
and New Integrating Planning and 

Othar Hansson, Jordan M. Hayes, Charles A. Ocheret 

Thinkbank, Inc. 
1678 Shattuck Avenue, Suite 320, Berkeley, CA 94709-1631 

othar@thinkbank.com, jordan@thinkbank.com, chuck@thinkbank.com 

Abstract 
We sketch some features of the planner/executive interface 
in SchedKit, a toolkit of reusable software components for 
science and spacecraft Our interest in 
execution was spurred by lessons New Millenium 
Remote (NMRA) Many other computer 
scientists have also the control of execution in 
complex, uncertain environments: here we describe 
elementary concepts of transaction-processing that have 
inspired our design. Finally, we describe some novel 
modeling techniques supported by SchedKit. 

Planning and Execution 

Thinkbank, Inc. is developing SchedKit, a toolkit of 
reusable software components for science planning and 
spacecraft sequencing. This paper describes the 
planner/executive interface within SchedKit. Our design 
has been influenced by the New Millenium Remote Agent 
(NMRA), currently being implemented at NASA Ames 
and at JPL for the DS-l asteroid rendezvous mission. 
Details of NMRA can be found in recent papers by Pel! et 
a!. (96a,96b,97a,97b) and Muscettola et al. (97). 

We are particularly interested in the interface between 
the planner and the executive. How does the planner plan 
for execution? How should the two modules divide up the 
labor: how much reasoning and constraint processing 
should be done at run-time? What "virtual machine" 
should the executive present to the planner? Is there a 
single representation of plans that meets the needs of 
planning and execution? 

Historically, and schedulers have not taken 
seriously the of execution. This dates back to the 
earliest efforts at optimizing operations. For example, one 
of the i 9th-century ancestors of modern operations 
research was Frederick "Taylorism" or scientific 
management was rightly criticized for placing all the focus 

1Jia.uu.u1~; and functions), 

the 

Much recent work in AI has attempted to integrate 
planning and execution. And the NMRA team has 
highlighted the importance of integrating planning and 
execution, if a scheduler is to be flown on-board a 
spacecraft: in fact, Pel! et al. (97a) claim that "NJ\.1RA is 
one of the first systems to integrate closed-loop planning 
and execution of concurrent tPvnnrw~ 

NMRA consists of three main modules: The 
Planner/Scheduler (PS), the Executive and the 
Mode-Identification and Recovery system (MIR). Loosely 
speaking, PS generates episodic plans, passes them to 
EXEC for execution, and waits for the horizon to 
expire or for MIR or EXEC to detect conditions. 
MIR has its own lower-level rapid recovery planner as 
well. MIR and EXEC handle some errors, but when a plan 
failure occurs, PS is reinvoked to generate a plan to patch 
in at a rendezvous point in the future. 

In theory, PS can produce more robust schedules than 
traditional schedulers, because PS produces least
commitment schedules, with flexible time-windows for 
each spacecraft activity. That this is a revolutionary idea is 
perhaps reflected in the widespread use of "sequence" to 
describe the output of NASA schedulers and planners: a 
sequence is a total order, but PS produces plans that are 
partial orders with some run-time flexibility. In other 
words, each activity is not assigned a precise time for 
execution: the executive can choose a time consistent with 
a set of simple temporal constraints (difference 
constraints). At the expense of added software complexity, 
this least-commitment approach should allow execution to 
continue even after deviations from predicted behavior. 

The Planning/Execution Interface: PRL 

In designing SchedKit, we have the luxury of starting with 
a clean sheet of paper in designing the planner, the 
executive, and the interface between them. In contrast, 
NMRA began with standard architectures for the 
planner and the executive (based on 
RAPS), and interface by 

and outputs. This was of course 
necessary to meet mission schedules and reduce risk. 

we start from one way to ""'"''"," 
to pursue an "execution-as-



Specifically, the plan representation language (PRL) is 
viewed ·as the instruction set of a virtual machine; the 
executive is the runtime system for this virtual machine; 
and the planner is the compiler. The planner compiles sets 
of goals (the source language) into plans (the target 
language, i.e., the plan representation language), which are 
then executed (by the executive, which implements the 
target language virtual machine). The activities in the 
plans are operations made available by the virtual machine. 

There are some notable constraints to the design 
problem. The planner's inputs (the source language) are 
constrained by the demands of the application. In the case 
of a spacecraft, the source language must be simple but 
flexible to meet the demands of ground controllers. 
Likewise, the executive's outputs are tied to the spacecraft 
hardware. But importantly, the PRL interface between 
planner and executive is unconstrained. 

There are many choices in the PRL. 
making the virtual machine more nm>.J<>t·t• 

the executive's behavior and 
statements in the plan 
Conversely, we can make the plan representation 
trivial, i.e., to the source thus 
all of the planner's "normal" responsibility onto the 
executive. This is a well-examined tradeoff in the 
of computer instruction sets ("reduced" versus "complex" 
instruction sets, RISC versus A low-level PRL 
(analogous to a RISC allows for a very simple and 
fast executive, but requires more work on the part of the 
planner (or compiler). 

The PRL choice in NMRA was made according to the 
following principle: "In DS l, activities are abstracted to 
the level where there are no interactions among their 
subactivities. This level allows the to resolve all of 
the global interactions without getting into details that 
would over-constrain the executive." (Pel! et al. 97b). 
Over-constraining EXEC would increase the risk of plan 
failure. PRL should also specify failure modes and 
recovery alternatives: in r'~v1RA, recovery semantics seem 
to be represented entirely within EXEC, and not within the 
"plans" themselves. 

Virtual Machine example: Transactions 

In we sought to borrow as much 
technology as possible from other areas of computer 
science. Transactions are a central abstraction used in 
implementing modern distributed systems. As Gray and 
Reuter (93) put it "In a nutshell: without transactions, 
distributed cannot be made to work for 
real-life " And yet transactions arose not as a 
naturally evolved abstraction or but as a 
radical the chaos of distributed 

rmple:mlent:atron m-.-..,rr~ at IBM and elsewhere. 
transactions: 

transactions have and will 

undo on abort. 

@> Consistency 

constraints are maintained. 
,. Isolation 

each transaction executes as if unaffected by 
concurrently executing transactions. 

,. Durability 

after a system failure, the achieved state of the 
system is recovered automatically. 

Through the ACID properties, a database management 
system provides a virtual machine: in other words, it 
guarantees certain behavior that is abstracted away from 
the or other details of actual execution. 

We will briefly 
to systems. 

Both need atomicity because failures are unavoidable, and 
application designers demand some simple and universal 
recovery mechanism. Ad hoc recovery mechanisms, with 
unique guarantees, result in chaos. 

Durability deals with even more sophisticated error 
recovery: ensuring that the achieved state of the system is 
re-created after a failure (part of MIR's role). But in a 
planning/scheduling application, some aspects of the 
system state may not be controllable, while others may be 
irrelevant to the remainder of the plan. In short, only the 
preconditions for the remainder of the plan need to be 
durable in the face of failures. Finding such a satisfactory 
recovery state after failure may involve search. But 
without some durability mechanism, execution halts at the 
first global error that was not in the plan itself 
(e.g., as a execution path). 

Consistency is a responsibility that is presently diffused 
among the plan itself, and MIR: we advocate 
collecting and exposing these integrity constraints. The 
final ACID property is isolation: activities may be easier to 
specify if we can isolate them from the immediate effects 
of concurrently-executing activities. Isolation is partially 
achieved in planner/schedulers by careful specification of 
preconditions and "parameter bindings" within activities. 
After parameters are bound and preconditions checked, the 
activity is typically oblivious to changes in parameters and 
preconditions. 

In some senses, the demands of and 
are more difficult than transaction-processing. But if our 
systems lack the fundamental ACID nrt>nP>rtll>< such as 
atomicity and consistency, then it will be as difficult to 
debug planning applications as it is to distributed 
systems without transactions. It may be that 
different abstract or 
be more suitable. But the ACID nrron<>•rti 

and 
usefulness in the av1vu•v':u'v'"' we 

SchedKit. 



A few of SchedKit's features are directly borrowed from 
the transaction-processing framework (Gray and Reuter 93, 
Papadimitriou 86). By using these familiar guarantees 
provided by transaction-processing systems, we hope to 
simplify the task of designing and debugging 
planning/scheduling applications. Still other features are 
borrowed from the distributed systems "protocol design 
and validation" literature (e.g., Holzmann 91). 

Activities in a SchedKit plan are atomic in the sense that 
failure modes and recovery actions can be 
Failure modes are simply represented as preconditions for 
the corresponding recovery actions. Global plan failures 
can be monitored by activities inserted into the plan. 
These failure models are incorporated in the plan by use of 

task decomposition (i.e., they are automatically 
as part of the of a 

activity). of global integrity constraints can be 
checked an constraint is an that 
is always ready-to-run, but whose preconditions are 
triggered only when an integrity constraint is violated. 
Finally, as a durability rnP·rh""'"m we hope to be able to 
use an recovery system. 

One major gap that we see in SchedKit and NMRA (and 
other systems) is a lack of a metric for execution 
performance. What exactly is the goal of the executive in a 
particular domain? An executive which "fails 
aggressively" produces safe but unproductive results. An 
executive which "recovers aggressively" risks spacecraft 
health. We feel that such tradeoffs can only be addressed 
by explicit modeling: each failure and recovery should 
somehow be annotated with its associated risks. Utility 
theory is one promising modeling tool available to place 
this planning/execution tradeoff on a sound footing. We 
hope to extend SchedKit's modeling language in this 
direction, based on some of our previous decision theory 
work (Hansson 97). 

One final point on SchedKit' s design is the use of 
parameterization throughout the system. Wherever 
possible, decisions are reified or represented as explicit 
constrained variables. For example, in modeling the 
constraints of the domain (analogous to NMRA's Domain 
Description Language), we use Modeling variables and 
named constraints to make design assumptions explicit ("if 
Modeling(EffectX) then Enforcing (Constraint¥)"). We 
are experimenting with a similar approach to represent 
abstraction levels. A final example of parameterization is 
within the search algorithms: branch points, algorithm 
parameters, etc. are reified as variables to aid in 
explanation. 

For further details on SchedKit, visit our web-site at 
http://www .thinkbank.com. 

Thanks to many members of the NMRA 
team at NASA Ames and JPL for helpful discussions. This work 
is NASA Contract NAS2-97008. 

[Gray and Reuter 93] Jim Gray and Andreas Reuter. 
Transaction Processing: Concepts and Techniques. 
Morgan Kaufmann, San Mateo, CA. 

[Hansson 97] Othar Hansson. Bayesian Problem-Solving 
Applied to Scheduling. Doctoral dissertation, University 
of California (Berkeley), forthcoming. 

91] Gerald J. Holzmann. 
Validation of Computer Protocols. 

Cliffs, NJ. 

Design and 
Prentice Hall, 

et a!. 97] Nicola Muscettola, Chuck Fry, 
Kanna et al. On-Board Planning for New 
Millenium Deep Space One Autonomy. In Proceedings 
of IEEE Aerospace Conference, Snowmass, CO. 

[Papadimitriou 86] Christos Papadimitriou. The Theory of 
Database Concurrency Control. Computer Science 

MD. 
[Pell et al. 96a] Barney Pell, Douglas E. Bernard, Steven 

A. Erann Nicola P. Pandurang 
Nayak, Michael D. Wagner, and Brian C. Williams. A 
Remote Agent Prototype for Spacecraft Autonomy. In 

SPIE 
Engineering, and Instrumentation. 

[Pel! et al. 96b] Barney Erann Ron 
Nicola Muscettola, and Ben Smith. Plan Execution for 
Autonomous Spacecraft. in the Working Notes 
of the AAA! Fall Symposium on Plan Execution, 
Cambridge, MA, 1996. 

[Pell et aL 97a) Barney PeH, Douglas E. Bernard, Steven 
A. Chien, Erann Gat, Nicola Muscettola, P. Pandurang 
Nayak, Michael D. Wagner, and Brian C. Williams. An 
Autonomous In 
Proceedings of the First International Conference on 
Autonomous Agents, Marina del Rey, CA 1997. 

[Pell et a!. 97b] Barney Pel!, Erann Gat, Ron Keesing, 
Nicola Muscettola, and Ben Smith. Robust Periodic 
Planning and Execution for Autonomous Spacecraft. 
Proceedings of !JCA/-97. 

Some or all of the work presented in this paper may be covered 
by patents, patents pending, and/or copyright. Publication of this 
paper does not grant any rights to any intellectual property. All 
rights reserved. 


	1997-1_Part120
	1997-1_Part121
	1997-1_Part122



