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Introduction 
The Cooperative Real-time Control Archi­
tecture (CIRCA) was designed for mission-critical ap-
plications autonomous planning and con-
trol. As space becomes mature and bud-
gets shrink, NASA is towards this 
type of autonomy to support future missions including 
the New Millennium Space One probe and the 
Mars Rover projects. We are actively investigating the 
application of CIRCA to a variety of domains includ­
ing spacecraft planning and control and autonomous 
aircraft control. In this paper, we discuss one particu­
larly challenging type of planning problem that arises 
in mission-critical applications, drawing on an example 
from the Cassini Saturn mission. 

Prepositioning problems arise when certain actions 
must be taken to preposition assets or otherwise pre- . 
pare for contingencies, before those contingencies could 
possibly occur. In the Cassini example, a backup iner­
tial reference unit (IRU) must be preheated long before 
an engine burn is planned, so that if the primary IRU 
fails during the burn, the backup will be immediately 
available. The IRU preheating operation is a "preposi­
tioning action." To build plans that include this type of 
prepositioning, a planner must "look ahead," recognize 
the contingency, and identify appropriate preposition­
ing actions. CIRCA's new Dynamic Abstraction Plan­
ner (DAP) efficiently builds plans that include prepo­
sitioning. 

This paper is not meant to be an introduction to 
CIRCA; instead, our goal is to describe how CIRCA 
can address the Cassini prepositioning problem, and 
discuss the various strengths and weaknesses of the 
approach. Accordingly, we refer readers to other 
publications (Musliner, Durfee, & Shin 1993; 1995; 
Goldman et al. 1997) for CIRCA overviews and de­

pt;a.mamtg algorithms. This paper begins 
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Cassini problem. We then present the CIRCA solution 
to this problem. We review how other attempt 
to solve this type of problem, comparing their features 
with CIRCA, and conclude with a discussion of the 
more general directions for future work on CIRCA. 

Prepositioning Problems 
arise when actions must be 

taken to prepare for contingencies, before those con­
tingencies could occur. For example, military 
v<"'!.I'.J"<"<vuui~< involves the movement of assets to vari­
ous forward deployment areas when no conflicts are in 
progress, in of future conflicts in the area. 
In the Cassini example, a backup inertial reference unit 
(IRU) must be preheated long before an engine burn 
is planned, so that if the IRU fails the 
burn, the backup will be immediately available. These 
examples share several common features that we use 
to characterize prepositioning problems: 

Exogenous Events - Without events beyond the 
system's control there would be no need for prepo­
sitioning. If the domain is fully controllable, prepo­
sitioning becomes simply establishing preconditions 
for planned actions. is different be­
cause it involves anticipating contingencies outside 
of the controL 

Potential Failure - It must be for the sys-
tem to fail, or reach an undesirable state/outcome, if 
the prepositioning action is not performed correctly. 
The plant must blow up, the spacecraft miss its or­
bit insertion, else there is little motivation to 
preposition. 

Temporal Information- By definition, preposi­
tioning actions must be performed in a timely fash­

so that they are completed before the contin­
gency can occur. 

characteristics 
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· ing problems: a suitable planner must be able to repre­
sent and reason about exogenous events, nondetermin­
ism, failure, and time. Because prepositioning actions 
must be taken before the disturbance occurs, reactive 
approaches are not sufficient; projection is needed. On 
the other hand, because external contingencies are in­
volved, "classical" AI projective planners are not suffi­
cient; they assume the planning agent is the only active 
part of the domain. 

CIRCA strikes a particular balance along the spec­
trum of representational power vs. computational com­
plexity. This balance point was explicitly chosen to 
represent the information necessary for mission-critical 
planning problems without unnecessary complexity. 

CIRCA and Prepositioning Problems 
In particular, CIRCA provides the following features 
that can be applied to prepositioning problems: 

Event and Temporal Transitions - CIRCA can 
model two types of exogenous changes, event tran­
sitions and temporal transitions. Both are modeled 
as completely outside of the agent's control. Events 
are instantaneous changes, while temporal transi­
tions represent processes with temporal extent. 

Explicit Failure - CIRCA· models a distinguished 
failure state which it must plan to avoid at all costs. 
CIRCA builds plans that guarantee that failure can­
not be reached. This is the key feature that makes 
CIRCA suited to mission=critical applications. 

Simplified Temporal Model -
The temporal model in CIRCA is reduced to the 
minimum amount of information necessary to build 
plans that ensure safety. Transitions are only as­
signed worst-case timing values. Actions that are 
under the planner's control are assigned maximum 
delays; the system can rely on these actions taking 
effect by the maximum delay. On the other hand, 
events and temporals have minimum delays; the sys­
tem can rely on these transitions not occurring be­
fore the delay elapses. Together, these upper and 
lower bounds impose the minimum and maximum 
limits on the dwell time in a state. For example, 
a planned action can be assigned a maximum de­
lay value D to ensure that the system can dwell in a 
state for no more than D time units before the action 
must occur. The CIRCA execution engine (the Real­
Time Subsystem) will enforce this execution timing 
requirement. 

State-space Projection- CIRCA's state-
space planner builds by interleaving a forward 
simulation of the environment with the selection of 
actions for each simulated state. Lookahead search 
heuristics allow the '"'><""'"'' 
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search for a useful plan when lookahead is not suffi­
ciently prescient. 

The Cassini Prepositioning Problem 

The Cassini prepositioning problem was originally out­
lined by Erann Gat in his paper "News From the 
Trenches: An Overview of Unmanned Spacecraft for 
AI" (Gat 1996). The problem concerns the Saturn or­
bit insertion maneuver for the Cassini space­
craft. The has a narrow time window during 
which it must fire its thrusters to decrease its speed 
and enter the desired Saturn orbit. To successfully 
navigate during a thruster the Cassini spacecraft 
must have an inertial reference unit (IRU) warmed up 
and functioning. The has a primary and a 
secondary IRU. The is to foresee the possibil-
ity of a primary IRU failure during the orbit insertion 
burn and warm up both IRUs early enough that they 
will be available for navigation during the burn. If the 
primary fails but the backup has been warmed up, the 
backup can be switched in and the burn can continue 
uninterrupted. 

Gat claimed that "there is currently no 
AI planner that can figure out, given this information, 
that it is a good idea to turn on the backup IRU before 
orbit insertion begins so that the burn doesn't have to 
be terminated if the primary IRU fails." We claim, on 
the that CIRCA can easily build this plan, 
given quite sparse information about the problem. In 
fact, it is precisely the sort of planning that CIRCA is 
good at. In the following section, we give full details 
on one version of the domain encoding that CIRCA 
can solve, discussing several necessary quirks of the 
representation as well as its strengths. 

CIRCA Solving the Cassini Problem 
Figure 1 shows the domain encoding we used to solve 
the Cassini prepositioning problem. Of course, this 
is a highly simplified representation of the real prob­
lem, focused only on illustrating how CIRCA decides 
to preheat the IRU (IRU2). In that sense, this 
domain is like a blocks-world problem; we 
are not claiming it captures the real complexity of the 
Cassini domain. 

The representation is fairly straightforward, specify­
ing the initial state and the possible events, temporal 

and control actions. For CIRCA, the goal 
failure is The >~<goals* 

<>Yinr~·s..:Jon describes "task-level" that the plan-
ner should to achieve, but which are not mission-
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(setf nil) 
(make- instance 'act ion :name "warm_IRU1" 

:preconds '((IRU1 off)) 
:postconds '((IRU1 on)) 
:delay 60) 

(make-instance 'action :name "warm_IRU2" 
:preconds '((IRU2 off)) 
:postconds '((IRU2 on)) 
:delay 60) 

(make-instance 'action 
:preconds '( 

:name "engine_on" 
off)) 

:postconds ' ( '"''''"'~"'"' on)) 
:delay 1) 

(make-instance 'action :name "select_IRU1" 
:preconds '((IRU1 on)) 
:postconds '((active_IRU IRU1)) 
:delay 1) 

(make-instance 'action :name "select_IRU2" 
:preconds '((IRU2 on) (IRU1 broken)) 
:postconds '((active_IRU IRU2)) 
:delay 1) 

(make-instance 'temporal :name "fail_if_burn_with_broken_IRU1" 
:preconds '((engine on)(active_IRU IRU1)(IRU1 broken)) 

' ((failure T)) 
:delay 5) 

(make-instance 'temporal :name "fail_if_burn_without_guidance" 
:preconds '((engine on) (active_IRU none)) 
:postconds '((failure T)) 
:delay 1) 

(make-instance 'temporal :name "fail_if_dont_burn" 
:preconds '((engine off)) 
:postconds '((failure T)) 
:delay 1000) 

(make-instance 'event :name "IRU1_fails" 
:preconds '((IRU1 on)) 
:postconds '((IRU1 broken))) 

(setf *initial-states* (list 
(make-instance 'state 

:features '((failure nil) (engine off) (IRU1 off) (IRU2 off) 
(active_IRU none))))) 

Figure 1: Simple Cassini prepositioning domain description. 



1000 time units, the system may fail catastrophically. 
Since CIRCA builds plans that must guarantee to avoid 
(failure , the final plan will definitely turn the en­
gine on. 

To illustrate how CIRCA's planner solves this prob-
we'll trace a small portion of the search ac­

tivity. Consider the partial plan shown in Fig­
ure 2. In this sequence, the planner considers the 
IRUi_fails event transition leading out of state 84 
to state 85. From this state, a temporal transition 
(fail_if_burn_with_broken_IRUi) leads quickly to 
failure, which the planner must prevent. The plan­
ner recognizes that it cannot take the warm_IRU2 and 
select_IRU2 actions in time to beat (or "preempt") 
the failure. In other words, the has 
projected a failure and its temporal model has shown 
that no corrective actions are available once state 85 is 
reached. The only possible solution is to take an ear­
lier, action aimed solely at preventing 
state 85 from ever occurring. The planner labels state 
85 as a (transitive) failure state for future reference, 
and backtracks. The smart backjumping function is 
able to recognize the first decision that made state 85 
reachable, backtrack to that point, and alter that and 
future decisions to preheat IRU2, state 85. 

Note that this plan is actually a hypothet-
ical example - the real DAP planner running on the 
domain in 1 a plan in somewhat more 
complex ways because it interleaves the process of split­
ting (refining) the abstract state descriptions with the 
process of actions for states. In DAP 
recognizes the potential failure and the preposi­
tioning action at a much earlier point in the search. 
Space limitations do not permit us to show the actual 
DAP planning sequence, but the final plan is shown 
in Figure 3. There are several intriguing aspects of 
this plan and the domain encoding that deserve brief 
discussion. 

Representation Hacks and Plan Quirks 

IRU2 Cannot Fail Observant readers will have 
noted that IRU2 cannot fail to 1. We 
have omitted this transition because if IRU2 can fail, 
there is no safe plan because both IRUs can 
fail, the burn to fail. Since will 
only 
leads the ~-''"'"'"'"'' 

· main is overconstrained and and that some 
performance tradeoffs must be made. One per­
formance for would be to ignore cer­
tain lower-probability transitions such as the failure of 

The current DAP 

with a '""·'""''-'" 

Preferring IRUl Another unusual aspect of the do­
main encoding is the inclusion of in the 
preconditions of the select_IRU2 action. This has the 
effect of making the "prefer" to select 
since it cannot use IRU2 unless IRUl is broken. If this 
condition is omitted, the planner is smart enough to ex­
ploit the fact that IRU2 never fails, by always selecting 
IRU2. This has the beneficial effect of making IRU1 
irrelevant, but it also sidesteps the prepositioning prob­
lem. Thus the extra precondition in the select_IRU2 
action is an idiomatic way of forcing the planner to 
respect a primary /backup ordering over the IRUs. 

State 127 As is often the case with AI programs, 
DAP can arrive at non-intuitive but correct plans. 
In state 127 of Figure 3, IRU1 is broken but se­
lected and the engine is off. Surprisingly, the plan­
ner chooses to turn on the engine and then select 
IRU2, rather than vice versa. According to the do­
main model of 1, the chosen order is accept­
able because the select_IRU2 action can be guaran­
teed to complete before the temporal transition to fail­
ure (fail_if_burn_with_broken_IRU1 from state 39) 
can possibly occur. 

Related Work 

Other researchers have attempted to extend "classi­
cal" AI planning techniques to handle problems like 
the prepositioning problem. One approach to on~oc>si­
tioning is offered "conditional planners." 
These are conventional AI planning systems that have 
been extended so that they can generate plans with em­
bedded "if-then-else" structures. The first such plan­
ner was Warren's Warplan-C (Warren 1976). More 
recently, causal link planners have been extended to 
conditional planners by Peot and Smith (1992), Pryor 
and Collins (1996), and Goldman and Boddy (1994). 
The UWL SENSP softbot planner also did some con­
ditional planning (Etzioni et al. 1992). 

These conditional all make the same exten-
sion to classical AI they nondetermin-
istic actions that have multiple possible outcomes. For 
example, the Plinth image processing planner (Gold­
man & Boddy 1994) has an operator for running a 
neural net classifier that may succeed or fail. 
Conditional to :find that will 
achieve the outcomes of conditional 
actions. When Plinth constructs a the neu-
ral net it considers the that 
the classifier may fail and adds a to 
handle that 

satis­
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77 

(ACTIVE_IRU NONE) 
(ENGINE OFF) 
(IRUI OFF) 
(IRU20N) 

h.. 
I 

: warm_IRU2 

73 

(ACTIVE_IRU NONE) 
(ENGINE OFF) 
{IRUl OFF) 
(IRU20FF) 

warm IRUI 
---=-;;;>-

108 

(ACTIVE_IRU NONE) 
(ENGINE OFF) 
(IRUl ON) 
(IRU2 ON) 

IRUl_fails 

126 

(ACTIVE_IRU NONE) 
(ENGINE OFF) 
(IRUl BROKEN) 
(IRU20N) 

1 select_IRU2 
I 

'1/ 128 

(ACTIVE_IRU IRU2) 
(ENGINE OFF) 
(IRUI BROKEN) 
(IRU20N) 

s elect_IR ~ 

!58 

(ACTIVE_IRU IRUI) e 
(ENGINE OFF) 

ngine_o !1 
;;::.. 

(IRUl ON) 
(IRU20N) 

IRUl_fails 

I 
127 

(ACTIVE_IRU IRUl) 
(ENGINE OFF) 

engine_ on 
;;;>-

(IRUl BROKEN) 
(IRU20N) 

engine_on 

152 

(ACTIVE_IRU IRUl) 
(ENGINE ON) 
(IRUI ON) 
(IRU20N) 

IRUI_fails 

\ 
39 

(ACTIVE_IRU IRUl) 
(ENGINE ON) 
(IRUl BROKEN) 
(IRU20N) 

I 
1 select_IRU2 

40 

(ACTIVE_IRU IRU2) 
(ENGINE ON) 
(IRUl BROKEN) 
(IRU20N) 

Figure 3: The final Cassini state space. 

they do not provide a natural model of the true prob­
lem. The true problem is to preposition assets in order 
to respond to foreseeable disturbances. However, con­
ditional planners keep the classical planning assump­
tion that the planning agent is the only actor. Because 
of this assumption, exogenous events can only be en­
coded as an outcome of one (or many) of the planning 
agent's actions. This encoding complicates the domain 
knowledge engineering and yields cumbersome encod­
ings in cases where events can occur at multiple times. 
Furthermore, these planners do not handle the tempo­
ral aspects of the prepositioning problem. 

Jim Blythe has developed a planner, Weaver, that 
more directly addresses the problem of reacting to ex­
ogenous events (Blythe 1996). This planner generates 
a plan for a main line of execution, then incremen­
tally adds significant domain events and plans reac­
tions to these events. Weaver, like the condi­
tional planners, does not address temporal aspects of 
the pri~pclslt.lOlllllf.l: orot)leJ:n 
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vua.uJtu>:>CL'- and decision-theoretic plan­
facilities similar to those we have dis­
uuuu.vuu & Bresina 1990; Kushmer­

& Weld 
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tic model adds a burden over and above the model-
non-stochastic and not 

our at domain users. 

We are ways to extend CIRCA to handle 
probabilistic measures of but in a mini­
malist way. Atkins et al. (1996) have also worked on 
developing a probabilistic CIRCA planner. Their plan­
ner is intended to reason about the likelihood of vari­
ous transitions, so that the can use its limited 
resources to consider the most likely transitions first. 
This project is complicated by the fact that the CIRCA 
model is not Markovian: it matters what the orE~ce<l­
ing state was, and how long one remained there. As far 
as we know, none of the other probabilistic approaches 
address the temporal of the problem. 

Kabanza et al. (1997) have a planning 
method for reactive agents that is similar to the original 
CIRCA. Their architecture differs in emphasis, how­
ever. The NFAs it constructs are "clocked:" they make 
transitions at times that are the least common denom-
inator of all transitions. This scheme will suf-
fer a state space in domains where there is 
a wide range of possible transition delays, like those 
to which CIRCA has been applied. Kabanza's group 
has concentrated on a more flexible nota­
tion for than those used by but do 
not make the same distinction between 
achievement . 

Conclusions 

Our current work on CIRCA extends in four direc-



into an autonomous agent; (3) distinguishing signifi­
cant (and insignificant) disturbances and (4) develop­
ing a more efficient state-space planner (see Goldman 
et al. (1997)). 

Currently, CIRCA's planner only chooses either to 
preempt exogenous processes or to allow them to hap­
pen; it cannot rely on them happening, because it does 
not have an upper bound on their delay.This expres­
sive limitation makes it difficult to represent intentional 
processes like the warming up of an IRU. Currently, 
we must do one of two things: (1) make "warming up 
the IRU" an atomic action that takes a very long time 
or (2) encode the fact that the IRU is warming into 
the feature space and have a temporal transition from 
warming to warm. The first alternative is undesirable 
because it makes it impossible for the CIRCA agent 
to do anything else while it is waiting for the IRU to 
warm. The second option is actually worse, because it 
makes it impossible for CIRCA to rely on the IRU ever 
becoming warm. To make the second option work cor­
rectly, we are extending the CIRCA model to include 
"reliable temporals" that have upper bounds on their 
times of occurrence. 

We noted above that our Cassini domain ·encoding 
incorporates the design decision that it is not worth 
worrying about two consecutive IRU failures. Ideally, 
one could use a probabilistic world model to automati­
cally identify significant eventualities, rather than hav­
ing to identify them manually (cf. Atkins et al. (1996)). 
However, we want to do this without the domain en­
gineering overhead of constructing a full Markov pro­
cess model; constructing this model is at least as hard 
as identifying the eventualities for the planner. We 
are currently examining a technique for model prun­
ing that assumes independent component failures (an 
assumption commonly used in reliability engineering) 
and calculating only order-of-magnitude likelihoods on 
CIRCA state space graphs.' 

Another limitation is CIRCA's lack of a system 
clock. Currently, CIRCA can only reason about du­
ration relative to the time it enters a particular state. 
To meet deadlines that are related to a global clock 
(e.g., the actual Cassini orbital burn time), CIRCA's 
RTS executive must be able to act at an appropriate 
time relative to a planned future event. We do not 
want to abandon the unclocked executive, because in­
clusion of global time into the state space can cause 
it to explode. We are exploring how to coordinate 
the CIRCA state-space planner with an overall mission 
planner/ scheduler. The mission planner/ scheduler will 
be able to provide signals indicating important global 
times to the CIRCA RTS. The RTS will then detect 
these like any other state feature. Our 
nary that we can detect the need 

for such features through search failures in the AIS. 
The CIRCA mission planner/scheduler 

or "task-level planner" (Musliner 1993) plays a ma­
jor role in managing the state-space planner's activi­
ties and the sequence of plans executed by the RTS. 
The task-level planner determines which lower-level 
planning jobs the DAP planner should work on, what 
safety-critical and best-effort goals should be pursued, 
what performance tradeoffs should be made, what low­
probability transitions should be ignored, etc. This 
higher-level planner module is an area of active re­
search, with great potential to complement CIRCA's 
DAP state-space planner and RTS, yielding a pow­
erful, domain-independent intelligent real-time control 
system. 
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