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Abstract 

Multi-agent problem solving using market mechanisms is a 
primary focus area of Intelligent Automation Inc. We have 
been developing agent-based planning and scheduling 
techniques, and investigating their feasibility in 
manufacturing and transportation domains. These domains 
involve online streams of jobs being executed in dynamic 
and uncertain environments. Many NASA applications, such 
as scheduling DSN antenna facilities, a.11d mission planning 
share these characteristics. We believe that market 
mechanisms greatly facilitate problem solving under these 
conditions, insofar as they provide a means of localizing 
decision making. This paper describes how we use fine
grained models of cost to facilitate computational resource 
allocation in Cybele, an agent infrastructure that we have 
been developing to support multi-agent processing on a 
distributed network of computers. This technique of resource 
allocation using fine-grainec!. demand models may be of 
utility in finding high quality solutions to the DSN 
scheduling problem. 

The NASA Demand-Based Autonomous 
Network Scheduling System 

(Chien,et.al, 1997b) describes the DANS rescheduling and 
resource ailocation system, which is designed to support 
incremental changes in a complex schedule of satellite
tracking antennas and their supporting subsystems. The 
Deep Space Network (DSN) antennas that it schedules are 
critical resources, so the DANS system decomposes the 
problem into a two-level hierarchy, where the scheduling of 
supporting subsystems is performed in the context of a 
particular solution to the antenna-scheduling problem. 
Assignments of antennas to perform specific tasks in fixed 
time windows are referred to as tracks. Given a new 
activity to schedule, DANS exhaustively searches through 
the set of constraint-satisfying antenna schedules, which 
corresponds to a set of tracks, and ranks them as a function 
of the disruption they cause to the current schedule. Tasks 
that can be inserted to the current schedule without 

the cancellation of any existing tracks are treated 
have zero cost. Where there are conflicts, """''"uu;; 

may be based upon a 
More task are 

numbers, and tasks may only preempt tracks of tasks with 
higher priority numbers. These priority levels appear to be 
small integers, in the range of roughly 0-9. When conflicts 
do occur, solution costs are ranked according to the formula 

Cost= (NAD * priority) I (0.9 NAD + 0.1) 

Where NAD is the number of deletions required to 
schedule the current activity. When tracks are deleted, the 
scheduler tries to immediately reinsert them in to the 
schedule. In addition to this task-at-a-time top-down 
scheduling, DANS can also be asked to make bottom-up 
repairs to its schedule in an effort to recover from 
unanticipated events, such as equipment failure or weather 
conditions. 

We believe that the cost model adopted by DANS can be 
improved significantly. The priority scheme described in 
(Chien,et.al, 1997b), allows only very coarse comparisons 
between solutions. In our work on scheduling systems, we 
have adopted that view that tasks should be assigned fine
grained values, and the scheduler should be designed in 
such a way that this information can be used to produce 
high quality solutions. This approach has several 
advantages. Determining the demand a job has for 
resources is more natural and direct than finding the 

·appropriate priority level needed to produce the desired 
results. It requires no specialized knowledge of the way in 
which the scheduler interprets priority levels. .In many 
cases, it amounts to a customer how much he is 
willing to pay. This approach enables us to employ a 
number of weB-known market mechanisms in the search 
for near-optimal solutions. It allows us to more accurately 
account for the relative worth of the various and 
enables us to well-known of market 
economics to scheduling pr<)O!c;m,s. 

the advantages of this cost model 
for 



computer, this problem is fairly similar to one which must 
be addressed by every modern operating system. 
Conventional solutions to this problem almost always use 
the sort of coarse-grained scheduling that DANS employs 
in its top-down scheduler. As a result, it can be very 
difficult to optimize CPU usage, even when the relative 
demands of the various processes in the system are known 
precisely. We examine the case of autonomous agents 
because it is both fundamental to the work we do at 
and because it allows us to consider cases where the 
migration of tasks between processors is a valid and 
realistic consideration. While the problem of optimizing 
CPU usage is not isomorphic to the problem of scheduling 
satellite arrays, there are a number of similarities. In both 
cases, there are large numbers of tasks, or consumers, that 
compete for scarce resources, and the problem is one of 
finding high levels of global through some 
assignment of resources to consumers. In both cases, some 
tasks are deemed more valuable than others. Granted, there 
are fundamental differences in the two problems, and we 
are not claiming that our results are to 
DNS scheduling. However, we do believe that, for purposes 
of achieving high-quality assignments of resources to 
consumers, the fine-grained model of cost and demand has 
tremendous advantages over coarse-grained systems. In this 
paper, we show this in the context of managing CPU 
allocation. 

Computational Resource Allocation and 
Dynamic Load Balancing 

Agents are persistent and goal-oriented, thus they are 
sensitive to the availability of computational resources. 
However, the benefit an agent receives from additional 
CPU cycles varies widely, depending on the importance of 
tl1e tasks he is working on, tt'le due dates, and also how long 
he has been working on them (law of marginal returns). 
Thus the demand for CPU cycles can be different at each 
agent, and it varies over time. Similarly, the amount of 
computational resources available on the network can 
fluctuate as the computers go down/up, or additional 
workload is added to them. Allocating resources to agents 
in an optimal way becomes a very intricate problem under 
these considerations. 

Load-balancing and CPU optimization can be considered at 
three different levels: 
.. In a single agent community/computer 
• Among agent cornmunities on a local area network 
., Among local-area networks of agents connected via 

the Internet. 

Within a agents have to time-share the 
CPU. The to decide is what of the CPU 

each individual should get, in order to make 

the most profitable use of the available CPU cycles. This 
clearly goes beyond the rudimentary priority-based round
robin scheduling employed by most operating systems. 
In a local-area network of agent communities, the problem 
becomes deciding how to distribute/migrate agents among 
agent communities in such a way that the aggregate 
computational capacity on the network is optimally utilized. 
The optimal solution is at an equilibrium point, where the 
return for an additional CPU cycle(marginal utility) is the 
same at each agent community. It is desirable to maintain 
the equilibrium point with minimal while being 
responsive to fluctuations in the capacity of computational 
resources, as well as the fluctuations in the demands of 
individual agents. It is also important to take into 
consideration the cost of migrating agents. 

In this paper, we do not consider the third level, which is 
among local-area networks, connected via the Internet. In 
the abstract, this is the same problem as load-balancing in a 
local-area network, with higher costs of communication 
and agent migration. Thus the same techniques apply. Note 
that the clustering of load-balancing into several levels 
ma."'<:es our approach scaleab!e to very large systems. 

In the next two sections, we will present the technical 
details of CPU allocation within an agent community, and 
then the load-balancing protocols across agent communities 
on a local area network. 

CPU Allocation within an Agent Community 

Resource allocation has been a central problem addressed 
by microeconomic theories. We draw heavily from that 
body of work. While economists have focused on existence 
of equilibrium points, our focus is on the computational 
expedience of finding and maintaining the equilibrium 
under changing conditions. The time scale makes a big 
difference: assigning CPU cycles optimally requires 

in the order of seconds, as opposed to in the 
order of days, or even months in commodity markets. Thus 
any practical solution must be extremely fast to compute. 
On the other hand, agents engineered to have very 

structure Hence behavioral 
ass:urrlptllons, such as better to agents than 
to people. As a direct consequence, we expect economic 
market models to be even more applicable to agents than to 
people. 

In an agent-based application, where each individual 
is a entity, each agent operates by 
his services. In order to provide his an agent will 
need to services from other agents. For "'A':u"'-'!" 

a agent may have the "'"''·'"'"'U" 
produce a part, but in order to this 
will need to materials on the 

the can ""·rt"'"" 
is natural to treat 



computational resources, just as any other service an agent 
needs to buy. In making such decisions, the needs to 
decide whether to buy from an expensive, faster machine, 
to buy now versus at a later time, or choose not to buy at 
all, if the prospective job is not profitable. The same applies 
to buying CPU The agent must decide how much 
and when to buy/release CPU cycles to maximize his profit. 

Let Q denote the computational capacity (cycles/sec) 
available to an agent community. Assume a mother agent 
of the community that will be responsible for monitoring 
the change in available capacity and allocating it among her 
children agents. Assume the current number of agents in a 
community to be n. 

Each agent maintains a demand function, d/ q), which 
denotes the rate (in dollars) he is willing to pay for one 
additional CPU cycle/sec, at his current consumption rate 
of q cycles/sec. Thus each agent must know how much 
CPU cycles are worth to him. This is a strong assumption 
for traditional software; however, agents, which are 
designed to operate in a market model for profit 
maximization, would be aware of t.~eir computational 
needs. 

A market equilibrium point <p,q1, ••• q.> is defined with the 
following equations: 

I.(ql, ... q.) = Q 
q; >= 0 for i= l .. n 

d;(q) = p or [q; = 0 and d;(O) <p ] for i= l .. n 

where p is the equilibrium market price. In other words, the 
CPU cycles are sold to the agents at p dollars per unit. At 
the equilibrium point, all the available capacity is 
distributed among the agents. No agent can have a negative 
share. There is an equilibrium p, such that every agent 
with a positive share values his next unit CPU cycle at the 
same price p. Thus there is no incentive to swap CPU 
cycles. The whose share is 0 are not willing to buy 
any cycles at the current market price p. 

Theorem 1. When the demand functions for individual 
agents are continuous, and 
unique equilibrium point. 

decreasing, there exists a 

Synopsis of Proof. The fact that the demand functions are 
continuous and strictly decreasing implies that the demand 
functions are one-to-one and their inverse functions exist. 
The inverse functions are also and strictly 

Let The 

An mt~!re:stu1g 
that it is also 

and 
point 

is 

will benefit from lying about his demand function, when 
the remaining agents are honest about their demand 
functions, as stated in the following theorem. 

Theorem 2. The market equilibrium point is also a Nash
Equilibrium point. 

Synopsis of Proof. Note that the total amount an agent 
pays for his CPU cycles is only affected by the quantity he 
is to buy at the market equilibrium price. If the 
agent has declared a demand at that point, then he 
will be forced to buy additional CPU cycles for a higher 
price than he is willing to pay. If he has declared a lower 
demand, then, at the market price, he will miss the chance 
to buy CPU cycles at a lower rate than he is willing to pay. 
He loses in either case. 

We have presented the equations that determine the market 
equilibrium point, and proven that there exists a unique 
solution when the demand functions are constrained to be 
continuous and in order for 
our approach to be practical, we must be able to effectively 
compute the equilibrium point in the order of mJ!lu;econas, 
in response to fluctuations in the demands from as 
well as the fluctuation in the available computational 
capacity. 

Obviously, arbitrary demand functions are hard to represent 
in data structures, and do not lend themselves to closed
form solutions that are efficient to compute. We identify a 
class of demand functions parameterized with few variables 
that lead to closed-form solutions which are efficiently 
computable. This class of functions is also rich enough to 
represent a wide range of demand functions, and has the 
following general form: 

d( q) = al(b+q); q>=O 

Depending upon the values the para.TTieters a and b take, 
this function can assume many different forms. If b is very 
large, it will appear as a flat line in the operational range. If 
b is very small, it will appear almost like a vertical line, and 
in between, it will have a hyperbolic form. The absolute 
value of the demand can be adjusted with parameter a. 
Furthermore, this leads to a very compact function 
representation: each agent needs to convey only the values 
for a and b. Note that this function is continuous and 
strictly decreasing, thus there exists a unique equilibrium 
solution, which tells us the optimum way to allocate the 
available computational capacity. 

This form also leads to a closed-form solution that is easy 
to compute: 

::::: 



Let I.[ a}= A and 'L[bJ =B. 

Alp -B = Q 
p = A/(B+Q) 

This particular formula does not give the exact equilibrium 
price: it ignores the constraint that q > = 0. A careful 
examination of the solution reveals that the agents with low 
demand functions will attempt to operate with negative q, 
and sell CPU cycles. If we can tell which agents will have 
non-zero capacity shares at the equilibrium price, and 
include only them in the formula, we will have the exact 
equilibrium price. Fortunately, there is an efficient way to 
compute the actual equilibrium point, as outlined in the 
algorithm below: 

1. Sort agents in decreasing order of alb. 
2. Let A = 0, B = 0; k = 1; P = 0; 
3. while < ajbk) and ( k 

{A= A+ ak; 
B = B + bk; 
P = AI(B+Q); 
k = k+1} 

4.for j = 1 to k-1 do 
q1 = ajP - bi'· 

5.for j = k ton do 
q = 0; 

The basic intuition of this algorithm, which computes the 
exact market equilibrium point is as follows: Initially the 
set of agents with non-zero capacity allotment is empty. 
Iteratively add the agent who is willing to pay the highest 
price for his first CPU cycle to the set, as long as that price 
(computed by formula a/b) is above the current market 
equilibrium price. The iteration terminates, when none of 
the remaining agents are willing to buy any CPU cycles at 
the current equilibrium price. 

The sorting part of the . algorithm runs in O(n log n) 
time; however, it is needed only once. From then on, 
updates will take linear time. The iteration in the algorithm 
is also linear. 

Updates occur in response to following events: 
., as new agents are added to the community 
., as agents in the community are terminated 
• as agents change their demand functions 
.. as the computational capacity available to the 

community changes. 

focus on how to best utilize the 
1.nauvJ"a' ~~··~ 0''" distributed a local area network. 

Each agent community in the network has some capacity, 
and a number of agents. Even though each community is 
optimizing its CPU cycles using the technique detailed in 
the previous section, this may not correspond to the global 
optimum. In a community where demand is high and the 
capacity is low, the equilibrium price will be very high. In 
contrast, there may be other communities where the 
demand is relatively low, and the capacity is large. In such 
communities the equilibrium price would be low, and the 
agents in the high-price community can make better use of 
some of the CPU cycles at the low-price community. Thus 
we would like to be able to migrate agents from high-price 
communities to lower priced communities, until all 
communities have the same equilibrium price. This 
problem is complicated by the fact that the demand and 
capacity at each community will be continually changing, 
due to both external factors (behavior of agents, computers 
going down, etc.), and internal factors (agents migrating 
across communities). Agent migration itself has a 
significant duration, and requires CPU cycles. There is also 
a tradeoff between the responsiveness of the system, and its 
stability. 

We will first describe the equations that define the 
theoretical global optimum. This will assume: 

• All the information is available at a central location 
• There is no latency in the data 
., Agent migration is instantaneous 

Naturally, these assumptions are not valid in a distributed 
network environment. We will present techniques that do 
distributed load-balancing, without these assumptions. 
When tuned, these techniques will keep the system close to 
the global optimum, without putting it into oscillation. 

One can view a network of agent communities as a single, 
virtual agent community that houses all the agents in the 
system, whose computational capacity is the sum of t.~e 
capacities of individual communities. With this translation 
into a single virtual community, the allocation techniques 
developed for a single community can be applied directly to 
compute the equilibrium price, and the individual share of 
CPU cycles that each agent will receive. At that point, we 
have a partitioning problem in our hands: distribute the 
agents to communities in such a way that the difference 
between the capacity of a community, and the aggregate 
capacity share of the agents assigned to that community is 
minimized. Once the agents are distributed to communities, 
the equilibrium price at each community, and the share of 
each agent can be computed. Naturally, there will be some 
difference in the price level of communities, due to the 
fragmentation when each agent is assigned to a community. 
Thus the theoretical equilibrium may not be attainable. 

Next, we present a protocol that 
This can handle 

Issues: 



• New agent communities can appear anywhere in the 
network 

"' Existing communities may disappear as their host 
computers goes down or otherwise become unavailable 

• The computational capacity available to a community 

• New agents are created, terminated 
• Existing agents' demand for CPU cycles change 

Furthermore, this protocol is parameterized so that it can be 
tuned to the frequency of changes in the system. In future 
research, we will address how to dynamically adjust those 
parameters to changing patterns in the system. 

The first step towards moving the system towards the 
global optimum (equilibrium) point involves estimating the 
equilibrium price. The theoretical analysis outlined 
previously requires the information about the capacity of 
each community and the demand function for each agent in 
the system. It is not practical to maintain this large body of 
information at a central location, because it would be 
severely out of date most of the time. Instead we have 
devised methods of abstraction to compress this 
information so that it can be shared among agent 
communities. 

Recall that the market equilibrium algorithm within a single 
agent community computes two factors: A = L[aJ; B = 
L[bJ. A and Bare respectively sums of parameters a, and b, 
for the agents in that community with non-zero capacity 
share at equilibrium point. _Thus A and B contain the 
summary information on the demand functions of the 
individual agents in that coro..munity. 

Let A, be the sum of a, of the agents in agent community i, 
and let B, be the sum of b, parameters of agents on 
community i. Let Q, be the computational capacity 
available to the community i. The estimated equilibrium 
price P is given by the formula: 

P = L[AJ)I( l:[BJ + L[QJ (equilibrium price formula) 

This formula is only an estimate, and not the actual 

equilibrium price, because it presumes that at the global 
equilibrium point the set of agents with non-zero share 
allotment will be the same as in the initial state. Recall that 
the closed-form solution for the single community 
equilibrium was inexact, and this was corrected by the 
Find-Community-Equilibrium Algorithm. We cannot 
utilize the same technique in the multiple community 
version, as it would require that the demand functions for 
each agent be known at a centralized location. However, in 
most cases, the closed-form solution provides a close 
approximation, which improves as the system moves 
towards optimality, and it is exact when the system is 
operating at market equilibrium. Thus it can be successfully 
used as a guide for converging to the equilibrium point. 

Our load-balancing protocol requires that each mother 
agent be able to estimate the global equilibrium price. Thus 
each mother agent will maintain a list containing <Ai'B,,Q,> 
for all communities in the system. We will call this list as 
the system load table. Each mother agent periodically, and 
in response to significant changes, multicasts her new 
<A,,B,,Q,> values to the other mother agents, so that this 
information remains reasonably up to date and accurate. 
Mother agents also monitor the termination and creation of 
other agent communities with the same set of messages. 

Using the data in the system load table, each mother 
estimates the global equilibrium price using the above 
equilibrium price formula. Each mother agent also 
estimates he equilibrium price at each other agent 
community using the formula p, = A/(B, +QJ This formula 
gives accurate answers as long as the parameters are up-to
date. In actuality, it will be a close approximation, because 
minor fluctuations in .those parameters are not reported, in 
order to minimize message traffic. 

Our load-balancing protocol involves two parameters 
overload factor and underload factor. 

A community is overloaded ifP,> overload factor* P, 
and underloaded ifP,< underload factor* P. 

Where P is the estimated global equilibrium price. 



TransferResponse(YES 

Confirm(NO)/TransferRequest 
Confirm(YES)[overloaded]/TransferRequest 

[overloaded]/ 
TransferRequest 

ChangelnPrice 
[Overloaded]/ 
TransferRequest 

AgentReceived[not overloltdecl]/S,endCorofirrn(YES) 
ChangelnPrice[not underloaded and not ovenuaueuJt~enac 
RequestCanceled[not overloaded] 

Figure 1. State-Transition Graph for Load-balancing Protocol 

Overloaded communities attempt to transfer some of their 
agents to other communities, and a community will accept 
incoming agents only if the community is underloaded. For 
values of load factors close to 1, the system attempts to 
transfer agents eagerly in order to reach close to the 
optimum point. This is suit~ble for fairly stable systems 
with low frequency of fluctuations. For systems with high 
frequency of fluctuations, it is more appropriate to set the 
load factors so that the system behaves more conservatively 
in migrating agents to keep close to the global optimum. 

The dialog among mother agents for load balancing 
proceeds as follows: A mother agent who finds she is 
overloaded (due to increase in the demand functions of her 
agents, or a decrease in her computational capacity) 
probabilistically selects an underloaded mother. The more 
underloaded a mother is, the likelier she will be selected. 
The overloaded mother sends a transfer request to the 
selected mother .If the transfer request is rejected, and the 
mother is still overloaded, she will probabilistically select 
another mother. If the transfer request is accepted, she will 
send one of her agents across and wait for confirmation that 
the agent is successfully migrated to the other side. 

Figure 1 presents the state transition diagram for a mother 
agent's load-balancing activity. There are a number of 
short-cuts in the dialog. In particular, mothers can change 
their minds about sending an agent, or accepting an agent, 
depending on changes in the market prices. 

There are four states: 
I. This is the state where the mother 

remains as as she is not and she is not 

involved in an agent transfer 
2. WF Agent: This is the state where a mother agent has 

ac•::etnea a new agent and for his arrival. 
3. WF Answer: This is the state where the mother agent 

has asked another mother to take an agent from her, 
and she is waiting for the response. 

4. WFConfirm: This is the state where the mother agent 
has sent one of her to another mother, and she is 
wa1tmg for confirmation that the agent was 
successfully revived on the other side. 

There are also time-out transitions, not displayed in the 
diagram, so that the protocol can robustly operate in the 
presence of lost messages, or agent migration failures. 

Conclusion 

In cases where the relative demand of processes is known, 
there is no simple way to reflect this evaluation in the 

round-robin schedulers found in 
almost all modern time-sharing operating systems. In this 
paper, we have shown that it is possible to optimally 
schedule processors when consumer priorities are 
allowed to accurately reflect demand. We have also 
described a way to find of jobs 
across multiple processors, when are allowed to move 
between processors. In our the of 
nned-!!rauted cost models are """"1Ju<av .• -.. 

complex optimization problems. As described in 
et.al, 1997), DANS falls into this but for unstated 
reasons, the issues are deemed In 



many cases, the deficiencies of this approach can be 
addressed via an intelligent analysis of the domain, and a 
careful assignment of priorities. However, this can be an 
arduous task, and it can be simpler to work with a 
straightforward demand modeL 

There are other factors that the DANS scheduler must take 
in to account. For example, schedule stability is highly 
desirable, and the current system maximizes stability for 
the highest priority jobs. Market models suggest an 
alternative approach, in which contract penalties are 
determined on a task-by-task basis, and encourage stability 
while still allowing the scheduler some flexibility. These 
penalties can be adjusted to reflect the desired level of 
stability. 

The top-down approach adopted by DANS is 
time-consuming. When new tasks are 
DANS enumerates all of the 
possibilities, and then evaluates the impact of each of these 
on t'le current schedule. ii. finer-grained cost mode! in this 
context would greatly complicate the problem, to the extent 
that the approach would likely be no longer feasible. In our 
opinion, this is a feature of the top-down search strategy 
that DANS A number of and 
Muller, 1995, Sandholm, 1993, and 1992) have 
demonstrated that contract net based, distributed problem 
solving techniques can be used to achieve levels of 
global performance in complex optimization problems. Our 
work at IAI (see, for 1997), is 
focused almost exclusively in this direction, which can be 
viewed as bottom-up scheduling and optimization. One 
advantage of this approach is that it is well-suited to fine
grained models of both cost and demand. In this paper, we 
have tried to show the utility of such models in a particular 
context, and suggest that be considered in the context 
of satellite array scheduling. 
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