
Active Statistical Learning of Heuristic Scheduling Strategies 

Jonathan M. Gratch2, Steve A. Chien1, and Darren Mutzl 

2 Information Sciences Institute, University of Southern California, Marina del Rey, CA 

Email: { steve.chien,darren.mutz} @jpl.nasa.gov, gratch @isi.edu 

Abstract 

Although the general class of most scheduling problems 
is NP-hard, in practice, domain~specific techniques fre­

quently solve problems in much better than exponential 

time. Unfortunately, constructing special-purpose sys­

tems is a knowledge-intensive and time-consuming pro­

cess that requires a deep understanding of the domain and 
problem-solving architecture. In adaptive problem-solv­

ing the system automatic!!lly learns an effective domain­

specific search strategy given a general problem solver 

with a flexible control architecture. In this approach, a 

A~~cuu,,, system explores a space of possible heuristic 

methods for one well -suited to the eccentricities of the giv­

en domain and problem distribution. In this article, we 
discuss an application of the approach to scheduling satel­

lite communications. Using problem distributions based 
on actual mission requirements, our approach identifies 
strategies that not only decrease the amount of CPU time 

required to produce schedules, but also increase the per­
centage of problems that are solvable within computation­

al resource limitations. 

1 Introduction 

With the maturation of automated problem-solving re­

search has come grudging abandonment of the search for 

"the" domain-independent problem solver. General prob­

tasks like planning and scheduling are prov-

intractable. heuristic methods are effec-

of 

Blythe, 1994, & Murray, 1994)). Studies repeatedly 

show that a strategy that excels on one task can perform 

abysmally on others. These negative results do not entire­

ly discredit domain-independent approaches, but suggest 

that considerable effort and expertise is required to find an 

acceptable combination of heuristic methods, a conjec­

ture supported by the few published accounts of real­

world implementations (e.g. (Wilkins, 1988)). The speci­

ficity of heuristic methods is especially troubling when 

we consider that problem-solving tasks frequently change 

over time. a heuristic solver may require 

expensive "tune-ups" as the character of the application 

changes. Adaptive problem solving is a general method 

. for reducing the cost of developing and maintaining effec­

tive heu..ristic problem solvers. Rather than forcing a de­

veloper to choose a specific heuristic sL"ategy, an adaptive 

problem solver adjusts itself to the idiosyncrasies of an ap­

plication. This can be seen as a natural extension of the 

principle of least commitment (Sacerdoti, 1977). When 

solving a problem, one should not commit to a particular 

solution path until one has information to distinguish that 

path from the alternatives. Likewise, when faced with an 

entire distribution of problems, it makes sense to avoid 

cmnrrurrimg to a particular heuristic strategy until one can 

make an informed decision on which performs 

better on the distribution. An problem solver 

embodies a space of heuristic methods, and only settles on 

combination of these methods after a period 

adctPt<lttion. which the 



mance element PE with control points CPJ ... CPn, where 

each control CPi corresponds to a particular control 
decision and for which there is a set of alternative decision 

methods Mi,l···Mi,k, 1, a control strategy is a selection of 

a specific method for every control point (e.g., STRAT = 
<Mt,3,M2,6,M3,1>···>). A control strategy determines the 
overall behavior of the scheduler. It may effect properties 

like computational efficiency or the quality of its solu­

tions. Let be the problem solver op<:ratmg 

under a particular control strategy. The function 

U(PE(STRAT), d) is a real valued utility function that is 

a measure of the goodness of the behavior of the scheduler 

over problem d. The goal oflearning can be expressed as: 

given a problem distribution D, find STRAT so as to maxi­

mize the expected of PE. Expected utility is de­

fined formally as: 

U(PE(STRAT), d) X probability( d) 

For example, in a planning system such as PRODIGY 

[Minton88], when planning to achieve a goal, control 

points would be: how to select an operator to use to 

achieve the goal; how to select variable bindings to instan­

tiate the operator; etc. A method for the operator choice 

control point might be a set of control rules to determine 

wl:>.ich operators to use to achieve va.rious goals plus a de­

fault operator choice method. A strategy would be a set 

of control rules and default methods for every control 

point (e.g., one for operator choice, one for binding 

choice, Utility might be defined as a function of the 

time to construct a plan, cost to execute the plan, or some 
overall measure of the quality of the plan produced. 

The adaptive problem-solving technique is applicable in 

cases where the following conditions apply: 

1. The control space can be structured to facili­

tate hillclimbing search. In the space of such 

strategies is so as to make exhaustive search intrac-
table. problem-solving requires a transforma-

1. Note that a method may consist of smaller ele­
ments so that a method may be a set of control rules 
or a combination of heuristics. Note also that a meth-
od may real-valued pruranlet,ers 
the number methods for a may be 

and there may an infinite number strat-

search steps, with 

step. 
few transformations at each 

2. There is a large supply of representative training prob­

lems so that an adequate sampling of problems can be 

used to estimate expected utility for various control strate-
gies. 

3. Problems can be solved with a sufficiently low cost in 

4. There is sufficient regularity in the domain such that 
the cost of learning a good strategy can be amortized over 

the gains in solving many problems. 

Due to space limitations we now turn to a description of 

the DSN application domain and results. For further de­

tails on the statistical learning techniques we use for adap­
tive problem-solving the reader is referred to (Chien et aL 

1995, Gratch & Chien 1996). 

2 Results of Applying Adaptive Prob­
lem-solving to Deep Space Network 
Scheduling 

In order to assess the viability of adaptive problem-solv­

ing to real-world scheduling problems, we have applied 

adaptive problem-solving to a testbed scheduler which 

solved Deep Space Network Antenna Allocation prob­

lems. In this section we describe a formulation of the 

Deep Space Network antenna allocation problem, and 

outline results of applying adaptive problem-solving to 

learning control heuristics for a scheduler which solves 

this problem. 

The Deep Space Network (DSN) is a multi-national 

collection of ground-based radio antennas responsible for 

maintaining communications with research satellites and 

deep space probes. DSN Operations is responsible for 

scheduling communications for a large and growing 

number of spacecraft. This already complex scheduling 
problem is becoming more challenging each year as 

budgetary pressures limit the construction of new anten-
DSN has turned increasingly 

of 

of network utilization. 
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26-meter antennas at 
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DSN Scheduling Problem 

Scheduling the DSN 26-meter subnet can be viewed as a 
large constraint satisfaction problem. Each satellite has 
a set of constraints, called project requirements, that 
define its communication needs. A typical project 

specifies three generic requirements: the minimum and 

maximum number of communication events required in 
a fixed period of time; the minimum and maximum 
duration for these communication events; and the 

minimum and maximum allowable gap between commu­
nication events. For example, Nimbus-7, a meteorologi­
cal satellite, must have at least four 15-minute commu­
nication slots per day, and these slots cannot be greater 
than five hours apart. Project requirements are deter­

mined by the project managers and tend to be invariant 
across the lifetime of the spacecraft. 

In addition to project requirements, ther~ are 
constraints associated with the various antennas. First, 
antennas are a limited resource - two satellites cannot 

communicate with a giver: antenna at the same time. Se­
cond, a satellite can only communicate with a given an­
tenna at certain times, depending on when its orbit brings 
it within view of the antenna. Finally, antennas undergo 
routine maintenance and cannot communicate with any 

satellite during these times. 

Scheduling is done on a weekly basis. A weekly 

scheduling problem is defined by three elements: (1) the 
set of satellites to be scheduled, (2) the constraints 
associated with each satellite, and (3) a set of time periods 

specifying all temporal intervals when a satellite can le­
gally communicate with an antenna for that week. Each 
time period is a tuple specifying a satellite, a communica­
tion time interval, and an ar1tenna, where (1) the time in~ 
terval must satisfy the communication duration 
constraints for the satellite, (2) the satellite must be in 
view of the antenna during this intervaL Antenna mainte-

nance is treated as a project with time periods and 

constraints. Two time periods conflict if they use the same 
antenna and overlap in temporal extent. A valid schedule 
specifies a non-conflicting subset of all possible time peri­

ods where each project's requirements are satisfied. 

The automated scheduler must schedules 
quickly as scheduling problems are frequently over­
constrained (i.e. the project constraints combined with the 

allowable time periods produces a set of constraints which 
is unsatisfiable ). When this occurs, DSN Operations must 
go through a complex cycle of negotiating with project 
managers to reduce their requirements. A goal of auto­

mated scheduling is to provide a system with relatively 
quick response time so that a human user may interact 
with the scheduler and perform "what if' reasoning to as­
sist in this negotiation process. Ultimately, the goal is to 
automate this negotiation process as well, which will 

place even greater demands on scheduler response time 
(see (Chien & Gratch, 1994) for some preliminary work 
on this later problem). For these reasons, the focus of de-

sarily uncover the optimal schedule, but rather produce 
adequate schedules 

2.2 Adaptive LR-26 Control Points 

Pseudocode for the LR-26 scheduler is given below with 
the four control points indicated parenthetically. Control 
point one controls which partial schedule is chosen from 
the agenda, two determines in what order children in S are 
explored, three dictates which constraint is chosen to sat­
isfy next, and control four determines how sched­

ules are refined. The details of how 1, 2, 3, and 4 are im­
plemented define the runtime efficiency characteristics of 
the algorithm almost entirely (for a more detailed discus­
sion see Gratch & Chien, 1996). 



LRm26 Scheduler 
Agenda:= {S0}; 

While Agenda ::;t. 0 
(1) Select some partial scheduleS E Agenda; Agenda:=Agenda-{S} 
(2) search for some S*(u) E S; 

(3) 
(4) 

Else 

satisfies the project requirements (PR) Then 
Return S*(u); 

Select constraint c E PR not by S*(u); 
RefineS into {Si}, such that each E Si satisfies c 

and u{Si} = S; 
p,.T-frwrn constraint on each Si 

Agenda := Agendau{ Si}; 

Figure 1: The basic LR-26 refinement search method. 

1) Value ordering: penalize-conflictedness 
first-solution 
penalize-unforced-periods 
prefer-total-conflictedness 
systematic-refinement 

Weight search: 
Primary constraint ordering: 
Secondary ordering: 
Refinement method: 

2) Value ordering: 
Weight search: 
Primary constraint ordering: 
Secondary constraint ordering: 
Refinement method: 

3) Value ordering: 
Weight search: 
Primary constraint ordering: 
Secondary constraint ordering: 
Refinement method: 

prefer-gain 
first -solution 
penalize-unforced-periods 
prefer-total-conflictedness 
systematic-refinement 

penalize-conflictedness 
first-solution 
penalize-unforced-periods 
penalize-satisfaction-distance 
systematic-refmement 

Figure 2: The three highest utiiity strategies ieamed by Adaptive LR-26. 

Results DSN DISTRIBU- reduced the average time to solve a problem (or prove it 
unsatisfiable) from 80 to 40 seconds (a 50% improve-

In this section we summarize the ·results of adaptive 
over the constructed DSN probleJm 

that the 
Due to the stochastic nature of the 

different ., ........ "'F''"'" 
learned srr<:ne~~Ies 
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24 seconds on average to solve a problem (an improve­
ment of 70% ). The fastest adaptations occurred early in 
the adaptation phase and performance improvements de­
creased steadily throughout. It took an average of 62 ex­
amples to adopt each transformation. Adaptive LR-26 
showed some improvement over the non-adaptive sched­
uler in terms of the number of problems that could be 
solved (or proven unsatisfiable) within the resource 
bound. LR-26 was unable to solve 21% of the scheduling 
problems within the resource bound. One adaptive strate­
gy substantially reduced this number to 3%. 

In Figure 2 we give the three highest utility strategies 
learned by the adaptive algorithm. Most of the perfor­
mance improvement (about one half) can be traced to 
modifications in LR-26's weight search method (i.e., how 
the algorithm chooses which child to explore next). The 
rest of the improvements are divided equally among 
changes to the heuristics for value ordering (the order in 
which partial schedules are prepended to the agenda), 
constraint selection, and refinement. 

Another claim is that, in practice, adaptive problem-solv­
ing can identify strategies that rank highly when judged 
with respect to the whole strategy space. A secondary 
question is how well does the expert strategy perform. 
The improvements of Adaptive LR-26 are oflittle signifi­
cance if the expert strategy performs worse than most 
strategies in the space. Alternatively, if the expert strate­
gy is extremely good, its improvement is compelling. 

As a way of assessing these claims we estimate the 
probability of selecting a high utility strategy given that 
we choose it randomly from one of three strategy spaces: 
the space of all possible strategies (expressible in the 
transformation grammar), the space of strategies pro-

duced by Adaptive LR-26, and the trivial space contain­
ing only the expert strategy. This corresponds to the prob­
lem of estimating a probability density function (p.d.f.) 
for each space: a p.d.f., f(x), associated with a random 
variable gives the probability that an instance of the vari­
able has value x. More specifically we want to estimate 
the density functions,.fs(u), which is the probability of ran­
domly selecting a strategy from spaces that has expected 
utility u. 

We use a non-parametric density estimation tech-
called the kernel method to estimate fs(u) (as in 

(Smyth, 1993)). To estimate the density function of the 
whole space, we randomly selected and tested thirty strat­
egies. All of the learned strategies are used to estimate the 
density of the learned space. (In both cases, five percent 
of the data was withheld to estimate the bandwidth param­
eter used by the kernel method.) The p.d.f. associated 
with the single expert strategy is estimated using a normal 
model fit to the 1000 test examples from the previous 
evaluation. 

2.3.1 DSN DISTRIBUTION 

Figure 3 illustrates the results for the DSN distribution. 
In this evaluation the learned strategies significantly 
outperformed the randomly selected strategies. Thus, one 
would have to select and test many strategies at random 
before finding one of comparable expected utility to one 
found by Adaptive LR-26. The results also indicate that 
the expert strategy is already a good strategy (as indicated 
by the relative positions of the peaks for the expert and 
random strategy distributions), indicating that the im­
provement due to Adaptive LR-26 is significant and 
non-trivial. 
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Figure 3: The DSN Distribution. The graph shows the probability of obtaining a strategy of a 
particular utility, given that it is chosen from (1) the set of all strategies, (2) the set of learned 
strategies, or (3) the expert strategy. 

The results provide additional insight into Adaptive 
LR-26's learning behavior. That the p.d.f for the learned 
strategies contains several peaks, graphically illustrates 
that different local maxima exist for this problem. Thus, 
there may be benefit in running the system multiple times 

and choosing the best strategy. It also suggests that tech­
niques designed to avoid local maxima would be benefi­

cial. 

2.3.2 FULL AUGMENTED DISTRIBUTION 

Figure 4 illustrates the results for the full augmented 
distribution. The full augmented distribution differs from 
the DSN distribution in that it also includes unsolvable 

problems posed to the scheduler (e.g., those problems 
r~quiring relaxation of project constraints or for which no 
known strategy was able to solve the problem). The 
results are similar to the DSN distribution: the learned 
strategies again outperformed the expert strategy which in 

turn again outperformed the randomly selected strategies. 
The data shows that the expert strategy is significantly 
better than randomly selected strategies. Together, these 
two evaluations support the claim that Adaptive LR-26 is 
selecting high performaiice strategies. Even though t.~e 
expert strategy is quite good when compared with the 
complete strategy space, the adaptive algorithm is able to 
improve the expected problem solving performance. 
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Figure 4: The Full augmented distribution. The graph shows the probability of obtaining a strategy of 
a particular utility, given that it is chosen from (1) the set of all strategies, (2) the set of learned strate­
gies, or (3) the expert strategy. 

3 Related Work and Conclusions 

Related efforts include Heu.ristic-Biased Stochastic Sam­
pling (HBSS) (Bresina, 1996) and GENH (Morris, Bresi­
na, Rodgers, 1997). The approach described in this paper 
attempts to learn the optimal hypothesis to apply to a class 

of problems, based on a number of sample problem 
instances. HBSS and GEl'ffi differ in L~at L~ey are de­
signed to speed up search on individual problem 
instances. 

Other related work includes more statistical techniques, 
which explicitly reason about performance of different 
heuristic strategies across a distribution of problems. 
These are generally statistical generate-and-test ap­
proaches that estimate the average performance of differ­
ent heuristics from a random set examples, and 
explore an explicit space of heuristics with search 

Examples of such systems are COMPOSER 
PALO & Jurisca, 

conlPmlent of MULTI-TAC 

They are limited, however, as iliey are computationally 
expensive, require many training examples to identify a 
strategy, and face problems with local maxima. Further­

more, they typically leave it to the user to conjecture ilie 
space of heuristic methods (see (Minton, 1993) for a nota­
ble exception). 

This paper has described the application of statistical 
learning techniques to the refinement of heuristics for 
scheduling in an approach we call adaptive problem­
solving. We first described the overall approach, in which 
ilie adaptive problem-solver searches through a space of 
potential control "'uu.:o~;1.:o<> 

problem-solving 
to a Deep Space Network Antenna Scheduing system. In 
this application, adaptive problem-solving was able to 
'HoUUJl'-'<>J,iUJ 1J'nOTCHTP upon ilie best human expert derived 
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