
Active Statistical Learning of Heuristic Scheduling Strategies

Jonathan M. Gratch2, Steve A. Chien1, and Darren Mutzl

2 Information Sciences Institute, University of Southern California, Marina del Rey, CA

Email: { steve.chien,darren.mutz} @jpl.nasa.gov, gratch @isi.edu

Abstract

Although the general class of most scheduling problems
is NP-hard, in practice, domain~specific techniques fre

quently solve problems in much better than exponential

time. Unfortunately, constructing special-purpose sys

tems is a knowledge-intensive and time-consuming pro

cess that requires a deep understanding of the domain and
problem-solving architecture. In adaptive problem-solv

ing the system automatic!!lly learns an effective domain

specific search strategy given a general problem solver

with a flexible control architecture. In this approach, a

A~~cuu,,, system explores a space of possible heuristic

methods for one well -suited to the eccentricities of the giv

en domain and problem distribution. In this article, we
discuss an application of the approach to scheduling satel

lite communications. Using problem distributions based
on actual mission requirements, our approach identifies
strategies that not only decrease the amount of CPU time

required to produce schedules, but also increase the per
centage of problems that are solvable within computation

al resource limitations.

1 Introduction

With the maturation of automated problem-solving re

search has come grudging abandonment of the search for

"the" domain-independent problem solver. General prob

tasks like planning and scheduling are prov-

intractable. heuristic methods are effec-

of

Blythe, 1994, & Murray, 1994)). Studies repeatedly

show that a strategy that excels on one task can perform

abysmally on others. These negative results do not entire

ly discredit domain-independent approaches, but suggest

that considerable effort and expertise is required to find an

acceptable combination of heuristic methods, a conjec

ture supported by the few published accounts of real

world implementations (e.g. (Wilkins, 1988)). The speci

ficity of heuristic methods is especially troubling when

we consider that problem-solving tasks frequently change

over time. a heuristic solver may require

expensive "tune-ups" as the character of the application

changes. Adaptive problem solving is a general method

. for reducing the cost of developing and maintaining effec

tive heu..ristic problem solvers. Rather than forcing a de

veloper to choose a specific heuristic sL"ategy, an adaptive

problem solver adjusts itself to the idiosyncrasies of an ap

plication. This can be seen as a natural extension of the

principle of least commitment (Sacerdoti, 1977). When

solving a problem, one should not commit to a particular

solution path until one has information to distinguish that

path from the alternatives. Likewise, when faced with an

entire distribution of problems, it makes sense to avoid

cmnrrurrimg to a particular heuristic strategy until one can

make an informed decision on which performs

better on the distribution. An problem solver

embodies a space of heuristic methods, and only settles on

combination of these methods after a period

adctPt<lttion. which the

mance element PE with control points CPJ ... CPn, where

each control CPi corresponds to a particular control
decision and for which there is a set of alternative decision

methods Mi,l···Mi,k, 1, a control strategy is a selection of

a specific method for every control point (e.g., STRAT =
<Mt,3,M2,6,M3,1>···>). A control strategy determines the
overall behavior of the scheduler. It may effect properties

like computational efficiency or the quality of its solu

tions. Let be the problem solver op<:ratmg

under a particular control strategy. The function

U(PE(STRAT), d) is a real valued utility function that is

a measure of the goodness of the behavior of the scheduler

over problem d. The goal oflearning can be expressed as:

given a problem distribution D, find STRAT so as to maxi

mize the expected of PE. Expected utility is de

fined formally as:

U(PE(STRAT), d) X probability(d)

For example, in a planning system such as PRODIGY

[Minton88], when planning to achieve a goal, control

points would be: how to select an operator to use to

achieve the goal; how to select variable bindings to instan

tiate the operator; etc. A method for the operator choice

control point might be a set of control rules to determine

wl:>.ich operators to use to achieve va.rious goals plus a de

fault operator choice method. A strategy would be a set

of control rules and default methods for every control

point (e.g., one for operator choice, one for binding

choice, Utility might be defined as a function of the

time to construct a plan, cost to execute the plan, or some
overall measure of the quality of the plan produced.

The adaptive problem-solving technique is applicable in

cases where the following conditions apply:

1. The control space can be structured to facili

tate hillclimbing search. In the space of such

strategies is so as to make exhaustive search intrac-
table. problem-solving requires a transforma-

1. Note that a method may consist of smaller ele
ments so that a method may be a set of control rules
or a combination of heuristics. Note also that a meth-
od may real-valued pruranlet,ers
the number methods for a may be

and there may an infinite number strat-

search steps, with

step.
few transformations at each

2. There is a large supply of representative training prob

lems so that an adequate sampling of problems can be

used to estimate expected utility for various control strate-
gies.

3. Problems can be solved with a sufficiently low cost in

4. There is sufficient regularity in the domain such that
the cost of learning a good strategy can be amortized over

the gains in solving many problems.

Due to space limitations we now turn to a description of

the DSN application domain and results. For further de

tails on the statistical learning techniques we use for adap
tive problem-solving the reader is referred to (Chien et aL

1995, Gratch & Chien 1996).

2 Results of Applying Adaptive Prob
lem-solving to Deep Space Network
Scheduling

In order to assess the viability of adaptive problem-solv

ing to real-world scheduling problems, we have applied

adaptive problem-solving to a testbed scheduler which

solved Deep Space Network Antenna Allocation prob

lems. In this section we describe a formulation of the

Deep Space Network antenna allocation problem, and

outline results of applying adaptive problem-solving to

learning control heuristics for a scheduler which solves

this problem.

The Deep Space Network (DSN) is a multi-national

collection of ground-based radio antennas responsible for

maintaining communications with research satellites and

deep space probes. DSN Operations is responsible for

scheduling communications for a large and growing

number of spacecraft. This already complex scheduling
problem is becoming more challenging each year as

budgetary pressures limit the construction of new anten-
DSN has turned increasingly

of

of network utilization.

the Jet

the resJponsibility

26-meter antennas at
and Madrid, Spain.

Canberra, Australia

DSN Scheduling Problem

Scheduling the DSN 26-meter subnet can be viewed as a
large constraint satisfaction problem. Each satellite has
a set of constraints, called project requirements, that
define its communication needs. A typical project

specifies three generic requirements: the minimum and

maximum number of communication events required in
a fixed period of time; the minimum and maximum
duration for these communication events; and the

minimum and maximum allowable gap between commu
nication events. For example, Nimbus-7, a meteorologi
cal satellite, must have at least four 15-minute commu
nication slots per day, and these slots cannot be greater
than five hours apart. Project requirements are deter

mined by the project managers and tend to be invariant
across the lifetime of the spacecraft.

In addition to project requirements, ther~ are
constraints associated with the various antennas. First,
antennas are a limited resource - two satellites cannot

communicate with a giver: antenna at the same time. Se
cond, a satellite can only communicate with a given an
tenna at certain times, depending on when its orbit brings
it within view of the antenna. Finally, antennas undergo
routine maintenance and cannot communicate with any

satellite during these times.

Scheduling is done on a weekly basis. A weekly

scheduling problem is defined by three elements: (1) the
set of satellites to be scheduled, (2) the constraints
associated with each satellite, and (3) a set of time periods

specifying all temporal intervals when a satellite can le
gally communicate with an antenna for that week. Each
time period is a tuple specifying a satellite, a communica
tion time interval, and an ar1tenna, where (1) the time in~
terval must satisfy the communication duration
constraints for the satellite, (2) the satellite must be in
view of the antenna during this intervaL Antenna mainte-

nance is treated as a project with time periods and

constraints. Two time periods conflict if they use the same
antenna and overlap in temporal extent. A valid schedule
specifies a non-conflicting subset of all possible time peri

ods where each project's requirements are satisfied.

The automated scheduler must schedules
quickly as scheduling problems are frequently over
constrained (i.e. the project constraints combined with the

allowable time periods produces a set of constraints which
is unsatisfiable). When this occurs, DSN Operations must
go through a complex cycle of negotiating with project
managers to reduce their requirements. A goal of auto

mated scheduling is to provide a system with relatively
quick response time so that a human user may interact
with the scheduler and perform "what if' reasoning to as
sist in this negotiation process. Ultimately, the goal is to
automate this negotiation process as well, which will

place even greater demands on scheduler response time
(see (Chien & Gratch, 1994) for some preliminary work
on this later problem). For these reasons, the focus of de-

sarily uncover the optimal schedule, but rather produce
adequate schedules

2.2 Adaptive LR-26 Control Points

Pseudocode for the LR-26 scheduler is given below with
the four control points indicated parenthetically. Control
point one controls which partial schedule is chosen from
the agenda, two determines in what order children in S are
explored, three dictates which constraint is chosen to sat
isfy next, and control four determines how sched

ules are refined. The details of how 1, 2, 3, and 4 are im
plemented define the runtime efficiency characteristics of
the algorithm almost entirely (for a more detailed discus
sion see Gratch & Chien, 1996).

LRm26 Scheduler
Agenda:= {S0};

While Agenda ::;t. 0
(1) Select some partial scheduleS E Agenda; Agenda:=Agenda-{S}
(2) search for some S*(u) E S;

(3)
(4)

Else

satisfies the project requirements (PR) Then
Return S*(u);

Select constraint c E PR not by S*(u);
RefineS into {Si}, such that each E Si satisfies c

and u{Si} = S;
p,.T-frwrn constraint on each Si

Agenda := Agendau{ Si};

Figure 1: The basic LR-26 refinement search method.

1) Value ordering: penalize-conflictedness
first-solution
penalize-unforced-periods
prefer-total-conflictedness
systematic-refinement

Weight search:
Primary constraint ordering:
Secondary ordering:
Refinement method:

2) Value ordering:
Weight search:
Primary constraint ordering:
Secondary constraint ordering:
Refinement method:

3) Value ordering:
Weight search:
Primary constraint ordering:
Secondary constraint ordering:
Refinement method:

prefer-gain
first -solution
penalize-unforced-periods
prefer-total-conflictedness
systematic-refinement

penalize-conflictedness
first-solution
penalize-unforced-periods
penalize-satisfaction-distance
systematic-refmement

Figure 2: The three highest utiiity strategies ieamed by Adaptive LR-26.

Results DSN DISTRIBU- reduced the average time to solve a problem (or prove it
unsatisfiable) from 80 to 40 seconds (a 50% improve-

In this section we summarize the ·results of adaptive
over the constructed DSN probleJm

that the
Due to the stochastic nature of the

different ., "'F''"'"
learned srr<:ne~~Ies

All

24 seconds on average to solve a problem (an improve
ment of 70%). The fastest adaptations occurred early in
the adaptation phase and performance improvements de
creased steadily throughout. It took an average of 62 ex
amples to adopt each transformation. Adaptive LR-26
showed some improvement over the non-adaptive sched
uler in terms of the number of problems that could be
solved (or proven unsatisfiable) within the resource
bound. LR-26 was unable to solve 21% of the scheduling
problems within the resource bound. One adaptive strate
gy substantially reduced this number to 3%.

In Figure 2 we give the three highest utility strategies
learned by the adaptive algorithm. Most of the perfor
mance improvement (about one half) can be traced to
modifications in LR-26's weight search method (i.e., how
the algorithm chooses which child to explore next). The
rest of the improvements are divided equally among
changes to the heuristics for value ordering (the order in
which partial schedules are prepended to the agenda),
constraint selection, and refinement.

Another claim is that, in practice, adaptive problem-solv
ing can identify strategies that rank highly when judged
with respect to the whole strategy space. A secondary
question is how well does the expert strategy perform.
The improvements of Adaptive LR-26 are oflittle signifi
cance if the expert strategy performs worse than most
strategies in the space. Alternatively, if the expert strate
gy is extremely good, its improvement is compelling.

As a way of assessing these claims we estimate the
probability of selecting a high utility strategy given that
we choose it randomly from one of three strategy spaces:
the space of all possible strategies (expressible in the
transformation grammar), the space of strategies pro-

duced by Adaptive LR-26, and the trivial space contain
ing only the expert strategy. This corresponds to the prob
lem of estimating a probability density function (p.d.f.)
for each space: a p.d.f., f(x), associated with a random
variable gives the probability that an instance of the vari
able has value x. More specifically we want to estimate
the density functions,.fs(u), which is the probability of ran
domly selecting a strategy from spaces that has expected
utility u.

We use a non-parametric density estimation tech-
called the kernel method to estimate fs(u) (as in

(Smyth, 1993)). To estimate the density function of the
whole space, we randomly selected and tested thirty strat
egies. All of the learned strategies are used to estimate the
density of the learned space. (In both cases, five percent
of the data was withheld to estimate the bandwidth param
eter used by the kernel method.) The p.d.f. associated
with the single expert strategy is estimated using a normal
model fit to the 1000 test examples from the previous
evaluation.

2.3.1 DSN DISTRIBUTION

Figure 3 illustrates the results for the DSN distribution.
In this evaluation the learned strategies significantly
outperformed the randomly selected strategies. Thus, one
would have to select and test many strategies at random
before finding one of comparable expected utility to one
found by Adaptive LR-26. The results also indicate that
the expert strategy is already a good strategy (as indicated
by the relative positions of the peaks for the expert and
random strategy distributions), indicating that the im
provement due to Adaptive LR-26 is significant and
non-trivial.

0.140
;;...,

;'!:::

:s 0.120
e\1

,Q
0

'"' 0.100 ~

0.080
Learned Strategies

0.060 \
0.040

I\
II
I I
I I
I I
I I
I I
I I
I I
I l
I I
I
I I

Improved Performance

Expert Strategy

Random Strategies
0.020

-"-...\ -~
I \..__.../

0 '----
0 20 40 60 80 100 120 140 160 180

Negative Expected Utility

Figure 3: The DSN Distribution. The graph shows the probability of obtaining a strategy of a
particular utility, given that it is chosen from (1) the set of all strategies, (2) the set of learned
strategies, or (3) the expert strategy.

The results provide additional insight into Adaptive
LR-26's learning behavior. That the p.d.f for the learned
strategies contains several peaks, graphically illustrates
that different local maxima exist for this problem. Thus,
there may be benefit in running the system multiple times

and choosing the best strategy. It also suggests that tech
niques designed to avoid local maxima would be benefi

cial.

2.3.2 FULL AUGMENTED DISTRIBUTION

Figure 4 illustrates the results for the full augmented
distribution. The full augmented distribution differs from
the DSN distribution in that it also includes unsolvable

problems posed to the scheduler (e.g., those problems
r~quiring relaxation of project constraints or for which no
known strategy was able to solve the problem). The
results are similar to the DSN distribution: the learned
strategies again outperformed the expert strategy which in

turn again outperformed the randomly selected strategies.
The data shows that the expert strategy is significantly
better than randomly selected strategies. Together, these
two evaluations support the claim that Adaptive LR-26 is
selecting high performaiice strategies. Even though t.~e
expert strategy is quite good when compared with the
complete strategy space, the adaptive algorithm is able to
improve the expected problem solving performance.

Improved Performance
0.120

0.100
Expert Strategy

0.080

0.060

Learned Strategies

"' 0.040
Random Strategies

0.020

0 30 60 90 120 150 180 210 240 270

Expected Utility

Figure 4: The Full augmented distribution. The graph shows the probability of obtaining a strategy of
a particular utility, given that it is chosen from (1) the set of all strategies, (2) the set of learned strate
gies, or (3) the expert strategy.

3 Related Work and Conclusions

Related efforts include Heu.ristic-Biased Stochastic Sam
pling (HBSS) (Bresina, 1996) and GENH (Morris, Bresi
na, Rodgers, 1997). The approach described in this paper
attempts to learn the optimal hypothesis to apply to a class

of problems, based on a number of sample problem
instances. HBSS and GEl'ffi differ in L~at L~ey are de
signed to speed up search on individual problem
instances.

Other related work includes more statistical techniques,
which explicitly reason about performance of different
heuristic strategies across a distribution of problems.
These are generally statistical generate-and-test ap
proaches that estimate the average performance of differ
ent heuristics from a random set examples, and
explore an explicit space of heuristics with search

Examples of such systems are COMPOSER
PALO & Jurisca,

conlPmlent of MULTI-TAC

They are limited, however, as iliey are computationally
expensive, require many training examples to identify a
strategy, and face problems with local maxima. Further

more, they typically leave it to the user to conjecture ilie
space of heuristic methods (see (Minton, 1993) for a nota
ble exception).

This paper has described the application of statistical
learning techniques to the refinement of heuristics for
scheduling in an approach we call adaptive problem
solving. We first described the overall approach, in which
ilie adaptive problem-solver searches through a space of
potential control "'uu.:o~;1.:o<>

problem-solving
to a Deep Space Network Antenna Scheduing system. In
this application, adaptive problem-solving was able to
'HoUUJl'-'<>J,iUJ 1J'nOTCHTP upon ilie best human expert derived

Acknowledgements

Portions of this work were nf>t·YrnTrOP•.rl

<>hr•r"t'"'r" California Institute

Foundation Grant

Baker, A (1994). The Hazards of Fancy Backtracking.
In Proceedings of AAAI-94.

Bell, C., & Gratch, J. (1993). Use of Lagrangian Relax
ation and Machine Learning Techniques to Schedule
Deep Space Network Data Transmissions. In Proceed
ings of The 36th Joint National Meeting of the Opera
tions Research Society of America, the Institute of Man
agement Sciences.

Biefeld, E., & Cooper, L. (1991). Bottleneck Identifica
tion Using Process Chronologies. In Proceedings 11-
CAI-91.

Bresina, J. (1996) Heuristic-Biased Stochastic Sampling.
In Proceedings of AAAI-96.

Chien, S. & Gratch, J. (1994). Producing Satisficing Solu
tions to Scheduling Problems: An Iterative Constraint
Relaxation Approach. In Proceedings of the Second In
ternational Coriference on Artificial Intelligence Plan
ning Systems.

Chien, S., Gratch, J. & Burl, M. (1995). On the Efficient
Allocation of Resources for Hypothesis Evaluation: A
Statistical Approach. Institute of Electrical and Elec
tronics Engineers Trall§actions on Pattern Analysis and
Machine Intelligence 17(7), 652-665.

Dechter, R. & Pearl, J. (1987). Network-Based Heuris
tics for Constraint-Satisfaction Problems. A.rti.jicial In
telligence 34(1) 1-38.

Dechter, R. (1992). Constraint Networks. In Encyclope
dia of Artificial Intelligence, Stuart C. Shapiro (ed.).

Fisher, M. (1981). The Lagrangian Relaxation Method
for Solving Integer Programming Problems. Manage
ment Science 27 (1) 1-18.

D. & Dechter, R (1994). In Search of the Best
Constraint Satisfaction Search. In Proceedings of
AAAI-94.

Gratch, J. & DeJong, G. (1992). COMPOSER: A Proba
bilistic Solution to the Utility Problem in Speed-up
Learning. In Proceedings of AAAI-92.

Gratch, Chien,
Search Control

In t'ro•ceeam.lls

J. & DeJong, G. (1996). A Decision-theoretic
Approach to Adaptive Problem Solving. Artificial In
telligence (Winter 1996).

Greiner, R. & Jurisica, I. (1992). A Statistical Approach to
Solving the EBL Utility Problem. In Proceedings of
AAAI-92.

Kambhampati, S., Knoblock, C. & Yang, Q. (1995).
Planning as Refinement Search: A Unified Framework
for Evaluating Design Tradeoffs in Partial Order Plan
ning. Artificial Intelligence: Special Issue on Planning
and Scheduling 66, 167-238.

Kwak, N. & Schniederjans, M. (1987). Introduction to
Mathematical Programming, New York: Robert E.
Krieger Publishing.

Minton, S. (1993). Integrating Heuristics for Constraint
Satisfaction Problems: A Case Study. In Proceedings of
AAAI-93.

Mackworth, A. (1992). Constraint Satisfaction. In
Encyclopedia of Artificial Intelligence, Stuart C. Shapi
ro (ed.).

Minton, S. (1988). Learning Search Control Knowledge:
An Explanation-Based Approach, Norwell, MA:
Kluwer Academic Publishers.

Monis, R., Bresina, J., & Rodgers, S. (1997) Automatic
Generation of Heuristics for Scheduling. In Proceed
ings of IJCAI-97.

Sacerdoti, E. (1977). A Structure for Plans and Behavior.
New York: American Elsevier.

Smyth, P. (1993). Probability Density Estimation and Lo
cal Basis Function Neural Networks. Computational
Learning Theory and Natural Learning Systems 2.

Stone, P., Veloso, M., & Blythe, J. (1994). The Need for
Different Domain-Independent Heuristics. In Pro
ceedings of the Second International Conference on Ar
tificiallntelligence Planning Systems.

Taha, H. (1982). Operations Research, an Introduction,
Macmillan Publishing Co.

Willd.ns, D. (1988). Practical Planning: Extending the
Classical Artificial Intelligence Planning Paradigm.
San CA: Morgan Kaufman.

Random Search in the
Apphcaucm to Machine Learn-

lnnJL~tirwL Mathematics
4,

An Evaluation of the Tern
Partial-Order

	1997-1_Part108
	1997-1_Part109
	1997-1_Part110
	1997-1_Part111
	1997-1_Part112
	1997-1_Part113
	1997-1_Part114
	1997-1_Part115

