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Abstract 

Our research area is planning under uncertainty, 
that is, making sequences of decisions in the face 
of imperfect information. We are particularly con­
cerned with developing planning algorithms that 
perform well in large, real-world domains. This pa­
per is a brief introduction to this area of research, 
which draws upon results from operations research 
(Markov decision machine learning (re-
inforcement learning), artificial intelligence 
(planning). Although techniques for planning un­
der uncertainty are extremely promising for tack­
ling real-world problems, there is a real need at this 
stage to look at large-scale applications to provide 
direction to future development and analysis. 

INTRODUCTION 
Planning-making a sequence of choices to achieve 
a goal-has been a mainstay of artificial intelligence 
(AI) research for many years. Traditionally, the 
decision-making models that have been studied ad­
mit no uncertainty: every aspect of the world that 
is relevant to the generation and execution of a plan 
is known in advance. In contrast, work in opera­
tions research (OR) has focussed on the uncertainty 
of the effects of actions, but uses an impoverished 
representation that does not capture relationships 
among states for specifying and solving planning 
problems. 

The area of planning under uncertainty in large 
domains explores a middle ground between these 
two well-studied extremes with the hope of develop­
ing systems that caJl reason efficiently about plans 
in complex, uncertain applications. This paper re­
views some of the most recently developed tech­
niques that may scale well to large, real-world do­
mains. 

We feel ·that the potential benefit of applying 
such methods to planning problems in the space 
program is significant. We suggest two NASA ac­
tivities in particular that would benefit from 
the of successful .c;._ ... u .... 

p«uu.u.u.i"> under 

The purpose of the DSN is to support both un­
piloted interplanetary spacecraft missions and ra­
dio and radar astronomy observations in the explo­
ration of space (Chien, Lam, & Vu 1997). Planning 
to fulfill DSN service requests from tens of projects 
with varying priorities requires the consideration 
of thousands of possible tracks using tens of an­
tenna resources and hundreds of subsystem config­
urations. The basic scheduling task is enormously 
complicated and made more difficult by three char­
acteristics of DSN scheduling described by Chien, 
Lam, & Vu (1997): 

1. The priority of a tracking request is dynamic and 
can change depending on the amount of tracking 
a project has received so far in a given time pe­
riod. 

2. Subsystems needed for the execution of tracks 
are shared by each Signal Center. 

3. Projects may request more tracking time than 
absolutely necessary and specify the absolute 
minimum; in these cases, the planner has the op­
tion of reducing the tracking time allotted to the 
request if doing so wiil remove a resource conflict. 

There are also significant elements of uncertainty 
in the scheduling task (Chien et al. 1996; 1997): 

e The needs of projects-and, thus, plan goals­
change over time. Before (or even during) a 
track, a project may submit a request to add var­
ious services to the track. 

• Equipment availability may change due to fail­
ure, maintenance or recaiibration requirements, 
or preemption by a track with higher priority. 

• Changing weather may require changes in an ex-
isting schedule. 

The system must respond to changing circum­
stances quickly and efficiently with minimal disrup­
tion. 

This problem contains many elements tai~geteo 
research in planning under uncertainty in 

the sheer size and 
u~:::sJ.~!.lt:u to work on 

for this real-world 



problem. Second, the elements of uncertainty cited 
above mean that a successful plan will not be a 
fixed list of events, but will include contingencies for 
dealing with various eventualities; for example, the 
schedule could include alternate assignments that 
should be made if a new high-priority job were to 
appear at various points in the future--this would 
make it unnecessary to begin to reschedule from 
scratch in this circumstance (Drummond, Bresina, 
& Swanson 1994). For these reasons and others, 
a successful planner must take uncertainty into ac­
count. 

The importance of on-board planning for au­
tonomous spacecraft is emphasized by NASA's New 
MiUennium program, the objective of which is to 
develop a..l'ld validate new that will 
both reduce mission costs and 
quality (Muscettola et al. 
Millennium mission-Deep aRe­
mote Agent autonomy architecture, one of whose 
components is a Planner/Scheduler, which trans­
lates a set of high-level mission goals specified by 
scientists and engineers into a sequence of low-level 
commands (Muscettola et al. 1997). 

The necessity of autonomous spacecraft for deep 
space missions is made apparent by the extreme dis­
tance of the missions' targets, the impossibility of 
hands-on troubleshooting or maintenance, and the 
difficulties imposed by light-time delayed commu­
nication (Chien et al. 1997). The task of the plan­
ning component for the required autonomy tech­
nology is complicated by limited sensing capabili­
ties, uncertain effects of actions (due to system fail­
ures or unanticipated environmental factors), and 
the fact that the system must construct plans with­
out knowing with certainty the future state of the 
spacecraft (when the plan will begin executing). 
Furthermore, an autonomous spacecraft needs to 
be able to handle une:::o;:pected events intelligently 
and without lengthy deliberation. We will address 
these issues further in the section on partially ob­
servable Markov decision processes. 

In the remainder of the paper, we describe re­
cent developments that we feel may have an im­
pact on solving this type of problem. The following 
section describes work on algorithms for planning 
problems formalized as Markov decision processes 
(MDPs), a model developed in the OR community. 
While MDP-related are mature and 
have been used in some :fielded standard 
treatments of MDPs use an unstructured represen­
tation of states and actions that cannot scale to 
many large real-world In later se<:tiCms. 
we describe some recent work 

richer state ret)resexlta.tio~ns, 
use richer reJJre:seJo.ta.ti(ms 

states and actions. also describe al-
that address another limitation of MDPs, 

namely their assumption of "complete observabil­
ity" during decision making. We conclude with a 
description of our current research efforts. 

MARKOV DECISION PROCESSES 
The MDP model is a formal specification for plan­
ning under uncertainty originally developed in the 
OR community in the late 50s and early 60s. The 
foundational work was done by Bellman (1957) and 
Howard (1960), and included a formal description 
of the model and basic results such as the exis­
tence of optimal solutions and algorithms for :find­
ing them. These algorithms still form the basis of 
nearly all the current approaches to solving MDPs. 

In MDPs, an agent has the task of making deci­
sions to solve some planning problem. The agent is 
embedded in its task environment and must decide 
on an action to take based on the current state of 
the environment. The actions it selects result in 
some immediate cost or benefit to the agent de­
pending on the environment's state and can also 
change the environment according to its transition 
model. An will select actions that 
maximize its net over a sequence of interac-
tions with the environment. 

This model the problem of intelligent 
behavior in a microcosm; the agent has a con­
crete measure of the success of its actions and must 
plan ahead to maximize its success. Compared 
to the larger problem of creating a broadly intel­
ligent agent, the model includes various simplifi­
cations that make it tractable: the state space of 

· the environment is typically finite, as is the set of 
possible actions the agent can choose from; time 
is discrete; costs and benefits are additive and not 
time dependent; and everything that is relevant to 
the decision-making problem is evident to the agent 
(i.e., there is complete observability-the Markov 
property holds for observations). 

For MDPs with up to a million states or so, effi­
cient implementations of the classic algorithms­
value iteration, policy iteration, linear program­
ming, and modified policy iteration-can be used 
to find optimal plans (or, policies, more precisely). 
Many practical problems in OR have been formal­
ized this way and are being solved in co:rru-nercial 
settings; Puterman (1994) describes the basic algo­
rithms and cites applications in blast-furnace main­
tenance, bus-engine replacement, queuing, schedul­
ing, :fisheries management, a11d many others. 

The DSN scheduling problem can be modeled as 
an MDP a state for each combination 
of current available resources, and 
existing The actions create new as-

tasks to resources and the stochas-



eled as MDPs in which the states capture all rele­
vant aspects of the environment, the long and short­
term goals of the mission, and the status of the 
spacecraft itself. The actions are the moment-to­
moment decisions that the spacecraft can make for 
itself: firing thrusters, extending antennae, radio­
ing home for help. The transition model describes 
the "physics" of the interaction between spacecraft 
and environment, using randomness to capture as­
pects of the environment that cannot be reliably 
predicted given the state representation of the sys­
tem. 

Even a modest-size version of these MDPs would 
likely contain trillions and trillions of states, mak­

classical algorithms practically useless. In the 
sections, we present a number of ap­

proaches that have been suggested for attacking 
MDP problems of this scale. 

One that is central to both classical and 
recent MDP algorithms is that of a value function. 
Value functions map states of the MDP to a mea­
sure of how good it is for the agent to be in that 
state; have several attributes that make them 
invaluable in planning under uncertainty. First, like 
evaluation functions in game-tree search, they can 
be used to guide the agent's choice of action us­
ing a simple one-step look-ahead scheme; the agent 
considers each possible action and chooses the one 
that leads to states with the highest expected value 
according to the value function. In fact, a standard 
result is that there is always an optimal value func­
tion that will guide the agent to making the best 
possible choice. unlike a plan (fixed 
sequence of actions), behaving according to a value 
function is robust under uncertainty-at each mo­
ment, the agent chooses the best action for the state 
that it is actually facing. And, third, approximately 
correct value functions can be improved iteratively, 
making them easy to use in algorithms. Nearly ev­
ery algorithm for planning under uncertainty uses 
a value function in some form. 

Several AI researchers have addressed the issue 
of large-scale MDPs by creating variants of the clas­
sic algorithms that use heuristics to make more 
efficient use of computational resources. Prior­
itized Sweeping (:Moore & Atkeson 1993) main­
tains an estimate of the optimal value function 
and uses a rule of thumb to predict when up­
dating the value function for a particular state is 
likely to be important for improving the 
mation. Real-time dynamic pr<)gr·anurumg 
Bradtke, & Singh 1995), or 
find a policy focus-
ing value-function on states that are 
to be this sometimes also 

identi-

fying states that are likely to be visited and solv­
ing a smaller MDP (Drummond & Bresina 1990; 
Tash & Russell1994; Dean et al. 1995). 

VALUE-FUNCTION 
APPROXIMATION 

In the standard MDP approaches, states are repre­
sented as being completely unrelated objects. In 
many domains, states can be described in such a 
way that "similar" states have similar representa­
tions. In the autonomous spacecraft example, it is 
dear that a natural state representation would be 
one that explictly notes spacecraft location as dis­
tinct from the current objective. 
on the basis of the "name" of the state, it is appar­
ent that the two states could be treated similarly 
for planning. 

This insight can be exploited by 
the classical table-based method for rer>re:senctin,g 
value functions in MDP algorithms for one that 
uses a function approximator (for example, a neu­
ral net) to map state-description vectors to val­
ues. A wildly successful of this is TD­
Gammon (Tesauro 1995); this work uses gradi­
ent descent and temporal-difference learning (Sut­
ton 1988) (roughly a variant of RTDP) to train a 
neural-network value function to play backgammon 
at the level of the best human players. Playing a 
good game of backgammon is an interesting exam­
ple of planning under uncertainty because of the 
impact of the dice rolls and the other player's moves 
on state transitions. 

Several other applications have been developed 
using this same basic approach, including a con­
troller for a bank of elevators (Crites & Barto 
1996), a system for making cellular-phone-channel 
assignments (Singh & Bertsekas 1996), and a job­
shop scheduler for space-shuttle payload process­
ing (Zhang & Dietterich 1995). These commercially 
relevant applications exhibit a great deal of un­
certainty, an astronomically huge state space (1020 

and beyond), and have been studied closely enough 
that human-engineered are available for 
comparison. In each case, the automatic planning 
systems based on value-function approximation re­
sult in policies superior to the prior state of the 
art. We see no fundamental obstacles to applying 
value-function approximation to a broader array of 
problems including additional space-related appli­
cations. 

Recent projects have begun to shed light on 
the practical and theoretical guarantees that can 
be made when using value-function 
tion. & Moore (1995) show that rerlrP.:~fmt.-

value neural networks 
well. Sutton 

C01mten>01JI1t that shows that an annrc)DI'Iat:e 



nificantly. Positive and theoretical re­
sults have been derived for gradient-descent meth­
ods (e.g., neural networks) and averaging methods 
(e.g., nearest neighbors) (Baird 1995; Gordon 1995; 
Tsitsiklis & Van Roy 1996b; Tsitsiklis & Van Roy 
1996a). At present, this class of algorithms has 
been the most successful for practical 
planning problems and work continues this area. 

PLANNING 
Value-function approximation attempts to exploit 
structure in the state space (and the value func­
tion), but treats actions as black-box transforma-
tions from states to distributions over 

A alternative is to use sym-
bolic of actions to reason about en-
tire classes of state-to-state transitions all at once. 
This is the approach taken in classical AI plan-

••n.n.•·•"'"'""'' & Rosenblitt and it can be 
a deal more and therefore more compu­
tationally efficient, than RTDP plus value-function 
approximation. 

The classical view of planning ignores uncer­
tainty. In the STRJPS representation (Fikes & 
Nilsson 1971), for an operator has a 
list of preconditions that must be satisfied before 
the operator can be applied. But, when these 
conditions are met and the operator is applied, 
the effects of the as a list­
take place with certainty. Uncertainty can be in­
troduced gently into the STRJPS representation 
by assuming a deterministic domain with a small 
amount of "external" randomness (Blythe 1994). 
A number of researchers have explored the prob­
lem of planning given more general representations 
of stochastic operators (Goldman & Boddy 1994; 
Kushmerick, Hanks, & Weld 1995; Boutilier, Dear­
den, & Goldszmidt 1995). 

The BuRIDAN system (Kushmerick, Hanks, & 
Weld 1995) exploits a general representation for 
stochastic STRJPS operators and extends partial­
order planning to stochastic domains. Its represen­
tation can express arbitrary MDPs, sometimes log­
arithmically more compactly than traditional OR 
representations. Similar to traditional determin­
istic planners, the pla..'ls found by BURIDAN are 
simple sequences of actions. C-BURIDAN (Draper, 
Hanks, & Weld 1994) extends the BURIDAN system 
so that the plan representation is more powerful; it 
can express contigent execution of actions, al­
though it is still less than a n"'"''r-r.,rn<> 
representation. 

Another area of interest is in solving MDPs 
compact STRIPS-like 

a,u,ct~.Ji,CI.L!U!Jlb of classic MDP <>•!:,VLJlLU.U!b 

& Goldszmidt 
rv.-1-r .• ~r::.,r.,rm and value-iteration ""'<=•v"'""·'""' 

tations; Boutilier & Dearden (1996) extend this 
to deal with approximations of the value function. 
Dearden & Boutilier (1997) adopt the view that 
value-function approximation is a type of "abstrac­
tion," the form of which can be derived automat­
ically from a propositional representation of the 
planning problem. 

Although some promising algorithms have been 
described in the past few years, we are only just 
v"'""'·"u''o to understand the computational prop­
erties of class of problems. Littman (1997) pro­
vides some basic complexity results for probabilistic 
planning and also shows that most natural com­
pact representation schemes are equivalently com-

within Goldsmith, 
J../H,,u,a.u, & (1997) address the 
problem of finding compact representations 
in stochastic domains; although most problems are 
computationally intractable, there are some ways of 
"v'""""''-"'u5 the problem that may be amenable to 
heuristic approaches. In a later we sketch 
some of our work in using these to de-
sign a new type planner for large-scale stochastic 
domains. 

PARTIALLY OBSERVABLE MDPs 
In real applications, especially those that involve 
physical devices whose effects on the agent's en­
vironment are uncertain, it is often impossible for 
the decision-making agent to base its choices on 
the true state of the world; in general, there will 
always be aspects of the world that are not di­
rectly or instantaneously accessible to the agent's 
sensors. Autonomous spacecraft, for example, are 
situated in unknown environments, possess limited 
sensing capabilities, and have a repertoire of ac­
tions whose effects are uncertain due to possible 
system malfunctions or unanticipated environmen­
tal factors. In this type of situation, value-function­
based algorithms for planning do not work prop­
erly. Partially observable Markov decision pro­
cesses (POMDPs) model the situation in which the 
agent must cope with uncertainty in its estimate of 
the current state (Lovejoy 1991; Cassandra, Kael­
bling, & Littman 1994). 

L'l the POMDP framework extends MDPs 
to a much wider range of potential applications. 
However, the resulting problems are often consid­
erably more difficult to solve. New exact algorithms 
have been that can solve and more 
complex than those in the OR 
literature Cassandra, & Kaelbling 1996; 
va.:s:so~noc.ra., LUHnan, & however, even 

or so states. 
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CNFFormula 
(NOT moat-0) AND 
(NOT castle-0) AND 

ProbSAT 
Converter 

(dig-moat-1 OR erect-castle-1) AND 
(dig-moat-2 OR erect-castle-2) AND . 
(castle-3) 

ProbSAT 
Solver 

1: castle 
, ..... 2:moat l: castle 

~·· 
~~ gV ..... 

~~ 

Optimal Plan 
erect-castle-1 
erect-castle-2 
erect-castle-3 

2:moat 

Probability of Success= 0.578 

Figure 1: Block Diagram Illustrating the Steps of Our Planner 

Cassandra, & Kaelbling 1995; Parr & Russell 1995; 
Simmons & Koenig 1995), and propositional repre­
sentations (Draper, Hanks, & Weld 1994; Boutilier 
& Poole 1996) are being developed and have ex­
hibited improvements in problem size and solution 
speed over exact approaches. This seems to be an 
area of intense interest, and many new approaches 
are being devised, although few of these have been 
rigorously tested at this time. 

CURRENT RESEARCH 
Presently, we are exploring an alternate approach 
to planning under uncertainty that attempts to 
combine the positive attributes of the various ap­
proaches described above. Our system is applica­
ble to probabilistic planning problems, both MDPs 
and POMDPs, specified in a compact form. It is de­
signed to :find plans that maximize the probability 
of a goal, but under constraints on the 
size and of the 

Our the SATPlan plan-
ner of SATPlan uses a 
propositional and stochas-
tic search to solve very hard deterministic p•u"""'"f> 

prc1blE:ms as much as an order of •uc•r:."·'""'"'" 
the next best p•ccuu1.u5 
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CNF Boolean formula that has the property that 
a:p.y satisfying assignment to the variables in the 
formula corresponds to a valid plan--one that re­
sults in achieving the goal. This is done by making 
satisfiability equivalent to the enforcement of the 
following conditions: 

e the initial conditions and goal conditions hold at 
the appropriate times, 

• the existence of an effect at time t implies the 
disjunction of all actions that can produce that 
effect at time t 1, 

• the use of an operator at time t implies the exis-
tence of its at timet- 1, and 

• actions are mutually exclusive (Kautz 
& Selman 1996). 

The satisfiability of the resulting CNF formula is 
determined using WalkSAT, a generic satisfiability 
algorithm based on random hill-climbing. 

To this method to probabilistic J:'AC""'w'""'l'>• 
we make a distinction between choice m,.,.,w.nF.~ 

which encode the possible plans, and chance vari­
ables, which encode the uncertainty in the 
abilistic Choice 
all variables a SATPlan enc:omlng, 



variable is True with a certain 
gether, the chance variables determine proba­
bility that a given truth assignment for the choice 
variables (i.e., a given plan) will actually lead to a 
satisfying assignment (i.e., reach a goal). 

Given a CNF formula with chance variables, we 
wish to not merely the satisfiability of 
the formula (as in SATPlan), but rather the as­
signment of choice variables that has the highest 
probability of producing an overall satisfying as­
signment. Such an assignment to the choice vari­
ables maximizes the probability of reaching a goal. 
This means that, for each setting of the choice vari­
ables (each plan), we must find all possible "as­
signments" to the chance variables that produce an 
overall satisfying assignment, and sum the prob­
abilities of these probabilistic assignments to de­
termine the probability of success for that plan. 
The computational of this problem is 
NPPP -complete (Goldsmith, Littman, & Mund­
henk 1997); thus, the problem of finding the opti­
mal restricted-size plan for a finite-horizon POMDP 
or MDP in compact representation is likely more dif­
ficult than an NP-complete problem like finding the 
optimal finite-horizon deterministic plan, but likely 
easier than an EXPSPACE-complete problem like 
finding the optimal unrestricted plan for a finite­
horizon POMDP in compact representation (Gold­
smith, Lusena, & Mundhenk 1996). 

Our technique for -Solving these probability­
extended satisfiability problems is based on the 
Davis-Putnam procedure for satisfia-
bility (Davis, & Lovela."'ld and 
can be as constructing a binary tree in 
which each node represents a choice variable or a 
chance variable, and the two subtrees represent the 
two possible remaining subproblems given the two 
possible assignments to the parent variable (if the 
parent is a choice variable) or the two possible out­
comes (if the parent is a chance variable). Clearly, 
it is critical to construct an efficient tree to avoid 
evaluating an exponential number of assignments. 
As in the Davis-Putnam procedure, we do this by 
selecting for the next variable in the when­
ever a variable that appears by itself in a 
clause, or a variable that appears in only one sense 
(always negated or always not negated) in the for­
mula. We also remove variables which become ir­
relevant as the tree is constructed. When no such 
obvious choice is we choose the variable 
that satisfies the most clauses in the remaining sub-

We summarize our current.,....,._,",., ..... 
under 
tion to a 
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equivalent problem on a Boolean formula-has a 
number of attractive properties. By casting the 
problem in a generic format we can take advan­
tage of proven algorithmic techniques from a num­
ber of areas of research. Our current solver al­
ready incorporates successful ideas from dynamic 
programming and Boolean satisfiability; future ver­
sions will also draw on the areas of AI planning, be­
lief networks, reinforcement learning, and stochas­
tic search. 

CONCLUSIONS 
Over the past few years, powerful formal models of 
planning under uncertainty have been explored and 
scores of new algorithms for planning with these 
models have been devised. The models appear to be 
useful for expressing real-world, problems 
and the algorithms show a of promise for 
solving these problems. 

One component that is sorely lacking in this pic­
ture is substantive contact with real applications; 
many algorithms have been tested only on tiny 
"proof-of-concept" problems and no information is 
available on how the algorithms scale up. It is crit­
ical at this stage to make a serious effort to apply 
these nascent technologies to real-world problems; 
only through contact with applications can we hope 
to focus our research effort in the most promising 
and productive directions. We believe that plan­
ning problems in the space industry would provide 
an excellent test bed for algorithms for planning 
under uncertainty that aspire to be effective in real­
world domains. The interaction between emerging 
techniques and real problems will spur the devel­
opment of more efficient and practical systems as 
well as contribute to the solution of some important 
problems. 
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