
Robust Periodic Planning and Execution for Autonomous Spacecraft *

Barney Pell t Gat§ Ron Keesing t Nicola Muscettola + Smith§

Abstract

The New Millennium Remote Agent (NMRA)
will be the first on-board AI svstem to con­
trol an actual spacecraft. The ~pacecraft do­
main raises a number of challenges for planning
and execution, ranging from extended agency
and long-term planning to dynamic recover­
ies and robust concurrent execution, all in the
presence of tight real-time deadlines, changing
goals, scarce resource constraints, and a wide
variety of possible failures. NMRA is one of the
first systems to integrate closed-loop planning
and execution of concurrent temporal plans. It
is also the first autonomous system that will be
able to achieve a susta:lned, multi-stage, multi­
year mission without communication or guid­
ance from earth.

1 Introduction
We are developing the first on-board AI system to con­
trol an actual The Deep Space One
(DS-1), is the first in NASA's New Millennium Program
(NMP), an aggressive series of technology demonstra­
tions intended to push Space Exploration into the 21st
century. DS-1 will launch in mid-1998 and will navi­
gate and fly by asteroids and comets, pictures and
sending back information to scientists on Earth. One key
technology to be demonstrated is spacecraft autonomy,

on-board and execution. The
spacecraft will long without the possibil-
ity of communication with ground staff and

in fact, how and when it will communicate
back to Earth. It must maintain its and achieve

*This paper appears in the Proceedings of IJCAI-97.
eCJlll<)!Ogles. NASA Ames Research MS

94035.
MS

California Institute of Tech­
""'""'u."'.u.a. CA 91109.

high-level when possible, even in the presence of
hardware faults and other unexpected events.

This paper describes our approach to planning and
plan execution in the context of spacecraft autonomy.
Our is being as part of the New
Millennium Remote architecture et
al., 1997]. This architecture integrates traditional real­
time monitoring and control with constraint-based plan-

and [Muscettola, 1994], robust multi-
threaded execution 1996], and model-based diag-
nosis and reconfiguration [Williams & 1996].

The paper is organized as follows. Section 2 discusses
the spacecraft domain and requirements which influence
our design. Section 3 describes our approach to planning,
execution, and robustness, and illustrates the top-level
loop of our system. Section 4 addresses the issues in­
volved in to support robust ex•o::ctuHJH,

and Section 5 shows how such plans are executed. We
then consider related work and conclude.

2 Domain and Requirements

The autonomous spacecraft domain presents a number
of challenges for planning and plan execution. Many de­
vices and systems must be controlled, leading to multiple
threads of complex activity. These concurrent processes
must be coordinated to control for negative interactions,
such as vibrations of the thruster violating stabil­
ity of the camera. Also, activities may have
precise real-time constraints, such as taking a picture of
an asteroid during a narrow window of nr.<:or·v<>h1

Virtually all resources on spacecraft are limited and
carefully budgeted. The system must ensure that they
are allocated to Some re-
sources, like solar power, are renewable
but limited. Others, such as total are fi-

and must be across the entire mission.
u<a.uu"'' reasons about resource usage in cr,,,,,.,ti

but because of run-time the resource
constraints must also be enforced

The and

about and interact with external agents and processes,
such as the on-board navigation system and the attitude
controller. These external agents can provide some infor­
mation at plan time and can achieve tasks and provide
more information at run-time but are never fully control­
lable or predictable. For example, the attitude controller
can provide estimates of turn durations at plan time,
but the completion of turns during execution is not con­
trollable and can only be observed. Plans must express
compatibilities among activities, and the plan execution
system must synchronize these activities at run-time.

In addition, planning and the information necessary
to generate plans are also limited resources. Because of
the limited on-board processing capabilities of the space­
craft, the planner must share the CPU with other critical

u"'"""''J" tasks such as the execution the real-
time control and the fault detection, isolation and
recovery system. While the planner)';"''·""'J."'"'""
the must continue to the

often contains critical tasks whose execution can-
not be in order to install
plans. Thus a planning
other activities must be or postponed. Since
planning is plan failure is costly. Thus plan
execution must be robust in the face of a wide of
hardware faults and

3 Approach

Our approach separates an- extensive, deliberative plan-
ning from the reactive execution
infrequently plans over extended time peri­
ods. How frequently and how far in advance the system
should plan is constrained by several factors, including
uncertainty about the results of execution. For example,
uncertainty about how much thrust has accumulated af­
ter a thrusting maneuver means the system can't reliably
plan how many thrusts will be needed to reach the tar­
get, thus reducing how far in advance it is productive to
plan such thrusting activities. While uncertainty moti­
vates frequent planning with short scheduling horizons,
the cost of with horizons.

In our is ex-
plicitly represented in the current plan as a task. By
considering the costs and constraints of planning, the
planner automatically optimizes future planning activi­
ties. When the executive reaches this task in the current

it asks the to a plan
"'"'''"'"''-'"'"~'> horizon while it continues to exe-

cu''""""w'IS in the current When
the executive reaches the end of the current the

for the next horizon will be and the executive
will then install

tive. This approach is taken by [Bresina et 1996],
and by [Levinson, 1994]. The approach, when feasible,
has a number of benefits. First, it enables the planner
to simulate the detailed functioning of the executive un­
der various conditions of uncertainty, and to produce a
plan which has contingencies (branches) providing quick
responses for important execution outcomes. Second,
it enables the use of one language rather than two for
expressing action knowledge, which simplifies knowledge
engineering and helps maintain consistency of interfaces.
Third, it enables the planner to monitor execution in
progress and project the likely course of actions, and
then provide plan refinements which can be patched di­
rectly into the currently executing plan.

Unfortunately, in our domain this single representa­
tion approach is not practical because the complexity
of interactions at the detailed level of execution would
make planning combinatorially intractable. Thus, we
have found it necessary to make the planner operate on
a more abstract model of the domain. Examples of ab­
stractions are:

• hiding details of subsystem interactions controlled
by the executive

a set of detailed component states into ab­
stract states

• not modeling certain subsystems

• using conservative resource and timing estimates

These simplifications have several consequences which
impact our design. One important consequence is that
the planner can no longer model or predict intermediate
execution states. Since the executive is managing mul­
tiple concurrent activities at a level of detail below the
planner's visibility, it is difficult to provide a well-defined
initial state as input to the infrequent planning process.
Also, a generated plan may be invalidated by exe­
cution activities that occur during or even after planning
but prior to execution of the new plan, since the initial
conditions of that plan may no longer be consistent with
the state of the sp<:~,ce:cntt

We address the of initial states
for the next planning round differently depending on the
status of the plan. Plans
include an activity to plan for the next horizon. At this

the executive sends to the the current
plan in its with annotations for the decisions
that were made so far in ".,.._"'' ... """""!',

The net result is that, from the executive's perspective,
executing chained plans is virtually the same as
executing one This has the useful consequence
that it enables the executive to engage in activities which
span multiple planning horizons (such as a 3-month long
engine burn) without interrupting them.

In the event of plan failure, the executive knows how
to enter a stable state (called a standby mode) prior to
invoking the from which it generates a descrip-
tion of the state in the abstract language un-
derstood by the planner. Note that establishing standby
modes following plan failure is a costly activity, as it
causes us to interrupt the ongoing planned activities and
lose important opportunities. For a plan fail-
ure us to enter standby mode the comet
encounter would cause loss of all the encounter science,
as there is no time to before the comet is out of
sight. Such concerns motivate a strong desire for plan
robustness, in which the plans contain enough flexibility,
and the executive has the capability, to continue execut­
ing the plan under a wide range of execution outcomes.

4 Planning

A principal goal of the NMRA is to enable a new gener­
ation of spacecraft that can carry out complete, nominal
missions without any communication from ground. This
is a great departure from previous and current missions
(such as Voyager, Galileo or Cassini} which rely on fre­
quent and extensive communications from ground. In
traditional missions, ground operations routinely uplink
detailed command sequences to be executed during sub­
sequent mission phases. Such communications require
costly resources such as the Deep Space Network, which
makes them very expensive. Uplink independence is par­
ticularly important for missions that require fast reaction
times (as it is the case for autonomous rovers, comet lan­
ders and other remote explorers); in this case detailed
ground-based control is infeasible due to long communi­
cation lags. In case of loss of uplink capabilities, previous
spacecraft could carry out a critical sequence of com­
mands stored on board before launch. these
sequences were greatly simplified when compared to the
uplinked sequences and could only carry out a small frac­
tion of all mission goals.

Mission Manager

NMRA is launched with a pre-defined "mission profile"
that contains a list of all nominal to be achieved

the mission. The detailed sequence of commands
to achieve such but is
~"""""'""+<>rl on board module of

the determines the
that need to be

(typically 2 weeks long), extracts them from the mis­
sion profile and combines them with the initial space­
craft state as determined by the executive. The result
is a specific planning problem that, once solved,
detailed execution commands. This decomposition into
long-range mission planning and shorter-term detailed
planning enables NMRA to undertake an extended di­
verse mission with minimal human intervention.

Requirements for Robust Execution

The NMRA must be able to respond to unexpected
events during plan execution without having to plan the
response. Although it is sometimes necessary to re-plan,
this should not be the only option. Many situations re­
quire responses that cannot be made quickly enough if
the NMRA has to plan them.

The executive must be able to react to events in such
a way that the rest of the plan is still valid. To support
this, the must be flexible enough to tolerate both
unexpected events and the executive's responses without
breaking. This flexibility is achieved by (1) choosing
an appropriate level of abstraction for the activities and
(2) generating plans in which the activities have flexible
start and end times.

The abstraction level of the activities in the plan must
be chosen carefully. If the activities are at too fine a level
of granularity, then the plan will impose too many con-
straints on the behavior of the making
execution more fragile. if the granularity is
too coarse, then there may be interactions among the
sub-actions of activities that the planner cannot rea­
son about. In DSl, activities are abstracted to the
level where there are no interactions among their sub­
activities. This level allows the planner to resolve all of
the global interactions without getting into details that
would over-constrain the executive.

The other mechanism by which the executive can re­
spond to events without breaking the plan is having ac­
tivities with flexible start and end times. Plans in DSl
consist of temporal sequences of activities. Each activity
has an earliest start a latest start an earli-
est end and latest end time. The uses a
least commitment approach, constricting the start and
end times only when absolutely necessary. Any flexibil­
ity remaining at the end of planning is retained in the
plan. This flexibility is used by the executive to
the start and end times of activities as needed. For ex-

if the does not start on the first the
a few more times. To make time for

these extra the end time is moved but
the latest end time.

vlJldH)',U11'. the start or end time of an
For t:AaU!IJ""'·

also
the

ting down the engine, then changing the end time of the
will change the start time of the

take science data To make the the
executive must know about the temporal constraint be-
tween the fire activity and the take science
data The therefore contains all of the tem-
poral constraints among the activities.

Although the planner is typically enabled to leave flex­
ibility in the start and end times because the
times are under-constrained, it is sometimes required to
provide such flexibility in order to operate the space­
craft successfully. For example, when the engine is com­
manded to turn on, it goes through a warm up proce­
dure and turns itself on. The warm up procedure can
take up to ten but the actual warm up time is
not known at time. It is not known until the engine
actually turns on. We currently handle such cases by
providing time in activities to handle worst-case
outcomes, although we are developing a method to plan
explicitly about execution-time uncertainty.

5 Execution
From the point of view of the NMRA executive, a plan
is a set of time-lines. Timelines consists of a linear se­
quence of each of which represents an activity
which should be taking place during a defined temporal
period. A token has a start and end window. a set of
pre- and post-constraints. The start and end windows
are intervals in absolute time during which the token
must start and end. The pre- and post-constraints de­
scribe with to the starts and ends
of tokens on other time-lines.

There are three different types of pre- and post­
constraints: before, after, and meets. The semantics
of these constraints is fairly straightforward. A before
constraint specifies that the start of a token must come
before the start of another token. An after constraint
specifies that the end of a token must come after the
end of another token. The amount of time that may
elapse between these two related events is specified as
an intervaL A meets-constraint that the start
(end) of a token must coincide with the start of
another token.

Issues

Plan execution would be relatively straightforward were
it not for the fact that different token types have different
execution semantics. In there are different
ways of whether or not a
has ended. Some activities are
the

The situation is further complicated by the fact that
a naive operationalization of these constraints leads to
deadlock Consider a token A fol-
lowed by a turn token R Token A for the turn)
should end whenever token B (the turn) to
start. However, B is constrained the to fol-
low A, and so B is not to start until A ends.
Thus, A can never end, and B can never start.

Another issue is that some tokens don't achieve their
intended post-conditions until some time after they have
started. For example, consider a time-line for a device
containing a token A of device-off followed by
token B of type device-on. The intent here is that the
executive should turn the device on at the be­
tween A and B, but this cannot be done
Thus, a token on another constrained to start
after may fail if it upon the device being
on, since the device may not in fact be turned on until
some time after B starts. One solution to this
problem is to the model so that it gener-
ates a plan that includes an intermediate token of
device-turning-on, but this can significantly increase
the size of the planner's search space, and hence the time
and resources required to generate a plan.

To solve these problems, we separate the execution
of a token into three startup, steady-state, and
ending. The startup stage performs actions to achieve
the conditions that the planner intends the token to rep­
resent. The steady-state stage monitors and maintains
these conditions (or signals failure if the conditions can­
not be maintained). The ending stage allows the token
to perform cleanup actions before releasing control to the
next token on the time-line. Tokens may have null ac­
tions in one or more stages. The algorithm for executing
a token in this three-phase framework is as follows:

L Wait for the beginning of the token's start window.

2. In parallel

(a) wait for token's pre-constraints to be true, and

(b) check that the end of the start window has not
If it a failure.

3. Signal that the token has started.

4. Execute the achieve-portion of the token.

5. Spawn the maintain-portion of the token as a par-
allel task

6. Wait for the start of the token's end window.

7. Wait for the token's post-conditions to be true.

8. Wait for the of the next token to be
those that refer to the end of this token.

9. the maintain thread in 5, and
execute the of the token

10. Check that the end of the end window has not
passed. If it has, signal a failure. Otherwise, sig­
nal that this token has ended.

This algorithm allows all the token types to be exe­
cuted within a uniform framework.

6 Related Work

NMRA is one of the first systems to integrate closed-loop
planning and execution of concurrent temporal plans. It
is also the first autonomous that will be able
to achieve a sustained, multi-stage, multi-year mission
without communication or guidance from earth.

Bresina et al. describe and
executive for the autonomous telescope domain. Their
approach uses a single action representation whereas
ours uses an abstract planning language, but their plan
representation shares with ours flexibility and uncer­
tainty about start and finish times of activities. How­
ever, their approach is currently restricted to single re­
source domains with no concurrency.

Drabble (1993) describes the ExCALIBUR system,
which performs closed-loop planning and execution us­
ing qualitative domain models to monitor execution
and to predicted initial states for planning after
execution failures. The "kitchen" domain involved con­
current temporal plans, although it was simplified and
did not require robust reactions during execution.

Currie & Tate (1991) d~scribe the 0-Plan planning
system, which when combined with a temporal scheduler
can produce rich concurrent temporal Reece &
Tate (1994) developed an execution agent for this plan­
ner, and the combined system has been applied to many
real-world problems including the military logistics do­
main. The plan repair mechanism [Drabble, &
Dalton, 1996] is more sophisticated then ours, although
the execution agent is weaker and does not perform
execution-time task decomposition or robust execution.

The Cypress system [Wilkins et al., 1995] and the 3T
system [Bonasso et al., 1996] also address the closed­
loop integration of planning and execution in the context
of concurrency, although neither of these systems deals
v;ith plans. It is to compare how
these differ from ours concerning the generation
of execution context for the and the integration
of new planning information back into execution. Cy­
press shares the same action formalism between plan­
ning and execution. This enables the to watch
over execution and simulate the results
cussed in section 3. The can detect
in advance and send back a detailed
and the executive can replace un-executed
its current with new and continue

In 3T, the planner maintains such tight control over
execution that it does not even send the full plan it has
developed. Instead, it sends directives to the executive
one at a time, and the executive then responds to each
directive in turn. This provides an interesting solution
to the problem of keeping the planner informed about
execution and also to the problem of integrating new
planning information into the execution context. How­
ever, this approach is problematic in our domain as it
places severe time constraints on the so that
it can decide what to do before the executive runs out
of activities, and it requires the computational and in­
formational resources to be available for planning on a
continuous basis. This is a luxury we could not afford
on a spacecraft, as discussed in section 3.

Other systems integrating planning and execution
in real-world control systems include Guardian [Hayes­
Roth, 1995], SOAR [Tambe et al., Atlantis [Gat,
1992] and TCA [Simmons, 1990]. These systems invoke
planning as a means to answer specific questions dur-
ing execution whether a treatment would
take effect in time to heal the which evasive ma-
neuver will counter the opponents current attack plan,
and which path to take to to a particular room). This
use of planning contrasts with our approach, in which
the planner coordinates the global in the sys­
tem. The local approach has the advantage of making
use of special-purpose planners which can be built to an­
swer narrow questions, but our global approach has the
advantage of ensuring that the different activities un­
dertaken at execution will not interact harmfully. It is
not clear how the local approaches can be extended to
provide similar guarantees.

7 Conclusion
A growing body of work is addressing issues of robust
planning and execution in the face of failures and uncer­
tainty. The Lockheed Underwater Vehicle [Ogasawara,
1991] uses decision-theoretic planning and execution to
select courses of action which maximize utility. CIRCA
[Musliner, & Shin, 1993] considers a set of states,
actions, and critical failures to be avoided. It then inserts
a set of sense-act transitions into a real-time controller
to ensure that the controller will never enter the crit­
ical failure states. Cassandra & Collins, 1996],
Buridan Hanks, & Weld, 1994], 0-Plan [Currie
& Tate, and JIC [Drummond, & Swan-
son, 1994] all consider actions with uncertain outcomes
and that enable execution-time recovery

to take time out for

flexible, abstract, and conservative plans which can be
exploited by a smart executive.

A final distinction between NMRA and most other
planning and execution systems is that our planner actu­
ally plans how and when it will plan for the next horizon.
That is, it inserts a "plan next horizon" activity into the
plan and plans other supporting activities around this
goal. Such activities include information-gathering ac~
tivities which will be necessary before another plan can
be built. The executive then achieves these activities to
enable this form of planning over multiple horizons. We
believe this is a necessary capability of extended agency,
and one which will become of growing concern as we de­
sign autonomous agents to achieve goals unassisted over
years or decades of activity.

References
[Bonasso et 1996] Bonasso, R. · Kortenkamp,

Miller, and M. 1996. Experiences with an
architecture for intelligent, reactive agents. JETAI.

[Bresina et al., 1996] Bresina,
son, · and Drummond, M. 1996.
loop obesrvation scheduling and execution. In Pryor
[Pryor, 1996].

[Currie & 1991] and A. 1991.
0-plan: the open planning architecture. Artificial In­
telligence 52(1) :49-86.

[Drabble, Tate, & Dalton, 1996] Drabble, B.; Tate, A.;
and Dalton, J. 1996. 0-plan project evaluation exper­
iments and results. Oplan Technical Report ARPA­
RL/0-Plan/TR/23 Version 1, AlAI.

[Drabble, 1993] Drabble, B. 1993. Excalibur: A pro­
gram for planning and reasoning with processes. Ar­
tificial Intelligence Journal62(1):1-40.

[Draper, Hanks, & Weld, 1994] Draper, D.; Hanks, S.;
and Weld, D. 1994. Probabilistic planning with infor­
mation gathering and contingent execution. In Pro­
ceedings of AIPS94, 31-36. AAAI Press.

& 1994] Drummond,
· and K. 1994. Just-in-case

scheduling. In Procs. of AAAI-94, 1098-1104. Cam-
Mass.: AAAI Press.

(Gat, 1992] E. 1992. Integrating and re-
in a heterogeneous

real-world mobile robots. In Procs.
Mass.: AAAI Press.

E. 1996. ESL: A for

[Levinson, 1994] Levinson, R. 1994. A general program­
ming language for unified planning and control. Arti­
ficial Intelligence 76.

[Muscettola, 1994] Muscettola, N. 1994. HSTS: Inte­
grating planning and scheduling. In Fox, M., and
Zweben, M., eds., Intelligent Scheduling. Morgan
Kaufmann.

[Musliner, Durfee, & Shin, 1993] Musliner, D.; Durfee,
E.; and K. 1993. Circa: A cooperative, in­
telligent, real-time control architecture. IEEE Trans­
actions on Systems, Man, and Cybernetics 23(6).

[Ogasawara, 1991] Ogasawara, G. H. 1991. A dis­
tributed, decision-theoretic control
bile robot. ACM SIGART Bulletin

[Pell et al., B.; Bernard, D. E.; Chien, S. A.;
Gat, E.; Muscettola, N.; Nayak, P. P.; Wagner, M.D.;
and Williams, B. C. 1997. An autonomous spacecraft
agent In Johnson, W. L., ed., Proceedings
of the First Int'l Conference on Autonomous Agents.
ACM Press.

(Pryor & 1996] Pryor, L., and G. 1996.
Planning for contingencies: A decision-based ap­

JAIR 4:287-339.

[Pryor, 1996] Pryor, L., ed. 1996. Proceedings of the
AAAI Fall Symposium on Plan Execution. AAAI
Press.

[Reece & Tate, 1994] Reece, G., and Tate, A. 1994. Syn­
monitors from causal structure.

In Procs. AIPS-94. AAAI Press.

[Simmons, 1990] Simmons, R. 1990. An architecture for
coordinating planning, sensing, and action. In Procs.
DARPA Workshop on Innovative Approaches to Plan­
ning, Scheduling and Control, 292-297. San Mateo,
CA: DARPA.

[Tambe et al., 1995] Tambe, M.; Johnson, W. L.; Jones,
R. · Koss, ·Laird, J. E.; Rosenbloom, P. · and
Schwamb, K. 1995. Intelligent agents for interactive
simulation environments. AI

[Wilkins et al.,
J.

K.
1995. Planning

and in uncertain and dynamic environments.
Journal of Experimental and Theoretical .41 7(1):197-
227.

[Williams &
P. P. 1996.

Williams, B. C., and Nayak,
A model-based approach to reactive self­

In Procs. of AAAI-96, 971-978.
Mass.: AAAI.

	1997-2_Part51
	1997-2_Part52
	1997-2_Part53
	1997-2_Part54
	1997-2_Part55
	1997-2_Part56

