraint-based reasoning. 
The constraints are propagated throughout the 
plan, gradually transforming it into a realizable 
schedule. Invariably not all of the constraints 
can be met, such that some have to be relaxed 
via user intervention. 

• During planning, the system records the ratio
nale behind the plan structure; that is, user de
cisions on alternatives are registered. This is 
used to assist during plan repair where the user 
tries to restore consistency. Information can 
then be derived about alternative activities, soft 
constraints that may be relaxed, and potential 
activities that may be performed in advance. 

• Test Failure Recovery Plans are available as 
plan fixes to enable the plan to be brought back 
on track after the failure a test during the 
assembly and integration process. The same 

p.cu~"'-"'·ES methods used to generate a 
to assist in 

way 



repair 

Following an evaluation of Optimum-AIV at ESA, 
it has been reported (Parrod et. al, 1993) that the 
system is in use for planning the production of the 
vehicle equipment bays of the European Ariane 
IV launcher. It was reported that the system was 
chosen by the Araine IV project team due to the 
following: 

• the wealth of information which can be provided 
to and used by the tool to describe the con
straints inherent in the AIV activity. 

., the quality of support provided by the tool to 
allow resource conflicts to be resolved. 

~ the clear representation of information and the 
interactive capabilities which enables engineer
ing management to access several planning sce
narios on-line. 

111 the fact that Optimum-AIV provides a single so
lution to problems of managing the plan, sched
ule, and allocation of resources amongst com
peting vehicle equipment bays which are con
currently being assembled. 

Optimum-AIV provides a rich plan representation 
and aids to allow for the editing of AIV planning 
information and a wide range of constraints on the 
process. This information forms a basis for plan 
generation, checking of plan logic, and analysis 
of plans. Facilities are available to allow for the 
interactive repair of executing plans when tests 
indicate failures of components under assembly 
and integration. Optimum-AIV is an example of a 
deployed application of a number of AI planning 
techniques. 

0-Plan Demonstration and Scenario 
Description 

A demonstration experiment was performed 
which showed 0-Plan (Tate et. al., 1996) solv

of tasks from an integrated com-
control scenario to the 

Lncu~'"·"' of Non-combatant 

(Reece et. al. 1993). The aims of the demonstra
tion were to show: 

., 0-Plan reacting to changes in the environment 
and identifying those parts of the plan 
were now threatened by these changes. 

e 0-Plan reacting to changes in the overall task 
by integrating new plan requirements into the 
plan. 

The types of plan repairs explored in this demon
stration include responses to failures of trucks 
due to blown engines and tyres and the inclu
sion of new task objectives, such as to pick up 
an extra group of evacuees. The Pacifica sce-
nario for is a simplifi-
cation of a real problem of interest to 
the DARPA/Rome Planning Initia-
tive (Tate, 1996a). schema library for 
this domain contained 12 schemas which defined 
alternative evacuation methods: trucks or heli
copters, fuel transport aircraft, etc. The 
plans generated contained an average of 20 ac
tions and were developed in approximately 40-60 
seconds. Four different repair plans were used in 
the demonstration: 

• Three cases repairing a broken engine on a 
ground transport: 

- The engine can only be fixed by a repair crew 
which is dispatched from the Pacifica airport 
at Delta with a tow truck. The ground trans
port is then towed to Delta for repairs. The 
evacuees remain with the ground transport 
while it is being towed. 

- The failure of the transport occurs in a time 
critical situation and there is insufficient time 
to tow the broken transport to Delta. The 
evacuees are moved from the broken ground 
transport by helicopter to Delta and the 
transport is abandoned. 

- The failure transport occurs in a time 
the evacuees are 



* One case reparing a blown tyre on a ground 
transport: 

- The driver of the ground transport can fix the 
tyre by the side of the road. The effect of the 
repair action is to delay the ground transport 
by a fixed amount of time. 

In addition, a closely allied Ph.D student project 
by Glen Reece developed a more comprehensive 
reactive execution agent called "REA" (Reece, 
1994; Reece and Tate, 1994) based on the 0-Plan 
architecture. It has been used to reactively mod
ify plans in response to operational demands in a 
simulation of the Pacifica island in the context of 
a NEO. 

0-Plan Repair Algorithms 

The plan-repair mechanisms allow 0-Plan to in
tegrate a number of pre-assembled repair plans
e.g., to repair a blown engine, or to repair a flat 
tyre-into an ongoing and executing plan. Al
though the integration was performed by the plan
ning agent, the techniques and methods could eas
ily have been added to the capabilities of a sepa
rate execution agent- as in Reece's REA. 

0-Plan's internal plan representation contains two 
tables used by the plan repair algorithms to de
termine the consequences of failures: the Ta
ble of :rv:Iultiple Effects (TOME) and the Goal 
Structure Table ( GOST). Plans contain actions 
(nodes), and actions can have effects. Effects can 
take place at either end of an action: (begin_of) 
or ( end_of). Each effect is recorded in the TOME 

by an entry of the form (pattern) = (value) at 
(node-end). For example, (colour_of ball) = 
green at end_of node-1. 

When an action depends on an effect asserted ear
lier, that is recorded in the GOST by an entry 
of the form (condition-type) (pattern) = (value) 
at (condition-node-end} from (contributor-node
ends). This specifies a protected range: (pattern) 
= (value) is asserted at .one of the contributor-

node-1). 

These tables are maintained by the 0-Plan TOME 

and GOST Manager (TGM) - a plug in constraint 
manager in the 0-Plan Architecture (Tate et. al. 
1996). A plan repair is required when one or more 
of the GOST entries are broken-i.e. a contribu
tor of a GOST entry is not asserted as expected, 
or an external world event occurs and has extra 
effects that break a protected range by undoing a 
required effect. 

Plan repairs are dealt with by a number of knowl
edge sources-pieces of code which deal with a 
specific aspect of the planning problem. The 
knowledge sources are responsible for determining 
the consequences of unexpected events, or of ac
tions that do not execute as intended, for deciding 
what action to take when a problem is detected, 
and for making repairs to the effected plan. 

0-Plan maintains an agenda of "issues" that need 
to be resolved in the plan. For each type of issue, 
there is a corresponding issue handler (called a 
knowledge source in 0-Plan). The top-level con
trol structure in 0-Plan is a loop that repeatedly 
selects an issue from the agenda and calls the ap
propriate knowledge source. When describing al
gorithms below, we will therefore sometimes speak 
of "posting" an agenda entry, where the issue type 
is represented by the knowledge source name (Ks
CONTINUE-EXECUTION, KS-FIX, etc.) 

The two types of problems that are dealt with by 
the repair mechanisms can now be described in 
more detail: 

• Execution Failure: 
An execution failure occurs when one or more 
of the expected effects at a node-end fail 
to be asserted. For example, the node
end corresponding to the end of the ac
tion Check_out_ground_transport should as
sert that the status of the engine and tyres 
is fine: (engine_status gt1) = working and 

) = This may not 
action has not executed cor-



to satisfy the preconditions of a later action. 
For the evacuation of people from an 
outlying city can only precede if the tyres and 
engine the ground transport continue to func
tion correctly. 

~t Unexpected World Event: 
Unexpected events cause effects in the world 
which can make planned actions fail. For ex
ample, a landslide event may have the effect 
(road_status Abyss_to_Barnacle) = closed 
and this would interfere with any action requir
ing the road to be open. 

The description of the algorithms of the execu
tion and plan repair system is divided into three 
main sections. The first describes how the sys
tem maintains an execution fringe of the node
ends awaiting execution; the second describes how 
the system deals with plan failures; and the third 
describes how it handles unexpected world events. 

Further details of the algorithms and the demon
stration experiments is given in Drabble et. al. 
(1995). 

Maintaining the Execution Fringe and 
"Necking" the Plan 

An activity is represented in an 0-Plan plan as 
a node with two ends (time points). Conditions 
and effects can be attached to either end of a node 
and are monitored by the execution system. The 
system reasons purely in terms of conditions and 
effects at node-ends and not in terms of their as
sociated activities or events2 . 

The "execution fringe" is the list of node-ends 
currently ready for execution. A node-end is 
ready when all node-ends that must execute be
fore it in the partially ordered plan have com
pleted execution. 3 When ready, it can be dis
patched for execution. That involves sending a 

2This allows plug in temporal constraint managers to be 
employed such as Tachyon (Stillman et. a!., 1996) or TMM 
(Boddy, 1996). 

3 This check considers both links explicitly in the 
and constraints maintained a Time-Point Net-

and other in constraint man-

message to an execution agent, which in turn 
sends messages to a world simulator. The sim
ulator maintains a picture of the world in which 
execution is taking place, for demonstration pur
poses. As actions begin and end in the world, 
the demonstration simulator reports back to the 
execution agent, resulting in success and failure 
messages about the corresponding node-ends be
ing sent from the execution system to the plan
ner. When the planner receives a success or fail
ure message about a node-end, it marks the end 
as having completed execution; and that may lead 
to further node-ends being considered ready.4 

By keeping track of which node-ends have finished 
execution, the system maintains a context within 
which replanning for plan repair can take place 
and can establish a focus point when considering 
where to insert repair actions-after all node-ends 
which have executed and before any node-ends 
waiting to execute. This point is known as the 
plan's neck point and a single dummy node can 
be added to the plan by the repair algorithm to 
neck the plan at that point, when necessary. 

Note that the "ready to execute" check for a node
end E considers only whether all the node-ends 
that must execute before E have been executed, 
regardless of whether the execution was successful. 
It assumes that any. problems due to execution 
failures or world events have been fixed, and it is 
the responsibility of other parts of the system to 
ensure that this is so. 

A node-end that is ready can have its status set 
back to not-ready after a plan repair, because the 
repair may introduce new actions that must exe
cute first. 

Dealing with Execution Failures 

When an execution failure occurs at a particular 
node-end, some of the expected effects may not 
occur. They are returned from the execution mon
itoring system to the planning agent as a list of 
failed-effects. The task of the planning system is 

4 It is assumed that execution is not so 
to 



to fix plan so that any condition that needed 
one of the failed effects as a contributor is satisfied 
in some other way. The fix can be relatively simple 
if there is already another contributor in the GOST 

entry or if there is a suitable alternative contrib
utor already present in the plan. If these simple 
fixes cannot be applied, then the system will at
tempt to add a new action to the plan. However, 
if nothing requires the failed effects, then the ex
ecution "failure" can be ignored. 

The main algorithm used by the system to track 
execution and initiate repairs is as follows: 

111 Mark the node-end as having been executed. 

• If there are no failed effects, then a repair is not 
needed. 

• If there are failed effects then remove the TOME 

entries that correspond to them. 

111 Determine which GOST entries are affected by 
the failed (removed) effects. If there are none, 
then a repair is not needed. 

• At this point there is a failure that must be 
repaired. 

- Search through the affected GOST entries in 
turn. If a GOST entry has more than one con
tributor, check if any are still valid. If so, 
reduce the contributor list; otherwise record 
the GOST entry as truly broken. 

- If no GOST entries are truly broken, then the 
repair is complete. 

• At this point, some GOST entries are truly bro
ken and result in "issues" that must be resolved. 
For each of the broken GOST entries, post a KS

FIX agenda entry. When that agenda entry is 
processed, the KS-FIX knowledge source will be 
invoked, and it will consider two repair methods 
for satisfying the condition in the broken GOST 

entry:5 

an existing 
plan. 

in 

5The "fix" issue introduces a condition of type achieve 
as described in et. 

- Bring in additional actions (a repair plan) 
which assert the appropriate effect. Any new 
nodes will be linked after the neck point de
scribed above. 

11 Post a KS-CONTINUE-EXECUTION to continue 
execution after the fixes have been made. 

Certain details of the repair depend on the type 
of the condition recorded in the broken GOST en
try. In particular, a supervised condition (Tate 
et. al. 1994a) is unlike all other types because it 
requires that a (pattern) = (value) be 
true across a range, rather than only at a single 
point. 

Suppose a broken GOST entry g has the form 
supervised p = v at e from (c). Then c is a 
node end that asserts p = v, and p = v must be 
so not only at node-end e (which is all that other 
condition types would require) but also at node 
ends between c and e that are spanned by the con
dition. These are the siblings of c and e that are 
explicitly linked between c and e, or the descen
dants of such siblings, where two node-ends are 
siblings if they were introduced as sub-actions of 
the same action. 

Broken supervised conditions are handled as fol
lows: 

• Create a new dummy node d to act as the "de
livery point". 

• Link d after the neck point, before e, and before 
all node-ends that are spanned by the condition 
and have not yet been executed. 

• Change the GOST entry to list d as the con
tributing node-end, and give p = v at d as an 
effect in the TOME. 

11 Post a KS-FIX to re-establish p = v at d. 



World Events 

When a significant event that is not in the plan 
occurs in the world, it is reported to the planner 
as a time, an event pattern, and a list of effects 
(of form (pattern) = (value)). For instance, the 
occurrence of a landslide might be reported as: 

event {landslide} with effects 
{status road-a} blocked, 
{status road-b} = blocked; 

Events are treated the same way as plan activities 
except they are not placed in the plan until they 
have occurred. The effects may break GOST ranges 
in the plan and if so, the planner must try to sat
isfy those conditions some other way. However, 
even if no GOST entries are broken, the planner 
needs to add a node to represent the world event. 
This is because, even if the event's effects don't 

any now, they may matter later 
on. 

The new event node represents something that has 
definitely and already happened. So it must be 
linked after all node-ends that have already been 
executed and before all -node-ends that have not 
yet been executed. 

The algorithm for dealing with unexpected world 
events is as follows: 

• Add an event node, E, to represent the world 
event. Link it as described above. Mark E as 
having already been executed. 

• Edit the GOST to remove any contributors that 
can no longer contribute, and get a list of the 
truly broken GOST entries. A contributor is re
moved when: 

- the condition is at a node-end that has not 
been executed, 

- the contributor is a node-end that has been 
executed, and 
the unexpected world-event has a conflicting 
effect. 

e Add the world event's effects at end_of E. 

• If there were no truly broken GOST entries, 
then we are finished. Otherwise, Post a KS
CONTINUE-EXECUTION to continue execution 
after the fixes have been made. (The fixes will 
be made by processing the KS-FIX agenda en
tries.) 

Conclusions 

This paper has shown that current AI planning 
and scheduling techniques have reached the point 
where they can be deployed in real-world applica
tions. This means real plan execution in the face 
of uncertainty and changing circumstances must 
be dealt with. Systems such as Optimum-AIV and 
0-Plan have shown that they provide valuable 
support to human users in identifying the point 
of failure in a plan and suggesting appropriate re
pairs. The techniques described in this paper to 
support plan repair are general enough to be ap
plied in a wide variety of planning and scheduling 
applications. 
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