
Using

Kutluhan Erol and Robert Kohout

Intelligent Automation Inc.
2 Research Place #202

Rockville MD, 20850
kutluhan@i-a-i.com, kohout@i-a-i.com

Abstract

Multi-agent problem solving using market mechanisms is a
primary focus area of Intelligent Automation Inc. We have
been developing agent-based planning and scheduling
techniques, and investigating their feasibility in
manufacturing and transportation domains. These domains
involve online streams of jobs being executed in dynamic
and uncertain environments. Many NASA applications, such
as scheduling DSN antenna facilities, a.11d mission planning
share these characteristics. We believe that market
mechanisms greatly facilitate problem solving under these
conditions, insofar as they provide a means of localizing
decision making. This paper describes how we use fine
grained models of cost to facilitate computational resource
allocation in Cybele, an agent infrastructure that we have
been developing to support multi-agent processing on a
distributed network of computers. This technique of resource
allocation using fine-grainec!. demand models may be of
utility in finding high quality solutions to the DSN
scheduling problem.

The NASA Demand-Based Autonomous
Network Scheduling System

(Chien,et.al, 1997b) describes the DANS rescheduling and
resource ailocation system, which is designed to support
incremental changes in a complex schedule of satellite
tracking antennas and their supporting subsystems. The
Deep Space Network (DSN) antennas that it schedules are
critical resources, so the DANS system decomposes the
problem into a two-level hierarchy, where the scheduling of
supporting subsystems is performed in the context of a
particular solution to the antenna-scheduling problem.
Assignments of antennas to perform specific tasks in fixed
time windows are referred to as tracks. Given a new
activity to schedule, DANS exhaustively searches through
the set of constraint-satisfying antenna schedules, which
corresponds to a set of tracks, and ranks them as a function
of the disruption they cause to the current schedule. Tasks
that can be inserted to the current schedule without

the cancellation of any existing tracks are treated
have zero cost. Where there are conflicts, """''"uu;;

may be based upon a
More task are

numbers, and tasks may only preempt tracks of tasks with
higher priority numbers. These priority levels appear to be
small integers, in the range of roughly 0-9. When conflicts
do occur, solution costs are ranked according to the formula

Cost= (NAD * priority) I (0.9 NAD + 0.1)

Where NAD is the number of deletions required to
schedule the current activity. When tracks are deleted, the
scheduler tries to immediately reinsert them in to the
schedule. In addition to this task-at-a-time top-down
scheduling, DANS can also be asked to make bottom-up
repairs to its schedule in an effort to recover from
unanticipated events, such as equipment failure or weather
conditions.

We believe that the cost model adopted by DANS can be
improved significantly. The priority scheme described in
(Chien,et.al, 1997b), allows only very coarse comparisons
between solutions. In our work on scheduling systems, we
have adopted that view that tasks should be assigned fine
grained values, and the scheduler should be designed in
such a way that this information can be used to produce
high quality solutions. This approach has several
advantages. Determining the demand a job has for
resources is more natural and direct than finding the

·appropriate priority level needed to produce the desired
results. It requires no specialized knowledge of the way in
which the scheduler interprets priority levels. .In many
cases, it amounts to a customer how much he is
willing to pay. This approach enables us to employ a
number of weB-known market mechanisms in the search
for near-optimal solutions. It allows us to more accurately
account for the relative worth of the various and
enables us to well-known of market
economics to scheduling pr<)O!c;m,s.

the advantages of this cost model
for

computer, this problem is fairly similar to one which must
be addressed by every modern operating system.
Conventional solutions to this problem almost always use
the sort of coarse-grained scheduling that DANS employs
in its top-down scheduler. As a result, it can be very
difficult to optimize CPU usage, even when the relative
demands of the various processes in the system are known
precisely. We examine the case of autonomous agents
because it is both fundamental to the work we do at
and because it allows us to consider cases where the
migration of tasks between processors is a valid and
realistic consideration. While the problem of optimizing
CPU usage is not isomorphic to the problem of scheduling
satellite arrays, there are a number of similarities. In both
cases, there are large numbers of tasks, or consumers, that
compete for scarce resources, and the problem is one of
finding high levels of global through some
assignment of resources to consumers. In both cases, some
tasks are deemed more valuable than others. Granted, there
are fundamental differences in the two problems, and we
are not claiming that our results are to
DNS scheduling. However, we do believe that, for purposes
of achieving high-quality assignments of resources to
consumers, the fine-grained model of cost and demand has
tremendous advantages over coarse-grained systems. In this
paper, we show this in the context of managing CPU
allocation.

Computational Resource Allocation and
Dynamic Load Balancing

Agents are persistent and goal-oriented, thus they are
sensitive to the availability of computational resources.
However, the benefit an agent receives from additional
CPU cycles varies widely, depending on the importance of
tl1e tasks he is working on, tt'le due dates, and also how long
he has been working on them (law of marginal returns).
Thus the demand for CPU cycles can be different at each
agent, and it varies over time. Similarly, the amount of
computational resources available on the network can
fluctuate as the computers go down/up, or additional
workload is added to them. Allocating resources to agents
in an optimal way becomes a very intricate problem under
these considerations.

Load-balancing and CPU optimization can be considered at
three different levels:
.. In a single agent community/computer
• Among agent cornmunities on a local area network
., Among local-area networks of agents connected via

the Internet.

Within a agents have to time-share the
CPU. The to decide is what of the CPU

each individual should get, in order to make

the most profitable use of the available CPU cycles. This
clearly goes beyond the rudimentary priority-based round
robin scheduling employed by most operating systems.
In a local-area network of agent communities, the problem
becomes deciding how to distribute/migrate agents among
agent communities in such a way that the aggregate
computational capacity on the network is optimally utilized.
The optimal solution is at an equilibrium point, where the
return for an additional CPU cycle(marginal utility) is the
same at each agent community. It is desirable to maintain
the equilibrium point with minimal while being
responsive to fluctuations in the capacity of computational
resources, as well as the fluctuations in the demands of
individual agents. It is also important to take into
consideration the cost of migrating agents.

In this paper, we do not consider the third level, which is
among local-area networks, connected via the Internet. In
the abstract, this is the same problem as load-balancing in a
local-area network, with higher costs of communication
and agent migration. Thus the same techniques apply. Note
that the clustering of load-balancing into several levels
ma."'<:es our approach scaleab!e to very large systems.

In the next two sections, we will present the technical
details of CPU allocation within an agent community, and
then the load-balancing protocols across agent communities
on a local area network.

CPU Allocation within an Agent Community

Resource allocation has been a central problem addressed
by microeconomic theories. We draw heavily from that
body of work. While economists have focused on existence
of equilibrium points, our focus is on the computational
expedience of finding and maintaining the equilibrium
under changing conditions. The time scale makes a big
difference: assigning CPU cycles optimally requires

in the order of seconds, as opposed to in the
order of days, or even months in commodity markets. Thus
any practical solution must be extremely fast to compute.
On the other hand, agents engineered to have very

structure Hence behavioral
ass:urrlptllons, such as better to agents than
to people. As a direct consequence, we expect economic
market models to be even more applicable to agents than to
people.

In an agent-based application, where each individual
is a entity, each agent operates by
his services. In order to provide his an agent will
need to services from other agents. For "'A':u"'-'!"

a agent may have the "'"''·'"'"'U"
produce a part, but in order to this
will need to materials on the

the can ""·rt"'""
is natural to treat

computational resources, just as any other service an agent
needs to buy. In making such decisions, the needs to
decide whether to buy from an expensive, faster machine,
to buy now versus at a later time, or choose not to buy at
all, if the prospective job is not profitable. The same applies
to buying CPU The agent must decide how much
and when to buy/release CPU cycles to maximize his profit.

Let Q denote the computational capacity (cycles/sec)
available to an agent community. Assume a mother agent
of the community that will be responsible for monitoring
the change in available capacity and allocating it among her
children agents. Assume the current number of agents in a
community to be n.

Each agent maintains a demand function, d/ q), which
denotes the rate (in dollars) he is willing to pay for one
additional CPU cycle/sec, at his current consumption rate
of q cycles/sec. Thus each agent must know how much
CPU cycles are worth to him. This is a strong assumption
for traditional software; however, agents, which are
designed to operate in a market model for profit
maximization, would be aware of t.~eir computational
needs.

A market equilibrium point <p,q1, ••• q.> is defined with the
following equations:

I.(ql, ... q.) = Q
q; >= 0 for i= l .. n

d;(q) = p or [q; = 0 and d;(O) <p] for i= l .. n

where p is the equilibrium market price. In other words, the
CPU cycles are sold to the agents at p dollars per unit. At
the equilibrium point, all the available capacity is
distributed among the agents. No agent can have a negative
share. There is an equilibrium p, such that every agent
with a positive share values his next unit CPU cycle at the
same price p. Thus there is no incentive to swap CPU
cycles. The whose share is 0 are not willing to buy
any cycles at the current market price p.

Theorem 1. When the demand functions for individual
agents are continuous, and
unique equilibrium point.

decreasing, there exists a

Synopsis of Proof. The fact that the demand functions are
continuous and strictly decreasing implies that the demand
functions are one-to-one and their inverse functions exist.
The inverse functions are also and strictly

Let The

An mt~!re:stu1g
that it is also

and
point

is

will benefit from lying about his demand function, when
the remaining agents are honest about their demand
functions, as stated in the following theorem.

Theorem 2. The market equilibrium point is also a Nash
Equilibrium point.

Synopsis of Proof. Note that the total amount an agent
pays for his CPU cycles is only affected by the quantity he
is to buy at the market equilibrium price. If the
agent has declared a demand at that point, then he
will be forced to buy additional CPU cycles for a higher
price than he is willing to pay. If he has declared a lower
demand, then, at the market price, he will miss the chance
to buy CPU cycles at a lower rate than he is willing to pay.
He loses in either case.

We have presented the equations that determine the market
equilibrium point, and proven that there exists a unique
solution when the demand functions are constrained to be
continuous and in order for
our approach to be practical, we must be able to effectively
compute the equilibrium point in the order of mJ!lu;econas,
in response to fluctuations in the demands from as
well as the fluctuation in the available computational
capacity.

Obviously, arbitrary demand functions are hard to represent
in data structures, and do not lend themselves to closed
form solutions that are efficient to compute. We identify a
class of demand functions parameterized with few variables
that lead to closed-form solutions which are efficiently
computable. This class of functions is also rich enough to
represent a wide range of demand functions, and has the
following general form:

d(q) = al(b+q); q>=O

Depending upon the values the para.TTieters a and b take,
this function can assume many different forms. If b is very
large, it will appear as a flat line in the operational range. If
b is very small, it will appear almost like a vertical line, and
in between, it will have a hyperbolic form. The absolute
value of the demand can be adjusted with parameter a.
Furthermore, this leads to a very compact function
representation: each agent needs to convey only the values
for a and b. Note that this function is continuous and
strictly decreasing, thus there exists a unique equilibrium
solution, which tells us the optimum way to allocate the
available computational capacity.

This form also leads to a closed-form solution that is easy
to compute:

:::::

Let I.[a}= A and 'L[bJ =B.

Alp -B = Q
p = A/(B+Q)

This particular formula does not give the exact equilibrium
price: it ignores the constraint that q > = 0. A careful
examination of the solution reveals that the agents with low
demand functions will attempt to operate with negative q,
and sell CPU cycles. If we can tell which agents will have
non-zero capacity shares at the equilibrium price, and
include only them in the formula, we will have the exact
equilibrium price. Fortunately, there is an efficient way to
compute the actual equilibrium point, as outlined in the
algorithm below:

1. Sort agents in decreasing order of alb.
2. Let A = 0, B = 0; k = 1; P = 0;
3. while < ajbk) and (k

{A= A+ ak;
B = B + bk;
P = AI(B+Q);
k = k+1}

4.for j = 1 to k-1 do
q1 = ajP - bi'·

5.for j = k ton do
q = 0;

The basic intuition of this algorithm, which computes the
exact market equilibrium point is as follows: Initially the
set of agents with non-zero capacity allotment is empty.
Iteratively add the agent who is willing to pay the highest
price for his first CPU cycle to the set, as long as that price
(computed by formula a/b) is above the current market
equilibrium price. The iteration terminates, when none of
the remaining agents are willing to buy any CPU cycles at
the current equilibrium price.

The sorting part of the . algorithm runs in O(n log n)
time; however, it is needed only once. From then on,
updates will take linear time. The iteration in the algorithm
is also linear.

Updates occur in response to following events:
., as new agents are added to the community
., as agents in the community are terminated
• as agents change their demand functions
.. as the computational capacity available to the

community changes.

focus on how to best utilize the
1.nauvJ"a' ~~··~ 0''" distributed a local area network.

Each agent community in the network has some capacity,
and a number of agents. Even though each community is
optimizing its CPU cycles using the technique detailed in
the previous section, this may not correspond to the global
optimum. In a community where demand is high and the
capacity is low, the equilibrium price will be very high. In
contrast, there may be other communities where the
demand is relatively low, and the capacity is large. In such
communities the equilibrium price would be low, and the
agents in the high-price community can make better use of
some of the CPU cycles at the low-price community. Thus
we would like to be able to migrate agents from high-price
communities to lower priced communities, until all
communities have the same equilibrium price. This
problem is complicated by the fact that the demand and
capacity at each community will be continually changing,
due to both external factors (behavior of agents, computers
going down, etc.), and internal factors (agents migrating
across communities). Agent migration itself has a
significant duration, and requires CPU cycles. There is also
a tradeoff between the responsiveness of the system, and its
stability.

We will first describe the equations that define the
theoretical global optimum. This will assume:

• All the information is available at a central location
• There is no latency in the data
., Agent migration is instantaneous

Naturally, these assumptions are not valid in a distributed
network environment. We will present techniques that do
distributed load-balancing, without these assumptions.
When tuned, these techniques will keep the system close to
the global optimum, without putting it into oscillation.

One can view a network of agent communities as a single,
virtual agent community that houses all the agents in the
system, whose computational capacity is the sum of t.~e
capacities of individual communities. With this translation
into a single virtual community, the allocation techniques
developed for a single community can be applied directly to
compute the equilibrium price, and the individual share of
CPU cycles that each agent will receive. At that point, we
have a partitioning problem in our hands: distribute the
agents to communities in such a way that the difference
between the capacity of a community, and the aggregate
capacity share of the agents assigned to that community is
minimized. Once the agents are distributed to communities,
the equilibrium price at each community, and the share of
each agent can be computed. Naturally, there will be some
difference in the price level of communities, due to the
fragmentation when each agent is assigned to a community.
Thus the theoretical equilibrium may not be attainable.

Next, we present a protocol that
This can handle

Issues:

• New agent communities can appear anywhere in the
network

"' Existing communities may disappear as their host
computers goes down or otherwise become unavailable

• The computational capacity available to a community

• New agents are created, terminated
• Existing agents' demand for CPU cycles change

Furthermore, this protocol is parameterized so that it can be
tuned to the frequency of changes in the system. In future
research, we will address how to dynamically adjust those
parameters to changing patterns in the system.

The first step towards moving the system towards the
global optimum (equilibrium) point involves estimating the
equilibrium price. The theoretical analysis outlined
previously requires the information about the capacity of
each community and the demand function for each agent in
the system. It is not practical to maintain this large body of
information at a central location, because it would be
severely out of date most of the time. Instead we have
devised methods of abstraction to compress this
information so that it can be shared among agent
communities.

Recall that the market equilibrium algorithm within a single
agent community computes two factors: A = L[aJ; B =
L[bJ. A and Bare respectively sums of parameters a, and b,
for the agents in that community with non-zero capacity
share at equilibrium point. _Thus A and B contain the
summary information on the demand functions of the
individual agents in that coro..munity.

Let A, be the sum of a, of the agents in agent community i,
and let B, be the sum of b, parameters of agents on
community i. Let Q, be the computational capacity
available to the community i. The estimated equilibrium
price P is given by the formula:

P = L[AJ)I(l:[BJ + L[QJ (equilibrium price formula)

This formula is only an estimate, and not the actual

equilibrium price, because it presumes that at the global
equilibrium point the set of agents with non-zero share
allotment will be the same as in the initial state. Recall that
the closed-form solution for the single community
equilibrium was inexact, and this was corrected by the
Find-Community-Equilibrium Algorithm. We cannot
utilize the same technique in the multiple community
version, as it would require that the demand functions for
each agent be known at a centralized location. However, in
most cases, the closed-form solution provides a close
approximation, which improves as the system moves
towards optimality, and it is exact when the system is
operating at market equilibrium. Thus it can be successfully
used as a guide for converging to the equilibrium point.

Our load-balancing protocol requires that each mother
agent be able to estimate the global equilibrium price. Thus
each mother agent will maintain a list containing <Ai'B,,Q,>
for all communities in the system. We will call this list as
the system load table. Each mother agent periodically, and
in response to significant changes, multicasts her new
<A,,B,,Q,> values to the other mother agents, so that this
information remains reasonably up to date and accurate.
Mother agents also monitor the termination and creation of
other agent communities with the same set of messages.

Using the data in the system load table, each mother
estimates the global equilibrium price using the above
equilibrium price formula. Each mother agent also
estimates he equilibrium price at each other agent
community using the formula p, = A/(B, +QJ This formula
gives accurate answers as long as the parameters are up-to
date. In actuality, it will be a close approximation, because
minor fluctuations in .those parameters are not reported, in
order to minimize message traffic.

Our load-balancing protocol involves two parameters
overload factor and underload factor.

A community is overloaded ifP,> overload factor* P,
and underloaded ifP,< underload factor* P.

Where P is the estimated global equilibrium price.

TransferResponse(YES

Confirm(NO)/TransferRequest
Confirm(YES)[overloaded]/TransferRequest

[overloaded]/
TransferRequest

ChangelnPrice
[Overloaded]/
TransferRequest

AgentReceived[not overloltdecl]/S,endCorofirrn(YES)
ChangelnPrice[not underloaded and not ovenuaueuJt~enac
RequestCanceled[not overloaded]

Figure 1. State-Transition Graph for Load-balancing Protocol

Overloaded communities attempt to transfer some of their
agents to other communities, and a community will accept
incoming agents only if the community is underloaded. For
values of load factors close to 1, the system attempts to
transfer agents eagerly in order to reach close to the
optimum point. This is suit~ble for fairly stable systems
with low frequency of fluctuations. For systems with high
frequency of fluctuations, it is more appropriate to set the
load factors so that the system behaves more conservatively
in migrating agents to keep close to the global optimum.

The dialog among mother agents for load balancing
proceeds as follows: A mother agent who finds she is
overloaded (due to increase in the demand functions of her
agents, or a decrease in her computational capacity)
probabilistically selects an underloaded mother. The more
underloaded a mother is, the likelier she will be selected.
The overloaded mother sends a transfer request to the
selected mother .If the transfer request is rejected, and the
mother is still overloaded, she will probabilistically select
another mother. If the transfer request is accepted, she will
send one of her agents across and wait for confirmation that
the agent is successfully migrated to the other side.

Figure 1 presents the state transition diagram for a mother
agent's load-balancing activity. There are a number of
short-cuts in the dialog. In particular, mothers can change
their minds about sending an agent, or accepting an agent,
depending on changes in the market prices.

There are four states:
I. This is the state where the mother

remains as as she is not and she is not

involved in an agent transfer
2. WF Agent: This is the state where a mother agent has

ac•::etnea a new agent and for his arrival.
3. WF Answer: This is the state where the mother agent

has asked another mother to take an agent from her,
and she is waiting for the response.

4. WFConfirm: This is the state where the mother agent
has sent one of her to another mother, and she is
wa1tmg for confirmation that the agent was
successfully revived on the other side.

There are also time-out transitions, not displayed in the
diagram, so that the protocol can robustly operate in the
presence of lost messages, or agent migration failures.

Conclusion

In cases where the relative demand of processes is known,
there is no simple way to reflect this evaluation in the

round-robin schedulers found in
almost all modern time-sharing operating systems. In this
paper, we have shown that it is possible to optimally
schedule processors when consumer priorities are
allowed to accurately reflect demand. We have also
described a way to find of jobs
across multiple processors, when are allowed to move
between processors. In our the of
nned-!!rauted cost models are """"1Ju<av .• -..

complex optimization problems. As described in
et.al, 1997), DANS falls into this but for unstated
reasons, the issues are deemed In

many cases, the deficiencies of this approach can be
addressed via an intelligent analysis of the domain, and a
careful assignment of priorities. However, this can be an
arduous task, and it can be simpler to work with a
straightforward demand modeL

There are other factors that the DANS scheduler must take
in to account. For example, schedule stability is highly
desirable, and the current system maximizes stability for
the highest priority jobs. Market models suggest an
alternative approach, in which contract penalties are
determined on a task-by-task basis, and encourage stability
while still allowing the scheduler some flexibility. These
penalties can be adjusted to reflect the desired level of
stability.

The top-down approach adopted by DANS is
time-consuming. When new tasks are
DANS enumerates all of the
possibilities, and then evaluates the impact of each of these
on t'le current schedule. ii. finer-grained cost mode! in this
context would greatly complicate the problem, to the extent
that the approach would likely be no longer feasible. In our
opinion, this is a feature of the top-down search strategy
that DANS A number of and
Muller, 1995, Sandholm, 1993, and 1992) have
demonstrated that contract net based, distributed problem
solving techniques can be used to achieve levels of
global performance in complex optimization problems. Our
work at IAI (see, for 1997), is
focused almost exclusively in this direction, which can be
viewed as bottom-up scheduling and optimization. One
advantage of this approach is that it is well-suited to fine
grained models of both cost and demand. In this paper, we
have tried to show the utility of such models in a particular
context, and suggest that be considered in the context
of satellite array scheduling.

Acknowledgments

The work described in this paper has been performed by the
""""«!',''-''" research of Automation Inc.
Our teaming partners of Cincinnati, Industrial

Institute, and Flavors Technologies have
tremendously contributed to our manufacturing effort. This
work has been in part funded by NASA SBIR NAS8-

DARPA BAA 94-31,
of Commerce SBIR contract 50-DKNB-6-

90112. The views in this paper are those
of the reflect the views of

References

Baker, B., Parunak, V., Erol, K. 1997. Manufacturing over
the Internet and into Your Living Room: Perspectives from
the AARIA Forthcoming.

R W. Govindjee Wang X., Estlin,
Lam, R., and Fayyad, K.V.1997a. A

Hierarchical Architecture for Resource Allocation, Plan
Execution, and Revision for Operation of a Network of
Communications Antennas. Proc. 1997 IEEE Int'l Conf. on
Robotics and Automation.
Chien, S., Lam, R., and Quoc V, 1997b. Resource
Scheduling for a Network of Communication Antennas
Proc. Of the IEEE Aerospace Conference, Aspen, Co.
Fischer, K.,and Mi.iller, H. J. 1995. Cooperative Problem
Solving in the Transportation Domain. in Ulrich Derigs
(ed.) Proceedings of the International Conference on
Operations Research.
Sandholm, T. 1993. An Implementation of the Contract
Net Protocol Based on Cost Calculations.
Proceedings the Eleventh National Conference on
Artificial Intelligence.
Wellman, M. 1992. A General-Equilibrium Approach to
Distributed Transportation Planning. Proceedings of the
Tenth National Conference on Artificial Intelligence.

	1997-1_Part93
	1997-1_Part94
	1997-1_Part95
	1997-1_Part96
	1997-1_Part97
	1997-1_Part98
	1997-1_Part99

