
Steven Jowers 

The Boeing Company 
! 3100 Space Center Blvd. 

Houston, TX 
Steven.Jowers@boeing.com 

Abstract 
This paper provides a brief overview of the rescheduling 
problem from the perspective of an interval-based, non
chronological scheduler followed by a discussion of how we 
have solved the rescheduling problem. It will conclude with 
examples taken from complex aircraft assembly line 
operations, from a complex, resource rich test facility, and a 
discussion of how significant aspects of these problems are 
similar to ones encountered in space operations. 

Introduction 

Often our attention is focused on crafting an initial 
schedule, but once that schedule goes into actual operation, 
a different, but just as large a problem comes into existence 
- that of maintaining the schedule as it undergoes the 
stresses and strains of real-time operations. Besides being 
completed, tasks are delayed, only partially completed, 
deleted, and split into one or more new tasks as each day 
passes. This can quickly render the original schedule 
obsolete. Rescheduling for continued operations must 
consider how to manage these perturbations. Can we 
rebuild the entire schedule from a specified day forward, or 
can we perturb only parts of the schedule? Is it worth the 
time and effort to re-optimize? How can we track whether 
or not the perturbations are causing us to slip schedule? 
Has the set of critical resources changed? Should additional 
resources, if possible, be made available? Finally, any 
solution answering these questions must scale to very 
large, complex schedules. 

The Rescheduling Problem 

The problem domains needing a scheduler to support 
operations are quite varied. Test facilities, small payload 
operations, and simple on-orbit maintenance activities can 
all call out tasks with resource requirements and few, if 
any, predecessor/successor (precedence) constraints. Other 
problems, such as payload operations, complex 
maintenance operations, and on-orbit assembly operations 
will all have relationships between tasks such as 
preced:enc:e. relational (task to task), and temporal (task to 

point) in addition to complex resource 
""'""'"" for of 

planning prior to flight, and m1sswn operations during 
flight. For space systems with long duration missions (e.g., 
the international space station), the distinction between 

prior to and mission operations 
is quite once the mission starts there 

"mission to flight for 
anymore. Instead, the is in continuous 

mrsswn In this latter case, a to 
update an already schedule to work 
actually accomplished and real-world, unplanned 
opportunities with new and capability 
to insert significant new pieces into an already c.v.o"''~'""' 
schedule (plans for new maintenance 

etc.) is a must. 
When the original schedule prior to actual 

operations, it must guaranteed feasible with respect to 
all documented plan input data. Once in execution, 

real-world demands must allow for the selective 
relaxation/enforcement of constraints; exploration of 
hypothetical "what if' scenarios, oversubscription of 
resource constraints normally a conservative level but 
having additional reserve for etc. 

Once a schedule begins tasks are hopefully 
performed according to schedule. Experience shows, 
however, that external factors cause the delay of some 
tasks unexpected lack of power), the execution of 
tasks out of sequence (e.g., unexpected opportunities, 
delays incurred by predecessor tasks, etc.). Additionally, 
tasks may only be partially complete at reschedule time 
and their durations may have deviated from planned 
values. 

The challenge presented to a scheduling engine builder 
whose product must support scheduling prior to and during 
operations is multifaceted. For our work, we have chosen 
to approach the problem from three 

• of a rich and "'""'·"''"~'"'" vocabulary for 
modeling task constraints, task status data 

• development of a scheduling for the data 
·model 

• and the development of controls for the "'Alcu,uu.u~ 
process that allows users to execute their own 
heuristics 

It is not the intent of this paper to describe all the 



constraints that our experience dictates should be in a 
scheduler for complex problems. Nor is it the intent to 
justify the statement that the easy addition of new 
constraints to the vocabulary is highly desirable. However, 
by providing a partial listing of constraints we believe need 
support, we can useful for later 
discussions. The constraint vocabulary includes: 

• precedence constraints 
<~~ duration 
• relational and temporal constraints 
• numerous earliest start times/latest completion times 
• resource expressions (arbitrarily deep nested 

ANDed and ORed resource requirements) 
• resource reservation/provision, 

consumption/production 
• priorities 

• interruptability 
• exclusive reservation of a resource to a group of 

tasks; resource lockout. 
• task group membership where a group impacts 

resource and timeline availability for non-group 
members 

These are just some of the constraints that the vocabulary 
should In addition to these, each task must allow 
for documenting the task's status. This is critical to the 
rescheduling process. If not provided as an element of the 
vocabulary, it is meaningless to talk of tracking a task's 
status and executing re-scheduling operations to account 
for that status. 

Scheduling Engine Design Considerations 
The scheduling engine builders face a number of hart 
design issues. They should design a scheduling engine 
which, at its core, doesn't need to do anything different for 
tasks having or not having status information. This 
simplifies complexity of the core engine, helps preserve 
performance since the same routines are used for all 
scheduling functions regardless of status information, and 
relegates the need for understanding the concepts 
associated with task status to high level data abstractions. It 
also helps to minimize the number of assumptions coded 
into the core engine. 

Further, builders need to such that 
operations which are not linear have their impact mitigated. 
Ideally, the time to (re) schedule should increase linearly 
with data set size. 

The time to (re) schedule should be sufficiently fast to 
support it is impossible to 
use a solution for daily when the engine needs 
more than 24 holffs of computation time to a 
schedule. For that matter, a significantly faster solution is 
required to allow of"what-if' scenarios. 

The should be of ""'·''""·"'S 
of 

maintenance operations, payload operations, on-orbit 
etc. 

Finally, the scheduling engine's should 
support ease of integration with other and perhaps older 
electronic data systems. This is critically if there 
is an existing Information Systems infrastructure that must 
be utilized to support schedule execution; e.g., systems that 
log task status. 

Control of the Scheduling Process 
The existence of a rich modeling vocabulary and an engine 
which can process it is part if the overall solution. 
Real-world concerns dictate that users must be given 
controls for the process itself. Different data 
sets will exhibit different complexities. The process of 
"'-1Jt<Ou,,uu1.,_ for one data set, which good results, may 
not do so for another data set. Consider the following 

1) Provide sufficient control over the 
process so those tasks with latest completion times, 
if are scheduled without constraint 

schedule backward from the 
documented completion times. 

2) allocation of a specific resource to a defmed 
group of tasks exclusively once that group has been 
started. Don't allow any tasks outside the predefined 
group to have access to that specific resource 
setup time can be prohibitive and thereby render 
some amount of resource idle time more cost 
effective than securing a higher resource utilization 
rate). 

3) Support the premature release of a resource reserved 
for a group of tasks even if all tasks in the group are 
not yet complete. 

While far from being an exhaustive list of requirements, 
this list begins to point to the type of flexibility needed. At 
a minimum, each constraint in the modeling vocabulary is 
a candidate a relaxation/enforcement control. 

One Possible Solution 

Modeling Vocabulary 
One and the approach we have chosen 
for our work, uses an approach called the "computation of 
feasible intervals." We have found that this approach to 
scheduling allows us to model much of the vocabulary 
mentioned i.e., we fmd that we can visualize many 
of the constraints in the as collections of 
interv-als to be intersected with The re-

can be solved under this 
the inclusion of a new 

constraint or two. 

need for control over 



to users a powerful task and resource 
scheme. This can be done by 

that operate not over the entire set of 
tasks or resources, but a selected subset. 

e that use two task lists, the previous 
selection and current one, to create a new, 
composite selection; e.g., intersect, add, subtract, 
etc. 

e a rich set of selection criteria or "filters" 
e varied sort algorithms which operate over the 

selected list whose effects can aggregate 
Another tool for the process 

through control of the internal 
"mode." Such switches control how the 
various constraints and the direction 

users can invoke 
cotnru1an1JS at will over the selected data. 
are sensitive to order, so here is where the effects of sorts 
will be seen. Our has been that these controls 
are sufficient for a of scheduling 
processes. General, simple command sequences can 
usually provide good results. More advanced users who 
know their data can implement their own "heuristics" 
ttrr•OUl'~h a customized series of sort and schedule 
commands. If a tool is then to them, 

can record their commands for sorting, and 
scheduling for use in other sessions. 

Engine Design 
There are many, many design considerations that must be 
examined when building the engine and it is well beyond 
the scope of this paper to list many of them, much less 
discuss them. What will be presented are those 
considerations we believe are particularly relevant to the 
(re) scheduling problem itself. 

Common Scheduling Function: One choice of the 
scheduling technology, computation of feasible intervals, 
requires that all constraints be ultimately represented as a 
set of intervals. In building an engine using this approach, 
it would be wise to design the engine's core so that it has 
no knowledge about how tO "interpret" any type of 
constraint, but instead only "calks" in terms of lists of time 
intervals. such we can design an 

core that is of the of constraint 
being processed. The of new constraints then 
becomes one where a level data abstraction is 
defmed with appropriate routines to translate it into 
intervals. This makes new constraints to the 

a understood <>r-tnn1hr 

The inclusion of status 

1-''"'·""''·W•T'-" of Wl1>~llt::UUH;;u 
The same routine is used 

both scheduling and re-scheduling. The only difference in 
re-scheduling is in the modification of a task duration's 
value if it has a non-default status. 

Constraint Processing: Tasks have status data that 
documents state and deltas against original duration values. 
Scheduling functions an "effective" 
duration using original and delta information. If no status 
information has been supplied, the original planned data is 
also the effective data. If status information has been 
supplied, effective data will differ from planned data. In 
either case, the function is itself unmodified; it 
needs a duration value that's what it gets. 

Tasks which are completed have an effective remaining 
duration of zero. Internally, a zero duration task is treated 
as a milestone with respect to interval calculations. Point 
solutions have special effects on resource that 
are reservations -- they are effectively since they 
cannot affect a resource's availability over an interval of 
time. Milestones, however, can still effect production and 
consumption of resources. 

Consider a precedence relation between two tasks. If the 
successor task is completed out of sequence, the. engine 
will "float" it into the future if needed so that the 
predecessor's constraints are still enforced. The task that 
floated into the future now is a point solution and therefore 
its documented resource reservation requirement no longer 
impacts the schedule. 

There are some hidden issues with this approach. if 
the data model has tasks using temporal or relative 
constraints against the out-of-sequence task it is possible to 
create a logically inconsistent condition. Secondly, the 
completion of work out of sequence creates an operational 
dilemma for successor tasks. The schedule shows successor 
tasks later in the schedule than the completed but out-of
sequence task. Can these latter tasks be Users 
can always modify the constraint data to remove these 
problems, or the engine can be modified to include a more 
complex behavior. Our experience has been that the current 
approach is adequate for most needs and the additional 
complexity required in the engine to effect a more 
sophisticated behavior warrants a stronger motivation than 
any we have yet to encounter. 

Finally, the tasks data structure can have placeholder 
field to hold dates of actual task completion if this is 
important. This using the above rationale is 
not used in the scheduling process (though the engine 
could be modified to use it at the risk of introducing 
constraint inconsistencies). Should historical data become 
important, reports can make use of this data. 

Status: Tasks have one of three values; waiting, inwork, 
and cmnpJletea. 

this is a task's default state. The documented 
task duration will be unmodified when to the 

Should the task be the status may 
with another instance of an 

constraint This 
un1oacts to the schedule 



task so that other tasks can take advantage of an 
unexpected window of ""'~'""t"""t" 

Inwork: Tasks can be continuing or suspended until a 
user specified date. The suspended feature is needed to 
support real-world impacts to the schedule. A task which 
is continuing will be credited with an optionally supplied 
amount of work that has already been performed and then, 
during scheduling, placed on the timeline as soon as 
allowable. If no completed hours are supplied, then the 
effective duration calculation will not provide any credit. 

The optional delta duration is a value to be applied 
against the documented duration resulting in an effective 
remaining duration different than the original documented 
duration. It is used to document a change in the overall 
duration of the task from the planned value. It can be 
positive or negative. 

Input at the user interface for this data can be quite 
varied; 

ID percent complete optionally, hours remaining 
• hours completed and, optionally, hours remaining 
• hours completed since last status operation (if the 

task is interruptible and worked in many 
increments) and, optionally, hours remaining. 

Completed: Task when complete reduce to milestones on 
the schedule. Optional values can be supplied that, for 
reporting purposes, can be used to document how long the 
task actually took. The delta duration value here describes 
the change from the documented task duration. 

Input at the user interface..for this data can be varied but 
is not as complex as the inwork status. Users can supply 
total hours worked or total hours worked since last status 
operation. If no hour data is supplied, use the original 
duration values. 

Interfaces to Legacy Systems: 
All data structures and types have a core set of defined 

functions, including readers and writers. This includes the 
status data and all commands. Readers and writers use 
ASCII and should be designed to facilitate users' inspection 
of data. 

One consequence of this approach is that the 
data/command can be read from and written to a stream. 
This allows us to easily build interfaces with other systems. 
A stream can come from an electronic interface with 
another system or from an opened file. Specifically, status 
data from oL~er systems can be output to a file in the 
format of a scheduling command. This file can 
subsequently be processed by the scheduling engine. 

By initially using a file interface scheme, requirements 
can be partitioned into information requirements and 
electronic peer to peer communication requirements. 
Interfacing activities should first ensure that the required 
information can be supplied to the engine via a file. Once 
this supplied data can reliably drive the engine's scheduling 
behavior in an acceptable and expected manner, attention 
can focus on live electronic data feeds for 

schedule status data. 

Re-scheduling for an operational schedule can make use 
of the scheduling mode/configuration to obtain 
desired behaviors. For example, by tasks which 
have a firm latest completion date, these tasks and their 
predecessors can be placed onto the timeline first by 
scheduling backwards from their latest dates. 
Remaining tasks can then be selected and the mode 
changed to a forward direction. Tasks will be placed onto 
the timeline around the previously scheduled tasks. 

The TimePiece Scheduler 

The product we have developed that implements the above 
approach is called TimePiece. Below are some examples 
of how this product and its predecessor, have 
been used to solve large, complex scheduling 
problems. 

Aircraft Final Assembly 
The schedules controlling the fmal assembly of a fighter 
aircraft can be quite large and contain highly inter-related 
tasks each having a potentially large set of resource 
constraints. Schedule characteristics for one specific 
assembly line include: 

• 1500+ tasks per aircraft (two distinct precedence 
diagrams each) with precedence, resource, and 
relational constraints, group usage, task 
interruptability, etc .. 

• Four aircraft in flow at any one time with an 
expectation to grow to as many as six for a total of 
well over 9000 tasks represented in the schedule 

"' (Re) scheduled in 54 minutes on a 133 MHz 
Pentiu..TA PC, 96 MB ~\1 

• Status data is provided by a legacy, mainframe 
database to TimePiece via a formatted command file 

Avionics Integration Center 
A different problem domain using this same tecl'..nology is 
one involving an avionics test facility. Many users submit 
discrete, unrelated requests for time in the facility. Each 
request can contain some vary complex resource 
expressions which can document alternate sets of 
possibilities, any one of which will satisfy the need. 
Characteristics of one such lab scheduler include: 

• Management of approximately 450 discrete 
resources 

"' As many as 250 users to submitting requests into the 
facility 

• Support for multiple aircraft programs aU of which 
contend for the same resources 

• Daily processing of new requests against the 
baseline schedule 

• Use of e-mail to notify users of reservation times 
and equipment allocation 

This uses a COMPASS derivative and schedules 
the in less than 10 minutes when 
multi-user VAX. Efforts have started to "~-'1"-''"~"' 



to use the new product, Timepiece. 
Use of this facility scheduling system has helped realize: 

an order of magnitude jump in test hours scheduled (80 
hours per week to 700+ per week), and an order of 
magnitude reduction in time spent scheduling (from 50+ 
hours per week down to as low as 2 hours per week. It has 
been in use since the first quarter of 1995 with dramatic 
results and cited as an aircraft program "best practice. 

Scheduling for Space 
Our products are also in use to support space related 
activities. Our. older product, COMPASS, is in use to by 
SpaceHAB, Incorporated, to support preliminary 
scheduling for its missions. NASA/JSC also uses a 
COMPASS derivative to schedule one if its facilities, the 
Systems Simulator. TimePiece, our latest 
product, uses the same underlying approach to scheduling 
and implements lessons learned from these scheduling 
systems. 

Conclusion 

At first glance the types of problems encountered in space 
operations may appear to be sufficiently diverse to require 
different scheduling approaches. One may be tempted to 
say that the problem of generating the original schedule 
and subsequent rescheduling might different 
approaches and underlying technology choices. Our 
experience has been that by understanding the nature of 
both the scheduling and rescheduling problem, through the 
choice of a good scheduling technology (calculation of 
feasible and through the use of wise design 
decisions, the same can be used to 
support a wide range of domains, including 
original schedule generation and its subsequent re
scheduling. What was once a solution requiring a 
workstation can now be done on a standard PC, and it can 
be done well. 


	1997-1_Part131
	1997-1_Part132
	1997-1_Part133
	1997-1_Part134
	1997-1_Part135



