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Abstract 

The New Millennium Remote Agent (NMRA) 
will be the first on-board AI svstem to con­
trol an actual spacecraft. The ~pacecraft do­
main raises a number of challenges for planning 
and execution, ranging from extended agency 
and long-term planning to dynamic recover­
ies and robust concurrent execution, all in the 
presence of tight real-time deadlines, changing 
goals, scarce resource constraints, and a wide 
variety of possible failures. NMRA is one of the 
first systems to integrate closed-loop planning 
and execution of concurrent temporal plans. It 
is also the first autonomous system that will be 
able to achieve a susta:lned, multi-stage, multi­
year mission without communication or guid­
ance from earth. 

1 Introduction 
We are developing the first on-board AI system to con­
trol an actual The Deep Space One 
(DS-1), is the first in NASA's New Millennium Program 
(NMP), an aggressive series of technology demonstra­
tions intended to push Space Exploration into the 21st 
century. DS-1 will launch in mid-1998 and will navi­
gate and fly by asteroids and comets, pictures and 
sending back information to scientists on Earth. One key 
technology to be demonstrated is spacecraft autonomy, 

on-board and execution. The 
spacecraft will long without the possibil-
ity of communication with ground staff and 

in fact, how and when it will communicate 
back to Earth. It must maintain its and achieve 
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high-level when possible, even in the presence of 
hardware faults and other unexpected events. 

This paper describes our approach to planning and 
plan execution in the context of spacecraft autonomy. 
Our is being as part of the New 
Millennium Remote architecture et 
al., 1997]. This architecture integrates traditional real­
time monitoring and control with constraint-based plan-

and [Muscettola, 1994], robust multi-
threaded execution 1996], and model-based diag-
nosis and reconfiguration [Williams & 1996]. 

The paper is organized as follows. Section 2 discusses 
the spacecraft domain and requirements which influence 
our design. Section 3 describes our approach to planning, 
execution, and robustness, and illustrates the top-level 
loop of our system. Section 4 addresses the issues in­
volved in to support robust ex•o::ctuHJH, 

and Section 5 shows how such plans are executed. We 
then consider related work and conclude. 

2 Domain and Requirements 

The autonomous spacecraft domain presents a number 
of challenges for planning and plan execution. Many de­
vices and systems must be controlled, leading to multiple 
threads of complex activity. These concurrent processes 
must be coordinated to control for negative interactions, 
such as vibrations of the thruster violating stabil­
ity of the camera. Also, activities may have 
precise real-time constraints, such as taking a picture of 
an asteroid during a narrow window of nr.<:or·v<>h1 

Virtually all resources on spacecraft are limited and 
carefully budgeted. The system must ensure that they 
are allocated to Some re-
sources, like solar power, are renewable 
but limited. Others, such as total are fi-

and must be across the entire mission. 
u<a.uu"'' reasons about resource usage in cr,,,,,.,ti 

but because of run-time the resource 
constraints must also be enforced 
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about and interact with external agents and processes, 
such as the on-board navigation system and the attitude 
controller. These external agents can provide some infor­
mation at plan time and can achieve tasks and provide 
more information at run-time but are never fully control­
lable or predictable. For example, the attitude controller 
can provide estimates of turn durations at plan time, 
but the completion of turns during execution is not con­
trollable and can only be observed. Plans must express 
compatibilities among activities, and the plan execution 
system must synchronize these activities at run-time. 

In addition, planning and the information necessary 
to generate plans are also limited resources. Because of 
the limited on-board processing capabilities of the space­
craft, the planner must share the CPU with other critical 

u"'"""''J" tasks such as the execution the real-
time control and the fault detection, isolation and 
recovery system. While the planner )';"''·""'J."'"'"" 
the must continue to the 

often contains critical tasks whose execution can-
not be in order to install 
plans. Thus a planning 
other activities must be or postponed. Since 
planning is plan failure is costly. Thus plan 
execution must be robust in the face of a wide of 
hardware faults and 

3 Approach 

Our approach separates an- extensive, deliberative plan-
ning from the reactive execution 
infrequently plans over extended time peri­
ods. How frequently and how far in advance the system 
should plan is constrained by several factors, including 
uncertainty about the results of execution. For example, 
uncertainty about how much thrust has accumulated af­
ter a thrusting maneuver means the system can't reliably 
plan how many thrusts will be needed to reach the tar­
get, thus reducing how far in advance it is productive to 
plan such thrusting activities. While uncertainty moti­
vates frequent planning with short scheduling horizons, 
the cost of with horizons. 

In our is ex-
plicitly represented in the current plan as a task. By 
considering the costs and constraints of planning, the 
planner automatically optimizes future planning activi­
ties. When the executive reaches this task in the current 

it asks the to a plan 
"'"'''"'"''-'"'"~'> horizon while it continues to exe-

cu''""""w'IS in the current When 
the executive reaches the end of the current the 

for the next horizon will be and the executive 
will then install 

tive. This approach is taken by [Bresina et 1996], 
and by [Levinson, 1994]. The approach, when feasible, 
has a number of benefits. First, it enables the planner 
to simulate the detailed functioning of the executive un­
der various conditions of uncertainty, and to produce a 
plan which has contingencies (branches) providing quick 
responses for important execution outcomes. Second, 
it enables the use of one language rather than two for 
expressing action knowledge, which simplifies knowledge 
engineering and helps maintain consistency of interfaces. 
Third, it enables the planner to monitor execution in 
progress and project the likely course of actions, and 
then provide plan refinements which can be patched di­
rectly into the currently executing plan. 

Unfortunately, in our domain this single representa­
tion approach is not practical because the complexity 
of interactions at the detailed level of execution would 
make planning combinatorially intractable. Thus, we 
have found it necessary to make the planner operate on 
a more abstract model of the domain. Examples of ab­
stractions are: 

• hiding details of subsystem interactions controlled 
by the executive 

a set of detailed component states into ab­
stract states 

• not modeling certain subsystems 

• using conservative resource and timing estimates 

These simplifications have several consequences which 
impact our design. One important consequence is that 
the planner can no longer model or predict intermediate 
execution states. Since the executive is managing mul­
tiple concurrent activities at a level of detail below the 
planner's visibility, it is difficult to provide a well-defined 
initial state as input to the infrequent planning process. 
Also, a generated plan may be invalidated by exe­
cution activities that occur during or even after planning 
but prior to execution of the new plan, since the initial 
conditions of that plan may no longer be consistent with 
the state of the sp<:~,ce:cntt 

We address the of initial states 
for the next planning round differently depending on the 
status of the plan. Plans 
include an activity to plan for the next horizon. At this 

the executive sends to the the current 
plan in its with annotations for the decisions 
that were made so far in ".,.._"'' ... """""!', 



The net result is that, from the executive's perspective, 
executing chained plans is virtually the same as 
executing one This has the useful consequence 
that it enables the executive to engage in activities which 
span multiple planning horizons (such as a 3-month long 
engine burn) without interrupting them. 

In the event of plan failure, the executive knows how 
to enter a stable state (called a standby mode) prior to 
invoking the from which it generates a descrip-
tion of the state in the abstract language un-
derstood by the planner. Note that establishing standby 
modes following plan failure is a costly activity, as it 
causes us to interrupt the ongoing planned activities and 
lose important opportunities. For a plan fail-
ure us to enter standby mode the comet 
encounter would cause loss of all the encounter science, 
as there is no time to before the comet is out of 
sight. Such concerns motivate a strong desire for plan 
robustness, in which the plans contain enough flexibility, 
and the executive has the capability, to continue execut­
ing the plan under a wide range of execution outcomes. 

4 Planning 

A principal goal of the NMRA is to enable a new gener­
ation of spacecraft that can carry out complete, nominal 
missions without any communication from ground. This 
is a great departure from previous and current missions 
(such as Voyager, Galileo or Cassini} which rely on fre­
quent and extensive communications from ground. In 
traditional missions, ground operations routinely uplink 
detailed command sequences to be executed during sub­
sequent mission phases. Such communications require 
costly resources such as the Deep Space Network, which 
makes them very expensive. Uplink independence is par­
ticularly important for missions that require fast reaction 
times (as it is the case for autonomous rovers, comet lan­
ders and other remote explorers); in this case detailed 
ground-based control is infeasible due to long communi­
cation lags. In case of loss of uplink capabilities, previous 
spacecraft could carry out a critical sequence of com­
mands stored on board before launch. these 
sequences were greatly simplified when compared to the 
uplinked sequences and could only carry out a small frac­
tion of all mission goals. 

Mission Manager 

NMRA is launched with a pre-defined "mission profile" 
that contains a list of all nominal to be achieved 

the mission. The detailed sequence of commands 
to achieve such but is 
~"""""'""+<>rl on board module of 

the determines the 
that need to be 

(typically 2 weeks long), extracts them from the mis­
sion profile and combines them with the initial space­
craft state as determined by the executive. The result 
is a specific planning problem that, once solved, 
detailed execution commands. This decomposition into 
long-range mission planning and shorter-term detailed 
planning enables NMRA to undertake an extended di­
verse mission with minimal human intervention. 

Requirements for Robust Execution 

The NMRA must be able to respond to unexpected 
events during plan execution without having to plan the 
response. Although it is sometimes necessary to re-plan, 
this should not be the only option. Many situations re­
quire responses that cannot be made quickly enough if 
the NMRA has to plan them. 

The executive must be able to react to events in such 
a way that the rest of the plan is still valid. To support 
this, the must be flexible enough to tolerate both 
unexpected events and the executive's responses without 
breaking. This flexibility is achieved by (1) choosing 
an appropriate level of abstraction for the activities and 
(2) generating plans in which the activities have flexible 
start and end times. 

The abstraction level of the activities in the plan must 
be chosen carefully. If the activities are at too fine a level 
of granularity, then the plan will impose too many con-
straints on the behavior of the making 
execution more fragile. if the granularity is 
too coarse, then there may be interactions among the 
sub-actions of activities that the planner cannot rea­
son about. In DSl, activities are abstracted to the 
level where there are no interactions among their sub­
activities. This level allows the planner to resolve all of 
the global interactions without getting into details that 
would over-constrain the executive. 

The other mechanism by which the executive can re­
spond to events without breaking the plan is having ac­
tivities with flexible start and end times. Plans in DSl 
consist of temporal sequences of activities. Each activity 
has an earliest start a latest start an earli-
est end and latest end time. The uses a 
least commitment approach, constricting the start and 
end times only when absolutely necessary. Any flexibil­
ity remaining at the end of planning is retained in the 
plan. This flexibility is used by the executive to 
the start and end times of activities as needed. For ex-

if the does not start on the first the 
a few more times. To make time for 

these extra the end time is moved but 
the latest end time. 

vlJldH)',U11'. the start or end time of an 
For t:AaU!IJ""'· 

also 
the 



ting down the engine, then changing the end time of the 
will change the start time of the 

take science data To make the the 
executive must know about the temporal constraint be-
tween the fire activity and the take science 
data The therefore contains all of the tem-
poral constraints among the activities. 

Although the planner is typically enabled to leave flex­
ibility in the start and end times because the 
times are under-constrained, it is sometimes required to 
provide such flexibility in order to operate the space­
craft successfully. For example, when the engine is com­
manded to turn on, it goes through a warm up proce­
dure and turns itself on. The warm up procedure can 
take up to ten but the actual warm up time is 
not known at time. It is not known until the engine 
actually turns on. We currently handle such cases by 
providing time in activities to handle worst-case 
outcomes, although we are developing a method to plan 
explicitly about execution-time uncertainty. 

5 Execution 
From the point of view of the NMRA executive, a plan 
is a set of time-lines. Timelines consists of a linear se­
quence of each of which represents an activity 
which should be taking place during a defined temporal 
period. A token has a start and end window. a set of 
pre- and post-constraints. The start and end windows 
are intervals in absolute time during which the token 
must start and end. The pre- and post-constraints de­
scribe with to the starts and ends 
of tokens on other time-lines. 

There are three different types of pre- and post­
constraints: before, after, and meets. The semantics 
of these constraints is fairly straightforward. A before 
constraint specifies that the start of a token must come 
before the start of another token. An after constraint 
specifies that the end of a token must come after the 
end of another token. The amount of time that may 
elapse between these two related events is specified as 
an intervaL A meets-constraint that the start 
(end) of a token must coincide with the start of 
another token. 

Issues 

Plan execution would be relatively straightforward were 
it not for the fact that different token types have different 
execution semantics. In there are different 
ways of whether or not a 
has ended. Some activities are 
the 

The situation is further complicated by the fact that 
a naive operationalization of these constraints leads to 
deadlock Consider a token A fol-
lowed by a turn token R Token A for the turn) 
should end whenever token B (the turn) to 
start. However, B is constrained the to fol-
low A, and so B is not to start until A ends. 
Thus, A can never end, and B can never start. 

Another issue is that some tokens don't achieve their 
intended post-conditions until some time after they have 
started. For example, consider a time-line for a device 
containing a token A of device-off followed by 
token B of type device-on. The intent here is that the 
executive should turn the device on at the be­
tween A and B, but this cannot be done 
Thus, a token on another constrained to start 
after may fail if it upon the device being 
on, since the device may not in fact be turned on until 
some time after B starts. One solution to this 
problem is to the model so that it gener-
ates a plan that includes an intermediate token of 
device-turning-on, but this can significantly increase 
the size of the planner's search space, and hence the time 
and resources required to generate a plan. 

To solve these problems, we separate the execution 
of a token into three startup, steady-state, and 
ending. The startup stage performs actions to achieve 
the conditions that the planner intends the token to rep­
resent. The steady-state stage monitors and maintains 
these conditions (or signals failure if the conditions can­
not be maintained). The ending stage allows the token 
to perform cleanup actions before releasing control to the 
next token on the time-line. Tokens may have null ac­
tions in one or more stages. The algorithm for executing 
a token in this three-phase framework is as follows: 

L Wait for the beginning of the token's start window. 

2. In parallel 

(a) wait for token's pre-constraints to be true, and 

(b) check that the end of the start window has not 
If it a failure. 

3. Signal that the token has started. 

4. Execute the achieve-portion of the token. 

5. Spawn the maintain-portion of the token as a par-
allel task 

6. Wait for the start of the token's end window. 

7. Wait for the token's post-conditions to be true. 

8. Wait for the of the next token to be 
those that refer to the end of this token. 

9. the maintain thread in 5, and 
execute the of the token 



10. Check that the end of the end window has not 
passed. If it has, signal a failure. Otherwise, sig­
nal that this token has ended. 

This algorithm allows all the token types to be exe­
cuted within a uniform framework. 

6 Related Work 

NMRA is one of the first systems to integrate closed-loop 
planning and execution of concurrent temporal plans. It 
is also the first autonomous that will be able 
to achieve a sustained, multi-stage, multi-year mission 
without communication or guidance from earth. 

Bresina et al. describe and 
executive for the autonomous telescope domain. Their 
approach uses a single action representation whereas 
ours uses an abstract planning language, but their plan 
representation shares with ours flexibility and uncer­
tainty about start and finish times of activities. How­
ever, their approach is currently restricted to single re­
source domains with no concurrency. 

Drabble (1993) describes the ExCALIBUR system, 
which performs closed-loop planning and execution us­
ing qualitative domain models to monitor execution 
and to predicted initial states for planning after 
execution failures. The "kitchen" domain involved con­
current temporal plans, although it was simplified and 
did not require robust reactions during execution. 

Currie & Tate (1991) d~scribe the 0-Plan planning 
system, which when combined with a temporal scheduler 
can produce rich concurrent temporal Reece & 
Tate (1994) developed an execution agent for this plan­
ner, and the combined system has been applied to many 
real-world problems including the military logistics do­
main. The plan repair mechanism [Drabble, & 
Dalton, 1996] is more sophisticated then ours, although 
the execution agent is weaker and does not perform 
execution-time task decomposition or robust execution. 

The Cypress system [Wilkins et al., 1995] and the 3T 
system [Bonasso et al., 1996] also address the closed­
loop integration of planning and execution in the context 
of concurrency, although neither of these systems deals 
v;ith plans. It is to compare how 
these differ from ours concerning the generation 
of execution context for the and the integration 
of new planning information back into execution. Cy­
press shares the same action formalism between plan­
ning and execution. This enables the to watch 
over execution and simulate the results 
cussed in section 3. The can detect 
in advance and send back a detailed 
and the executive can replace un-executed 
its current with new and continue 

In 3T, the planner maintains such tight control over 
execution that it does not even send the full plan it has 
developed. Instead, it sends directives to the executive 
one at a time, and the executive then responds to each 
directive in turn. This provides an interesting solution 
to the problem of keeping the planner informed about 
execution and also to the problem of integrating new 
planning information into the execution context. How­
ever, this approach is problematic in our domain as it 
places severe time constraints on the so that 
it can decide what to do before the executive runs out 
of activities, and it requires the computational and in­
formational resources to be available for planning on a 
continuous basis. This is a luxury we could not afford 
on a spacecraft, as discussed in section 3. 

Other systems integrating planning and execution 
in real-world control systems include Guardian [Hayes­
Roth, 1995], SOAR [Tambe et al., Atlantis [Gat, 
1992] and TCA [Simmons, 1990]. These systems invoke 
planning as a means to answer specific questions dur-
ing execution whether a treatment would 
take effect in time to heal the which evasive ma-
neuver will counter the opponents current attack plan, 
and which path to take to to a particular room). This 
use of planning contrasts with our approach, in which 
the planner coordinates the global in the sys­
tem. The local approach has the advantage of making 
use of special-purpose planners which can be built to an­
swer narrow questions, but our global approach has the 
advantage of ensuring that the different activities un­
dertaken at execution will not interact harmfully. It is 
not clear how the local approaches can be extended to 
provide similar guarantees. 

7 Conclusion 
A growing body of work is addressing issues of robust 
planning and execution in the face of failures and uncer­
tainty. The Lockheed Underwater Vehicle [Ogasawara, 
1991] uses decision-theoretic planning and execution to 
select courses of action which maximize utility. CIRCA 
[Musliner, & Shin, 1993] considers a set of states, 
actions, and critical failures to be avoided. It then inserts 
a set of sense-act transitions into a real-time controller 
to ensure that the controller will never enter the crit­
ical failure states. Cassandra & Collins, 1996], 
Buridan Hanks, & Weld, 1994], 0-Plan [Currie 
& Tate, and JIC [Drummond, & Swan-
son, 1994] all consider actions with uncertain outcomes 
and that enable execution-time recovery 

to take time out for 



flexible, abstract, and conservative plans which can be 
exploited by a smart executive. 

A final distinction between NMRA and most other 
planning and execution systems is that our planner actu­
ally plans how and when it will plan for the next horizon. 
That is, it inserts a "plan next horizon" activity into the 
plan and plans other supporting activities around this 
goal. Such activities include information-gathering ac~ 
tivities which will be necessary before another plan can 
be built. The executive then achieves these activities to 
enable this form of planning over multiple horizons. We 
believe this is a necessary capability of extended agency, 
and one which will become of growing concern as we de­
sign autonomous agents to achieve goals unassisted over 
years or decades of activity. 
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