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Abstract 

The Deep Space One (DS 1) mission, scheduled to fly in 
1998, will be the first spacecraft to feature an on-board 
planner. The planner is part of an artificial intelligence 
based control architecture that comprises a 
planner/scheduler, a plan execution engine, and a model
based fault diagnosis and reconfiguration engine. This 
autonomy architecture reduces mission costs and increases 
mission quality by enabling high-level commanding, 
robust fault responses, and opportunistic responses to 
serendipitous events. This paper describes the on-board 
pirumrr1g md scheduling component of the DS l autonomy 
architecture. 

Introduction 
The first nnsston of the New Millennium program 
(NMP)-Deep Space One (DSl), to launch in 1998-will 
feature an experimental on-board autonomy software 
system, the Remote Agent (RA). RA is an artificial 
intelligence based control system derived from the 
NewMaap technology demonstration [1]. RA has three 
components: the Executive [2], the 
Planner/Scheduler (PS), and the Mode Identification and 
Recovery engine (MIR) [3). In this paper we descnbe PS. 
RA is crucial for the future exploration because it 
enables reduction of mission costs and increases mission 

in several ways; some of these improvements are 
spe:clt!c to RA 's use of an on-board PS. because of 
its hierarchical 

au1tonorntously respoJilds and recovers from failures that 
and ti.rne 

failure response 
deliberating about mission 

Ben Smith 
Steve Chien 

Gregg Rabideau 

David Yan 
Jet Propulsion Laboratory 

California Institute of Technology 

4800 Oak Grove MIS 525-3660 

a.;:oa.<uvua, CA 911 09-8099 

{smith, chien, rabideau, yan}@aig.jpl.nasa.gov 

trade-off and global interactions: the rest of RA handles 
localized real-time failures that require quick reactions. 
Finally, on-board enables taking advantage of 
fortuitous events, such as better thm expected resource 
consumption or serendipitous science discoveries (e.g., 
volcanoes on Io ). This opens up fundamentally new and 
exciting unmanned space exploration missions where 
round-trip light time does not permit joy-sticking a 
spacecraft from Earth. 
In this paper first we quickly describe the DS 1 mission . 
Then we introduce the concept of high level commanding 
enabled by RA, contrast it to traditional sequencing, and 
highlight the role played by PS. Finally we describe more 
in detail the features and capabilities of the on-board PS. 

The DSl Mission 
Spacecraft used by NMP missions are relatively 

inexpensive (e.g. the DSl Mission is capped at $138.5 
million) and must serve the primary objective of 
validating new technologies in flight; doing planetary 
science is an additional but one that also has the 
effect of the This ordering of 
priorities allows the development and validation of 
technologies that would not pass the reliability 
requirements imposed by typical planetary science 
missions. If the new technologies prove worthy on an 
NMP flight, then will be used on future sc1ence 
missions. 
The nominal DS 1 mission is to launch in 

Asteroid 3352 McAuliffe in 1999 a 
series of Comet West-Kohoutek-



technologies. During cruise preceding the first encounter 
each new technology will go through validation 
experiments. The RA is one of these technologies. Others 
include the on-board optical navigator (NA V), the ion
propulsion engine (IPS), and the Miniature Integrated 
Camera Spectrometer (MICAS). 

RA is an experimental spacecraft control system. It 
consists of three components: the Planner/Scheduler (PS), 
the Executive (EXEC), and the Mode Identification and 
Recovery system (MIR). PS receives a set of high-level 
mission goals from an on-board mission profile and 
generates a plan-a set of procedures. Once 
executed, these commands will achieve the mission goals 
without violating resource, temporal, or safety constraints. 
The EXEC takes each decomposes it into 
low-level real-time commands and ensures the correct 
dispatching of these commands. MIR monitors device 
responses to identifies components, and 
suggests recovery actions to EXEC. 

High Level Commanding 
The RA architecture enables a new approach to spacecraft 
commanding, high-level commanding. PS is the primary 
module through which high level commanding happens. 
In this approach, ground interacts with a spacecraft . 
through abstract directives or goals instead of detailed 
streams of instructions. The responsibilities of PS are: (1) 
to select among the proposed goals those to be achieved at 
any point in time; (2) to compromise between the level of 
achievement of the selected goals, and (3) to expand the 
procedures needed to achieve the goals. PS ensures the 
satisfaction of various synchronization constraints among 
procedures and resolves resource conflicts. The set of 
expanded procedures and constraints among them 
constitutes a plan. 

In contrast, in the traditional approach a spacecraft is 
commanded with a sequence of time-tagged commands to 
the real-time device drivers. Such a sequence could be 
highly optimized to "squeeze" as much performance as 
possible out of the spacecraft. However, temporal and 
resource constraints and fault protection goals also have 
to be ensured at an extremely detailed level. The 
consequence is that developing a sequence is a very 
exacting and ti.'lle consmr.i..'lg process, often requiri..ng 
months of manual labor. Once generated, a sequence is 
very difficult to modify. 

Three the '"'"''"'"'"" benefits 

execution 
resolves 

constraints 

among procedures, this expansion is highly localized and, 
therefore, greatly simplified. Extensive validation of these 
small sequences is much simpler than the validation of 
those generated in the traditional approach. 

PLANNER 
SCHEDULER 

MISSION 
MANAGER 

j 
From Ground 

1: 

Real 

Level Commanding 

Execution flexibility: Procedures in a plan can be 
potentially executed in parallel. The plan explicitly 
represents and maintains temporal constraints between 
concurrent procedures. For example, a temporal constraint 
can express that A must start from 30 to 60 
minutes after procedure B, or that procedure B must 
execute while procedure C is executing, or that procedure 
A ends exactly when procedure C starts. PS ensures the 
consistency of the network of temporal constraints in the 
plan and infers time ranges which a can 
start and end. Unlike simple time tags, time ranges give 
EXEC the flexibility to compensate for execution delays 
caused by locally recoverable failures. 

Robustness: an on-board planner can also make fault 
protection simpler and more robust than traditional 
sequencing. In the traditional approach, a sequence is 
infrequently uplinked to a spacecraft and therefore needs 
to include contingencies to handle a wide variety of 
failure conditions. In a "fail operational" scenario (e.g., a 
scenario in which the spacecraft autonomously recovers 
from a the on-board sequence must be restarted, it 
must command the assessment of the new execution 
conditions, and react conditionally on the basis of this 
assessment. Because of the large number of possible 
failure conditions and the low level of the instructions in a 
sequence, the size of a robust sequence can be very large 
and the effort needed to build it very This is why 
"fail operational" scenarios are avoided as much as 
OO'SSI!ble in traditional mission and are confined to 
critical mission Cassini Saturn Orbit 

In the R..4. are valid 
for the execution conditions known at the time PS 

was invoked and therefore sequence real-time 
commands issued and smaller. Vv'hen execution 
conditions differ so much from the initial as~>UJ:Jnnl:iollS 



that local failure recovery is execution of the 
and PS is asked for a new that takes into 

account the new situation. with fault conditions 
on an as-needed basis simplifies the solution of the fault 
protection problem. 

Generating Plans from Goals 
Figure I describes how the DSI PS implements high-level 
commanding within the RA architecture. A long-tenn 

containing for the entire the mission 
is stored and maintained on-board by the Mission 

meets meets 

Figure 2: Example Timelines 

Manager (MM). Ground operations interacts with MM to 
add, modify and delete goals in the mission. MM also 
responds to EXEC's reque.sts for new plans by selecting a 
new set of goals from the mission profile, combining it 
with initial spacecraft state information provided by 
E~C an~ sending it to PS. The time horizon covered by 
PS _ts typically two weeks during cruise and a few days 
durmg encounter. When a plan is ready, PS sends it to 
EXEC. When EXEC has almost completed execution of 
its current plan, it sends a new request to MM; this also 
happens when the EXEC is maintaining the spacecraft in 
standby mode after the occurrence of a major failure. In 
~ case the initial spacecraft state will clearly identify 
which capabilities (if any) have been degraded by the 
fault PS takes this information into consideration when 
generating the new plan. 

Besides the mission goals also come from other 
on-boards systents, the planning experts. For exam.ole. 
NA V communicates to PS of which beacon asteroids it 
needs in order to estimate the current spacecraft 
position. The use of goals generated on board means that 
the can its based on new 

known to This is 
~~·4..,..., ivnnr•rl<>·nt if the has infrequent 

reaction is too slow 
Goals 

Both PS and MM use the same system to 
~epresent, the plan database. A plan database is organized 
m several timelines, each comprised of a 
sequence of tokens. A timeline describes the future 
evolution of a component of the spacecraft's state 
vector. The set of tokens active at a given time represent 
the state vector value at that time. Goals and procedures 
are both as tokens. Each token consists of a 
state variable to which timeline the 
token belongs), a type (a symbolic representation of the 
goal or procedure and its parameters), a start-time, an 
end-time and a duration. Timelines can also represent 
renewable resources such as state of non-
renewable resources such as and 

resources that can be allocated in pruraHel 
consumers) such as electric power. 

resource allocation tokens with the 
coJrre:>po,ndmg consumer tokens. The type of the resource 
tokens in~cate the amount requested and the modality of 
consumption (e.g., constant, linear depletion). 

For (Figure a plan timeline may describe 
the state of the engine (warming up, thrusting, or idle) and 
another for the spacecraft attitude pointing to a 

turning from target A to target The plan 
database also explicitly represents temporal constraints 
between tokens. These include constraints synchronizing 
tokens on separate timelines (e.g., "the spacecraft attitude 
must be pointing to target B while the engine is 
thrusting") and ordering tokens on the same or different 
ti.~e lines. (e.g., "before the spacecraft can point to 
attitude .t: It must tlli-n from its previous attitude B to A"). 

One unportant feature of the plan database is that 
decision variables (e.g., start or end time) and constraints 
3!.uong them are explicitly represented. The database then 
uses constraint propagation to infer valid ranges of values 
for variables and to detect inconsistencies (e.g., 
contradictory temporal constraints between tokens). This 
allows PS to concentrate on establishing constraints 
instead of selecting exact values for decision variables, an 
approach that often avoids over-commitment errors and 
therefore minimizes backtracking on earlier 
commitments. 
~e plan database can a plan at any stage of 

partial completion. Unlike complete plans, incomplete 
plans can have gaps between tokens on a timeline. Also, 
an plan may include an as-ye·t-UJninlJ)lemlen1ted 

for a constraint between tokens the section 
"The Domain The presence of these gaps and 
unfulfilled PS to add tokens and 
constraints is More 

database can be found 



Domain Model 
In a valid plan tokens must satisfy many constraints, 
including ordering (e.g., the heaters must 
warm up for ninety minutes before the reaction 
control thrusters), the antenna must 
be pointed at the Earth during uplink,) do not 
point the radiators within degrees of the sun), and 
resource constraints the MICAS camera ,..,.,.,,, ... ~~ 
fifteen watts of These are all 

and type constraint templates, or 
cmrnv.atii':Jill'tie:s:. among token The planning 
model is a set of compatibilities that must be satisfied in 
every More is a 

relation that must hold between a master token 
token whenever the master token appears in 

If the master token does not occur in the plan, 
the relation does not need to be satisfied. Compatil)ili1ties 
also relations between in the master 
token type and value equivalence between arguments in 
the master and in the target token types. All 
compatibilities associated to a token are organized into a 
Boolean compatibility tree. 
A simple compatibility tree is shown in 3. It says 
that the state in which the MICAS camera is on must be . 
preceded by a state in which it is turning on, and followed 
by one in which it is turning off. While the camera is on, 
it consumes fifteen watts of power. 

:compatibilities 
(AND 

(met_by (MICAS_Turning_On)) 
(meets (MICAS_Turning_Off)) 
(equal (REQUEST (Power 15))) 

Figure 3: A Compatibility Tree 

Planning Algorithm 
The planner searches in the space of incomplete or partial 
plans [ 5] with additional temporal reasoning mechanisms 
[6 and 4]. As with most causal planners, PS begins with 
an incomplete plan (given to it by MM) and attempts to 
expand it into a complete plan. The plan is complete when 
it satisfies aU of the compatibilities in the plan model and 
there are no gaps on any timeline. The set of "defects" 
that need to be fixed in an incomplete in order for it 
to become is called the 4 
summarizes the basic "conflict PS. Each 
decision is made 
heuristic information is not 
uniform randomized rule ( de:te:rmi:J:ristic 

the wrong 
,.,,.,,.,~-o,., 111" reach a dead a different 

For example, consider one of the 
types, open An open is a 

and constraint that must exist 
between a master token already in the plan and a target 
token that may or may not be in the For <OJI.<tuunc. 

the compatibility A meets B is open if A is in the plan 
but B is not, or if both A and B are in the plan but the 
relation A meets B is not enforced. PS can 
satisfy an open with one of three resolution 

It can add the token to the plan in such a 
way that it satisfies the it can the 
start or end time of either the target or master token in 
order to satisfy the relation; or, it can decide that the 
relation will be satisfied a token in the next plalmJing 
horizon, and can therefore be These options are 
caUed and respectively. 
Deferred compatibilities are maintained in the plan and 
carried forward to the next horizon as of the 
initial state. PS will chose one of these when it 
addresses an instance of an open compatibility conflict. 

While plan has open compatibilities: 
1 .pick an open conflict; 

2.select and apply a resolution strategy; 
3.if no resolution is possible, backtrack 

Figure 4: Planning Loop 

Goal Prioritization 
The overall mission goals on achieving a careful 
balance between potentially conflicting generated 
by independent sources (e.g., the science team, the 
navigation team). Conflicts typically arise because of 
over-subscription of limited resources (e.g., power, time). 
When a compromise is possible, PS appropriately 
distributes the use of available resources. When a 
compromise is not possible, then PS selects some of the 
lowest priority goals for postponement or outright 
rejection. 

In PS tokens that have not yet been inserted onto a 
constitute a conflict for 

which one of the resolution is to 
the token. PS decides if the free goal token will be 
inserted. In DS 1 PS does not explore all possible 
permutations of free token achievements but follows a 
statically assigned prioritization scheme 

have highest followed by 
and then This scl:llem.e. 

solutions. Enhanced 
included in future PS versions. 

RA two level failure response - an immediate 
reactive response, and term deliberative 



response. This is typical of many autonomy architectures 
(e.g., Soar [7], Guardian [8]). The fast, real-time reactive 
behavior is implemented by EXEC and MIR. If this fails 
to solve the problem within the time and resource 
constraints of the current plan, then the failure can 
endanger future goals in the plan. In this case EXEC puts 
the spacecraft in standby, PS is called to assess the 
failure's impact on the remaining goals to decide how to 
best proceed. The deliberative response also addresses 
"advantageous failures" (e.g., serendipitous discoveries) 
and is the basis for enabling fundamentally new types of 
science missions. 

This· two level response results in simpler and more 
robust plans facilitating spacecraft commanding. The 
plans are since they can address only the nominal 
case and trust that failures will be handled properly as 
they arise. Failures are either resolved by the reactive 
layer and allow the plan to continue, or cannot be 

in which case the plan breaks and the PS 
ger1enates another nominal based on the new 
spacecraft state. 

The plans are also more robust. This is partly due to 
the failure response mechanism, partly due to the 
hierarchical nature of the RA, and partly due to the plan 
representation. The hierarchy allows the tokens in the 
plan to describe fairly abstract procedures. The plan . 
representation allows flexible start and end token times. 
Therefore EXEC has wide latitude m executing tokens, 
being allowed to respond to failures by retrying 
commands or trying alternate approaches. The extra 
failure response time needed is absorbed by the flexibility 
in the token's start and end times. 

Conclusions 
On-board plarming is crucial for spacecraft autonomy. It 
can reduce mission costs and improve mission quality by 
allowing high-level commanding, enabling achievement 
of mission goals in the presence of failures without 
ground intervention, and taking advantage of fortuitous 
events. The DS 1 mission marks the first on-board planner 
to fly on a spacecraft. The validation of this technology 
will open the way for future autonomous missions. 
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