
On Board Planning for Autonomous Spacecraft

Nicola Muscettola
Chuck Fry

KannaRajan

Computational Sciences Division

NASA Ames Research Center

Moffet Field, CA 94035

{ mus, chucko,kanna }@ptolemy.arc.nasa.gov

Abstract

The Deep Space One (DS 1) mission, scheduled to fly in
1998, will be the first spacecraft to feature an on-board
planner. The planner is part of an artificial intelligence
based control architecture that comprises a
planner/scheduler, a plan execution engine, and a model
based fault diagnosis and reconfiguration engine. This
autonomy architecture reduces mission costs and increases
mission quality by enabling high-level commanding,
robust fault responses, and opportunistic responses to
serendipitous events. This paper describes the on-board
pirumrr1g md scheduling component of the DS l autonomy
architecture.

Introduction
The first nnsston of the New Millennium program
(NMP)-Deep Space One (DSl), to launch in 1998-will
feature an experimental on-board autonomy software
system, the Remote Agent (RA). RA is an artificial
intelligence based control system derived from the
NewMaap technology demonstration [1]. RA has three
components: the Executive [2], the
Planner/Scheduler (PS), and the Mode Identification and
Recovery engine (MIR) [3). In this paper we descnbe PS.
RA is crucial for the future exploration because it
enables reduction of mission costs and increases mission

in several ways; some of these improvements are
spe:clt!c to RA 's use of an on-board PS. because of
its hierarchical

au1tonorntously respoJilds and recovers from failures that
and ti.rne

failure response
deliberating about mission

Ben Smith
Steve Chien

Gregg Rabideau

David Yan
Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove MIS 525-3660

a.;:oa.<uvua, CA 911 09-8099

{smith, chien, rabideau, yan}@aig.jpl.nasa.gov

trade-off and global interactions: the rest of RA handles
localized real-time failures that require quick reactions.
Finally, on-board enables taking advantage of
fortuitous events, such as better thm expected resource
consumption or serendipitous science discoveries (e.g.,
volcanoes on Io). This opens up fundamentally new and
exciting unmanned space exploration missions where
round-trip light time does not permit joy-sticking a
spacecraft from Earth.
In this paper first we quickly describe the DS 1 mission .
Then we introduce the concept of high level commanding
enabled by RA, contrast it to traditional sequencing, and
highlight the role played by PS. Finally we describe more
in detail the features and capabilities of the on-board PS.

The DSl Mission
Spacecraft used by NMP missions are relatively

inexpensive (e.g. the DSl Mission is capped at $138.5
million) and must serve the primary objective of
validating new technologies in flight; doing planetary
science is an additional but one that also has the
effect of the This ordering of
priorities allows the development and validation of
technologies that would not pass the reliability
requirements imposed by typical planetary science
missions. If the new technologies prove worthy on an
NMP flight, then will be used on future sc1ence
missions.
The nominal DS 1 mission is to launch in

Asteroid 3352 McAuliffe in 1999 a
series of Comet West-Kohoutek-

technologies. During cruise preceding the first encounter
each new technology will go through validation
experiments. The RA is one of these technologies. Others
include the on-board optical navigator (NA V), the ion
propulsion engine (IPS), and the Miniature Integrated
Camera Spectrometer (MICAS).

RA is an experimental spacecraft control system. It
consists of three components: the Planner/Scheduler (PS),
the Executive (EXEC), and the Mode Identification and
Recovery system (MIR). PS receives a set of high-level
mission goals from an on-board mission profile and
generates a plan-a set of procedures. Once
executed, these commands will achieve the mission goals
without violating resource, temporal, or safety constraints.
The EXEC takes each decomposes it into
low-level real-time commands and ensures the correct
dispatching of these commands. MIR monitors device
responses to identifies components, and
suggests recovery actions to EXEC.

High Level Commanding
The RA architecture enables a new approach to spacecraft
commanding, high-level commanding. PS is the primary
module through which high level commanding happens.
In this approach, ground interacts with a spacecraft .
through abstract directives or goals instead of detailed
streams of instructions. The responsibilities of PS are: (1)
to select among the proposed goals those to be achieved at
any point in time; (2) to compromise between the level of
achievement of the selected goals, and (3) to expand the
procedures needed to achieve the goals. PS ensures the
satisfaction of various synchronization constraints among
procedures and resolves resource conflicts. The set of
expanded procedures and constraints among them
constitutes a plan.

In contrast, in the traditional approach a spacecraft is
commanded with a sequence of time-tagged commands to
the real-time device drivers. Such a sequence could be
highly optimized to "squeeze" as much performance as
possible out of the spacecraft. However, temporal and
resource constraints and fault protection goals also have
to be ensured at an extremely detailed level. The
consequence is that developing a sequence is a very
exacting and ti.'lle consmr.i..'lg process, often requiri..ng
months of manual labor. Once generated, a sequence is
very difficult to modify.

Three the '"'"''"'"'"" benefits

execution
resolves

constraints

among procedures, this expansion is highly localized and,
therefore, greatly simplified. Extensive validation of these
small sequences is much simpler than the validation of
those generated in the traditional approach.

PLANNER
SCHEDULER

MISSION
MANAGER

j
From Ground

1:

Real

Level Commanding

Execution flexibility: Procedures in a plan can be
potentially executed in parallel. The plan explicitly
represents and maintains temporal constraints between
concurrent procedures. For example, a temporal constraint
can express that A must start from 30 to 60
minutes after procedure B, or that procedure B must
execute while procedure C is executing, or that procedure
A ends exactly when procedure C starts. PS ensures the
consistency of the network of temporal constraints in the
plan and infers time ranges which a can
start and end. Unlike simple time tags, time ranges give
EXEC the flexibility to compensate for execution delays
caused by locally recoverable failures.

Robustness: an on-board planner can also make fault
protection simpler and more robust than traditional
sequencing. In the traditional approach, a sequence is
infrequently uplinked to a spacecraft and therefore needs
to include contingencies to handle a wide variety of
failure conditions. In a "fail operational" scenario (e.g., a
scenario in which the spacecraft autonomously recovers
from a the on-board sequence must be restarted, it
must command the assessment of the new execution
conditions, and react conditionally on the basis of this
assessment. Because of the large number of possible
failure conditions and the low level of the instructions in a
sequence, the size of a robust sequence can be very large
and the effort needed to build it very This is why
"fail operational" scenarios are avoided as much as
OO'SSI!ble in traditional mission and are confined to
critical mission Cassini Saturn Orbit

In the R..4. are valid
for the execution conditions known at the time PS

was invoked and therefore sequence real-time
commands issued and smaller. Vv'hen execution
conditions differ so much from the initial as~>UJ:Jnnl:iollS

that local failure recovery is execution of the
and PS is asked for a new that takes into

account the new situation. with fault conditions
on an as-needed basis simplifies the solution of the fault
protection problem.

Generating Plans from Goals
Figure I describes how the DSI PS implements high-level
commanding within the RA architecture. A long-tenn

containing for the entire the mission
is stored and maintained on-board by the Mission

meets meets

Figure 2: Example Timelines

Manager (MM). Ground operations interacts with MM to
add, modify and delete goals in the mission. MM also
responds to EXEC's reque.sts for new plans by selecting a
new set of goals from the mission profile, combining it
with initial spacecraft state information provided by
E~C an~ sending it to PS. The time horizon covered by
PS _ts typically two weeks during cruise and a few days
durmg encounter. When a plan is ready, PS sends it to
EXEC. When EXEC has almost completed execution of
its current plan, it sends a new request to MM; this also
happens when the EXEC is maintaining the spacecraft in
standby mode after the occurrence of a major failure. In
~ case the initial spacecraft state will clearly identify
which capabilities (if any) have been degraded by the
fault PS takes this information into consideration when
generating the new plan.

Besides the mission goals also come from other
on-boards systents, the planning experts. For exam.ole.
NA V communicates to PS of which beacon asteroids it
needs in order to estimate the current spacecraft
position. The use of goals generated on board means that
the can its based on new

known to This is
~~·4..,..., ivnnr•rl<>·nt if the has infrequent

reaction is too slow
Goals

Both PS and MM use the same system to
~epresent, the plan database. A plan database is organized
m several timelines, each comprised of a
sequence of tokens. A timeline describes the future
evolution of a component of the spacecraft's state
vector. The set of tokens active at a given time represent
the state vector value at that time. Goals and procedures
are both as tokens. Each token consists of a
state variable to which timeline the
token belongs), a type (a symbolic representation of the
goal or procedure and its parameters), a start-time, an
end-time and a duration. Timelines can also represent
renewable resources such as state of non-
renewable resources such as and

resources that can be allocated in pruraHel
consumers) such as electric power.

resource allocation tokens with the
coJrre:>po,ndmg consumer tokens. The type of the resource
tokens in~cate the amount requested and the modality of
consumption (e.g., constant, linear depletion).

For (Figure a plan timeline may describe
the state of the engine (warming up, thrusting, or idle) and
another for the spacecraft attitude pointing to a

turning from target A to target The plan
database also explicitly represents temporal constraints
between tokens. These include constraints synchronizing
tokens on separate timelines (e.g., "the spacecraft attitude
must be pointing to target B while the engine is
thrusting") and ordering tokens on the same or different
ti.~e lines. (e.g., "before the spacecraft can point to
attitude .t: It must tlli-n from its previous attitude B to A").

One unportant feature of the plan database is that
decision variables (e.g., start or end time) and constraints
3!.uong them are explicitly represented. The database then
uses constraint propagation to infer valid ranges of values
for variables and to detect inconsistencies (e.g.,
contradictory temporal constraints between tokens). This
allows PS to concentrate on establishing constraints
instead of selecting exact values for decision variables, an
approach that often avoids over-commitment errors and
therefore minimizes backtracking on earlier
commitments.
~e plan database can a plan at any stage of

partial completion. Unlike complete plans, incomplete
plans can have gaps between tokens on a timeline. Also,
an plan may include an as-ye·t-UJninlJ)lemlen1ted

for a constraint between tokens the section
"The Domain The presence of these gaps and
unfulfilled PS to add tokens and
constraints is More

database can be found

Domain Model
In a valid plan tokens must satisfy many constraints,
including ordering (e.g., the heaters must
warm up for ninety minutes before the reaction
control thrusters), the antenna must
be pointed at the Earth during uplink,) do not
point the radiators within degrees of the sun), and
resource constraints the MICAS camera ,..,.,.,,, ... ~~
fifteen watts of These are all

and type constraint templates, or
cmrnv.atii':Jill'tie:s:. among token The planning
model is a set of compatibilities that must be satisfied in
every More is a

relation that must hold between a master token
token whenever the master token appears in

If the master token does not occur in the plan,
the relation does not need to be satisfied. Compatil)ili1ties
also relations between in the master
token type and value equivalence between arguments in
the master and in the target token types. All
compatibilities associated to a token are organized into a
Boolean compatibility tree.
A simple compatibility tree is shown in 3. It says
that the state in which the MICAS camera is on must be .
preceded by a state in which it is turning on, and followed
by one in which it is turning off. While the camera is on,
it consumes fifteen watts of power.

:compatibilities
(AND

(met_by (MICAS_Turning_On))
(meets (MICAS_Turning_Off))
(equal (REQUEST (Power 15)))

Figure 3: A Compatibility Tree

Planning Algorithm
The planner searches in the space of incomplete or partial
plans [5] with additional temporal reasoning mechanisms
[6 and 4]. As with most causal planners, PS begins with
an incomplete plan (given to it by MM) and attempts to
expand it into a complete plan. The plan is complete when
it satisfies aU of the compatibilities in the plan model and
there are no gaps on any timeline. The set of "defects"
that need to be fixed in an incomplete in order for it
to become is called the 4
summarizes the basic "conflict PS. Each
decision is made
heuristic information is not
uniform randomized rule (de:te:rmi:J:ristic

the wrong
,.,,.,,.,~-o,., 111" reach a dead a different

For example, consider one of the
types, open An open is a

and constraint that must exist
between a master token already in the plan and a target
token that may or may not be in the For <OJI.<tuunc.

the compatibility A meets B is open if A is in the plan
but B is not, or if both A and B are in the plan but the
relation A meets B is not enforced. PS can
satisfy an open with one of three resolution

It can add the token to the plan in such a
way that it satisfies the it can the
start or end time of either the target or master token in
order to satisfy the relation; or, it can decide that the
relation will be satisfied a token in the next plalmJing
horizon, and can therefore be These options are
caUed and respectively.
Deferred compatibilities are maintained in the plan and
carried forward to the next horizon as of the
initial state. PS will chose one of these when it
addresses an instance of an open compatibility conflict.

While plan has open compatibilities:
1 .pick an open conflict;

2.select and apply a resolution strategy;
3.if no resolution is possible, backtrack

Figure 4: Planning Loop

Goal Prioritization
The overall mission goals on achieving a careful
balance between potentially conflicting generated
by independent sources (e.g., the science team, the
navigation team). Conflicts typically arise because of
over-subscription of limited resources (e.g., power, time).
When a compromise is possible, PS appropriately
distributes the use of available resources. When a
compromise is not possible, then PS selects some of the
lowest priority goals for postponement or outright
rejection.

In PS tokens that have not yet been inserted onto a
constitute a conflict for

which one of the resolution is to
the token. PS decides if the free goal token will be
inserted. In DS 1 PS does not explore all possible
permutations of free token achievements but follows a
statically assigned prioritization scheme

have highest followed by
and then This scl:llem.e.

solutions. Enhanced
included in future PS versions.

RA two level failure response - an immediate
reactive response, and term deliberative

response. This is typical of many autonomy architectures
(e.g., Soar [7], Guardian [8]). The fast, real-time reactive
behavior is implemented by EXEC and MIR. If this fails
to solve the problem within the time and resource
constraints of the current plan, then the failure can
endanger future goals in the plan. In this case EXEC puts
the spacecraft in standby, PS is called to assess the
failure's impact on the remaining goals to decide how to
best proceed. The deliberative response also addresses
"advantageous failures" (e.g., serendipitous discoveries)
and is the basis for enabling fundamentally new types of
science missions.

This· two level response results in simpler and more
robust plans facilitating spacecraft commanding. The
plans are since they can address only the nominal
case and trust that failures will be handled properly as
they arise. Failures are either resolved by the reactive
layer and allow the plan to continue, or cannot be

in which case the plan breaks and the PS
ger1enates another nominal based on the new
spacecraft state.

The plans are also more robust. This is partly due to
the failure response mechanism, partly due to the
hierarchical nature of the RA, and partly due to the plan
representation. The hierarchy allows the tokens in the
plan to describe fairly abstract procedures. The plan .
representation allows flexible start and end token times.
Therefore EXEC has wide latitude m executing tokens,
being allowed to respond to failures by retrying
commands or trying alternate approaches. The extra
failure response time needed is absorbed by the flexibility
in the token's start and end times.

Conclusions
On-board plarming is crucial for spacecraft autonomy. It
can reduce mission costs and improve mission quality by
allowing high-level commanding, enabling achievement
of mission goals in the presence of failures without
ground intervention, and taking advantage of fortuitous
events. The DS 1 mission marks the first on-board planner
to fly on a spacecraft. The validation of this technology
will open the way for future autonomous missions.

Acknowledgements

This work was performed in part at the Jet Propulsion
Laboratory, California Institute of Technology, under
contract to the National Aeronautics and Space
Administration.

Proceedings of the SPIE Conference on Optical Science,
Engineering and Instrumentation.

[2] Pell, B., Gat. E., Kesing, R., Muscettola, N., and
Smith, B., 1997., Plan Execution for Autonomous
Spacecraft in IJCAI 97 (forthcoming).

[3] Williams, B.C., and Nayak, P.P., 1996. A model
based approach to reactive self-configuration systems. In
Proceedings of AAAI-96, pp 971-978.

[4] Muscettola, N. 1994. HSTS: Integrating planning and
.,._ ... ,.,uuu.u)<,. In Fox, M., and Zweben, M., eds, Intelligent
Scheduling, Morgan Kaufman.

[5] Weld, D.S., 1994. An Introduction to Least
Commitment Planning, AI Magazine Winter 1994.

[6] Allen, J.F. and Koomen, J.A. 1983. Planning using a
temporal world model.IJCAI 83. pp. 741-747.

Jones,
and Schwamb, K. 1995.

Intelligent agents for intemctive simulation environments.
AI Magazine, 16(1):15-39.

[8] Hayes-Roth, B. 1995. An architecture for adaptive
intelligent systems. Artificial Intelligence 72.

	1997-2_Part27
	1997-2_Part28
	1997-2_Part29
	1997-2_Part30
	1997-2_Part31

