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Abstract 
This paper describes DATA-CHASER Automated 
Planner/Scheduler (DCAPS) system for automatically 
generating and repairing low-level command sequences for 
the DATA-CHASER shuttle DCAPS uses general 
Artificial Intelligence (AI) an iterative 
repair framework in which the system 
conflicts with the resource and ''""''~-'''"" 
payload activities. 

Introduction 

Command sequence generation for spacecraft operations 
can be a laborious process requiring a great deal of 
specialized knowledge. Command sets can be with 
each command performing a low-level task. There may be 
many interactions between the commands due to the use of 
resources. In addition, due to-power and weight uuut<luLm:s. 

the resources available on-board spacecraft tend to be 
scarce. Because of this complexity, tools to assist in 
planning and scheduling spacecraft activities are critical to 
reducing the cost and effort of mission operations. 

This paper describes a general system that uses Artificial 
Intelligence Planning and Scheduling technology to 
automatically generate command sequences for the DATA­
CHASER shuttle payload operations. The DATA­
CHASER Automated Planner/Scheduler (DCAPS) 
architecture presented supports direct, interactive 
commanding, rescheduling and repair, resource allocation, 
and constraint maintenance. 

The DCAPS search was developed based on 
the "iterative repair" used in this 
technique iteratively selects a schedule conflict and 
performs some action in an attempt to resolve the conflict. 
Using a repair algorithm, DCAPS is naturally well-adapted 
for human interaction. Therefore, the scheduler can be used 
as a tool to assist command With the 
use of this 
accomplished by and .,..,,.u""'"''""' 
such as the mission scientists. This allows the scientist to 
become involved the 

U!llJINHl~ anyvu~·~~" 

the 

resources and constraints are consistently monitored and 
conflicts avoided automatically. 

The DCAPS system is being developed for operation of 
the DATA-CHASER shuttle payload, which is being 
developed and managed by students and faculty of the 
University of Colorado at Boulder. DATA-CHASER is a 
science payload, with a focus on solar observation. 
The main activities the 
instrument observations, data "'''"''"''.::"', co:mnam1Icati•on, 
control of the power 

three solar 
Spectrometer (FARUS), Soft and Extreme 
Ultraviolet Experiment (SXEE), and Lyman-alpha Solar 

e!e:sCOJpe (LASIT), that are devices at 
various spectra. 

The payload resources include power, tape storage, local 
memory, the three instruments, and the communication 
bus. DATA-CHASER is also constrained by externally­
driven states such as the shuttle orientation, which affects 
when certain science activities can be scheduled. Payload 
activities must be sequenced while avoiding or resolving 
conflicts with resources and temporal constraints. 

When using the DCAPS system, there are three modes 
of operation. First, by simply providing a small set of high­
level science and engineering goals, an initial schedule can 
be generated. The goals, which describe high-level mission 
objectives, are automatically translated into a sequence of 
executable activities. The second phase offers an 
interactive scheduling session. the repair-based 
scheduler, the user can work with the low-level activities 
while consistency with resources and 
constraints. 

After making any change in the schedule, the user can 
one command to resolve all conflicts in the 

current schedule. A schedule free of conflicts, however, 
may not be the highest quality schedule. In the final stage, 
the user can call on the optimizer to generate several 
additional solutions based on information and 
select the best. 

The main "'"''"'u'u"m~ 
is the search this alg:or]thtn, 
the scheduler first collects all of the conflicts in the current 
schedule and classifies them based on the resource 
violated the 



must select an action to perform in an attempt to resolve 
the conflict. Actions include adding, and deleting 
activities. If the action resolves the the scheduler 
iterates on the resulting schedule. Otherwise, the scheduler 
tries a different action for the persistent conflict. 

The remainder of this paper is organized as follows. 
First, we describe the DATA-CHASER shuttle payload and 
mtsswn we describe how the payload is 
modeled. We then go into detail about the DCAPS 
approach to automated command sequence generation and 
repair. Then, we describe how DCAPS fits in to the overall 
flight and ground system architecture for the DATA­
CHASER mission. Finally, we discuss related work and 
conclusions. 

DATA-CHASER Payload 

DATA-CHASER consists of two projects (see 
DATA and which will fly as a 

Hitchhiker aboard STS-85 on the 
International Extreme Hitchhiker Bridge 
2) in July 1997 A technology experiment, DATA 
(Distribution and Automation Technology Advancement) 
seeks to advance 
operations. CHASER (Colorado Hitchhiker . 

of Solar Radiation) is a solar sctence 
experiment that serves to test DATA. The DATA 
technologies support cooperative distributed 
between different geographic sites as well as between 
humans and on-board autonomy, human control, 
and ground automation. -

CHASER is of three instruments 
that take data in the far and extreme ultraviolet wave­
lengths. The first and oldest of these instruments ( 17 years 
old) is FARUS, which takes a continuous spectrum from 
115 nm to 190 nm with a resolution of .12 nm. LASIT 
takes images of the full solar disk of the sun in the 
alpha wavelength (121.6 nm) with a ~harge I?jec_t~d 
Device imager. The final instrument m the scientific 
package, SXEE, consists of four photometers, each having 
a different metallic coating so as to enable them to look at 
different wavelengths between 1 and 40 nm. The objective 
of these instruments is to measure the full disk solar 
ultraviolet irradiance and obtain of the sun in the 
Lyman-alpha a correlation ?e~ween 
solar and radiation as well as an associatiOn of 
Lyman-alpha fluxes with individual active of the 

medium rate (available when scheduled, at 200 kbps). The 
,,. ,, '"'1u is also capable of receiving commands sent from 

ground system when is available. 

the mission, the DATA-CHASER payload will 
be operating in four different modes. Most of the time, 
when DATA-CHASER is powered, it will be in a passive 
mode where it is monitoring its state and notifying the 

of any changes. the time in the mission 
when the orbiter is scheduled to point the bay at the sun, 
the DATA-CHASER payload will shift into solar active 
mode where all instruments take data. 

Figure 1: DATA-CHASER payload 

The data is both written to the DAT drive on board and 
downlinked to the system for immediate data 
analysis. Several times the DATA-
CHASER will take data while not pointing at the sun. This 
data is used for various portions of the DATA 
experiment with nonsolar pointing data in addition to being 
used for instrument calibration. 

One of the consequences of flying on the shuttle system 
is that shuttle resources are limited, and their availability is 
subject to change every 12 hours. These resources include 
access to uplink and downlink cha.'1nels, and time that your 
payload is allowed to operate. In addition to these 
resources, any given payload may also have environmental 
constraints as to how much contamination the payload can 
take. Another example is thermal constraints, such as 
maximum solar time. 

the that DATA-CHASER is 
scheduled to fly on, is one of the most complicated flights 
that the shuttle has flown to date. In addition to the DATA­
CHASER payload, there are four other payloads sharing 
the same HH In addition to the IEH-2 there 
is another HH a and a 

satellite. Needless to say the shuttle f.!V.""·'"E 



when we have to protect the scientific instruments from 
contamination events. 

DATA-CHASER is an scenario for 
because of the and power 

management involved in the science gathering. An 
automated scheduler must find an "data 

while adhering to the resource constraints. In 
the scientists would like to ,.,, ... ~,.,.rrn 

the mission. As an the 
summary data may indicate the of a solar flare. If 
this occurs, scientists have and 

such as on certain instruments or 
longer times. These new may a 
different schedule of activities. 

Modeling the Payload 

In order to use the DCAPS system, the user must write a 
software model of the mission activities and "''-'''"""' 
resources. This process involves a set 
and how they interact. These definitions are then by 
the scheduler to create instances of the The two 

types to be defined are activities and 
resources. 

Activities 

Activities are used to model the events that happen that 
affect the DATA-CHASER payload, and the actions that 
the DATA-CHASER payload can take. All activities have 
some basic components: a duration, a list of slots, and a list 
of slot-value assignments. The activity duration is simply a 
time range. Slots are parameters of activities that may 
represent resource usages. In addition, certain types of 
activities (described below) have a list of subactivities. For 
these activities, the user can also define a set of temporal 
constraints between the subactivities. Next, we describe in 
more detail the four basic types of activities: events, 
step-activities, and activities. 

Events are used to model activities that do not occur in a 
fixed relation to other activities (e.g. and Data 
Relay Satellite System (TDRSS) contacts) and are not part 
of an activity hierarchy. 

Steps are the "leaf' nodes in the hierarchy tree. 
In other words, they do not contain any subactivities. Steps 
cannot be instantiated witliout t.~eir a."1d are used to 
model the activities at the lowest level of detail. For 
'""''<U, ... ._, we model an called CHASER-heating, 
which consists of two steps, CHASER-heater-on and 
CH..-\SER -heater -off. 

are used to model activities at a middle 
abstraction. can contain steps, but must also 

activities. In we model an 
which models the SXEE instrument 

a scan. In this case, there is 
which has sensor 

itself. 

Activities are used to model activities at the highest level 
of abstraction. are the "root" nodes in the hierarchy 

but no parent An 
inherits all attributes of its pn~d<::cessclrs. 

~V·-~AVY, the abstract is 
events and resource usages at a 

and event are what the 
and methods are to 

levels of abstraction. 

Resources 

Resources define the various physical resources and the 
constraints Resources come in five 
varieties: state, concurrency, and 

State resources are used to model the systems in the 
DATA-CHASER that have states associated with 
them. For each state resource, the modeler must the 
possible values that the state can be. Most of the 
have at least one state which is or not 
they are activated. The orientation of the payload is also 
modeled as a state variable. 

Concurrency resource constraints are used to model 
rules that stipulate that an activity either must occur with 
another activity or cannot occur with another One 
relationship that is modeled with a concurrency resource is 
the requirement that a downlink or uplink can only occur 
during contact with a TDRSS satellite. This is modeled as a 
resource that is present when there is TDRSS contact 
activity, and required when there is a downlink or uplink 
activity. 

Depletable resources are used to model resources with a 
fixed quantity, such a fuel or RAM. Activities can use 
some finite amount of a depletable resource, which may or 
may not be restorable. The amount used by the activity is 
persistent to the end of the schedule. In addition, the 
modeler must specify a maximum for each 
depletable resource. In DCAPS, RAM is modeled as a 
depletable resource. Science observations produce data and 
use some amount of the depletable resource. Other 
activities, such as a transfer to permanent storage, may 
restore this resource. 

Non-depletable resources are used to model resources 
which have a limit to the at any one time, but are 
reset at the end of the consumes the resource. 
Similar to depletable resources, nondepletables are 
assigned a maximum capacity. Resources like power are 
modeled with nondepletable resources. 

resources are used to model devices that can 
one each of the 

instruments on board 
and are .... "1~-'''""" 
and are modeled with 



The DATA-CHASER Automated Planner I Scheduler will 
be of the DATA-CHASER mission 

It will be a ground-based used for 
a schedule of commands for to the 

payload. The user's manual [3] can be found at the Jet 
Propulsion There are three of operating 
the DCAPS system: a goal satisfaction phase, an 
interactive repair and an optimization 

In the satisfaction DCAPS 
vv•m'-''"''"' valid schedule of 

Schedule Reasoner 

Schedule 
Generator 

GUI Schedule DB 

2: DCAPS architecture 

The planner/scheduler consists of two main parts, the 
Plan-IT II (PI2) sequencing tool [4] and the schedule 
reasoner (see Figure 2). PI2 was written by William C. 
cggeine:ver and designed as an assistant 
se<me:ncing tooL" PI2 includes a GUI that for easy 
manipulation of the schedule. In addition, it serves as an 
activity/resource database that valuable 
information to the schedule reasoner. supports complex 
mcm11tonmg and reasoning about activities and the various 
constraints between them. The schedule reasoner uses 
Artificial to ...... ,,vuuu.'""'" 

uuJ.HH>L'-' valid schedules. PI2 
about resource and -.,v''""'"'" 
must decide which activities to use to resolve the conflicts 
and where to The two 

to and fast 
sec1uencimg of missiOn activities. 

Data-Base 
In the DCAPS system, PI2 is used as a "schedule 
database" and resource constraint checker. It was ~"'"'"""''J 

as a tool. Activities and 
resources are An 
rer>re:;ents some mission event that occurs over a 
time and uses some of the mission resources. A resources 
retlre~;en.ts some limited available material whose usage is 
modeled as discrete blocks over time. 

For each of and resource, PI2 
represents the behavior 

type over a of time. 
activities are created, they are placed at a "~'~'-'•utou 
the timeline. Resources used by that are u!Ju"''cu 

reflect the additional usage. In addition to 
uaJLAL•'""""' PI2 an easy-to-use input interface 

the schedule. activities is as simple 
cncK-ar:to-,ant!! with a mouse. 

ease the burden on sequencers continually 
all activities in the sequence. As activities are 

added or the in resource usage is 
automatically updated, and the new resource are 

With this information user can 
immediately see the effects of a schedule change on the 
mission resources. For each resource, PI2 also monitors 
any conflicts that are on the resource. 

Conflicts are time intervals where the limitations of the 
resource have been exceeded. These conflict intervals are 
highlighted in red to flag their existence for easy 
identification. Finally, PI2 monitors any dependencies that 
have been defined between activities and resources. The 
values of specific parameters of activities and resources 
may be functionally dependent on values of other 
parameters. PI2 automatically keeps these parameter values 
consistent. 

PI2 also helps out by serving as an activity and resource 
database, producing/accepting information to/from a 
sequencer. The functional interface to PI2 has been 
extended to better assist an automated sequencer. A basic 
set of "fetch" functions have been developed to quickly 
retrieve information about conflicts and the resources and 
activities involved in the conflict. For example, an interface 
function has been written to fetch the times where an 

can occur in the schedule. "legal times" 
refers to positions where no conflicts are caused by any of 
the resources used by the 

In addition to ""'""'"'"' information about the current 
state of the the user will need to be able to 

an<oUlJf'' to fix or the 
Some basic are 

PI2 to allow an external system to add and move 
their etc. These make up the set 

that a scheduler can to resolve 
conflicts. 



Schedule Reasoner 
The second of DCAPS is the automated 
schedule reasoner. This the next step in and 
simplifying the spacecraft command process. 
There are three to the schedule reasoner: a schedule 

a schedule and a schedule 
the schedule generator will transform a set of user-

defined into a valid sequence of low-level 
comm~nds. the schedule will 
automatically restore the of the sequence after 

user interaction 
actions. The scheduler repairer iteratively attempts to 
resolve each conflict, which involves choices on 
what to and how to it. the schedule 

uu.uu'"'- a valid schedule to increase the 

Schedule Generator-The m 
spacecraft commands is to come an initial schedule 
of events for each of the This process has 
been partially automated in DCAPS with the schedule 
generator. schedules and partial schedules to be 
.,.,,,, •. ,.u•f1 is done through user defined There are 
two ways in which user goals are handled in DCAPS. Fi~st, 
initial science and engineering are handled w1th 
parameterized scheduling functions. Each function 
implements a For the~e is_a "Plac~-P?we~" 
function that schedules power sw1tchmg activities m 
appropriate places based on some engineerin~ I?arameters. 
Parameters may include such things as a mm1mum tlme 
between switching, or a power on during a particular state 
of a different resource. 

Second, science goals can also be expressed through 
data-take requests, which do not have to be a ]Jart_ of the 
initial schedule generation. For example, a sc1ent1st can 
request ten additional scans from a particu~ar_instru111ent to 
occur any time during some phase of the ffilsswn. ~s type 
of general request does not include specific lo~att~ns or 
necessary supporting activities. The scheduler will ~Imply 
place them at random positions and allow any conflicts to 
be resolved by the automated repairer. 

Schedule initial schedule 
still violate some of t,.;e constraints. Also, 
scientists and engineers might feel that their goals were not 
completely satisfied, and may need to interact with and 
modify the schedule. By modifying the schedule, 
new conflicts may be introduced. we need some 
way of any conflicts in the 

'"'""u'"'u"}; the current state of the schedule 
the process automated allows 

and therefore less time on 
the activities. When 

all conflicts can be 
command to invoke the 

Before describing the schedule repairer, we must present 
a few definitions. A "hard conflict," or just "conflict," is a 
violation of one of the resource constraints. A conflict 
occurs over a certain time period and is caused by activities 
called "culprits." For example, if the power is 
exceeded from time tl to time then a exists 
from time tl to time t2, and the are any activities 
that use power during this time 3). A "soft 
conflict" is a violation of one of the user's level goals. 
"Hard conflicts" are violations of legal constraints, while 
"soft conflicts" are violations of user "Choice 
points" are places in the scheduling when a 
decision must be made. For example, when there are many 
conflicts to resolve, the scheduler must decide which 
conflict to resolve first. A "hard choice," or "choice," 
is a decision made on the basis of hard 
conflicts. It may be for not to place an 
activity at a certain time because new conflicts will be 
added as a result of that A "soft choice" is a 
decision made on the basis of user or heuristics 
with the of a more optimal schedule. An 
example of a user preference is a priority scheme on c~rt~n 
activities. One heuristic may be to move lowest-pnonty 
culprits to the nearest legal position . 

There are three possible actions to take in attempt to 
resolve a conflict: move, add, or delete an activity. The 
"move" action involves one of the of the 
conflict to a positions that will either resolve the conflict ?r 
at least ensure that the moved activity is no longer a culpnt. 
Some conflicts can be resolved by adding a new activity. 
These activities usually provide some resource that was 
previously not available. Finally, a conflict can also be 
resolved by simply deleting the culprits. This is obviously 
not a preferred method and is only used as a last resort. · 

The resolution of a conflict greatly depends on the type 
of resource that is in violation. There are five different 
types of conflicts corresponding to the f~v~ types_ of 
resources. A state conflict occurs when an acuv1ty requrres 
the resource to be in a state which it is not. The culprits in 
this type of conflict are all of the activities that require the 
incorrect state and the activity that changed the resource to 
the incorrect state. Several possibilities for resolving a state 
conflict include moving the culprits to another interval 

Conflict 
Power 
-capacity-- --

3: Conflicts 



ResolveConflicts (max_iterations) 
{ 

iterations = 1 
conflicts = GetConflicts() 
Loop while (length( conflicts)> 0 && 

iterations<= max_iterations) { 
conflict= ChooseConflict(conflicts) 
method= ChooseMethod(conflict) 
case { 
'move' 

= ChooseCulpritToMove(conflict) 
duration= ChooseDuration(conflict, culprit) 

::: 

ChooseStartTime( conflict,culprit,duration) 
success= 

'add' 
,,.. •. ,""" = ChooseActivityToAdd( conflict) 
duration= ChooseDuration(conflict, activity) 

success 
'delete' 

culprit= ChooseCulpritToDelete(conflict) 
success= DeleteCulprit(conflict,culprit) 

nroPTe:ss = GetProgress() 
suc:ce!;s II progress) then UndoLastAction() 

conflicts = GetConflicts() 
iterations = iterations + 1 

Figure 4: Iterative Algorithm 

where the required state is or adding an activity that 
will change the state of the resource to the required state. 

A concurrency conflict is when an activity requires the 
presence of the resource a time for which it is 
absent. The culprits in this type of conflict are all of the 
activities that require the presence of the resource. To 
resolve a concurrency conflict, the scheduler can move the 
culprits to an interval where the resource is present or add 
an activity that provides the presence of the resource. 

A depletable conflict means that the activities of the 
schedule have used too much of the resource. In this type 
of conflict, the culprit is the activity that caused the 
resource to overflow during the time that it first overflows. 
Some depletable resources have "resetter" activities and 
this sort of conflict can be resolved by adding an activity 
that "resets" the available resource. For example, a 
downlink activity wm free space in the downlink buffer. 
A nondepletable conflict when activities overuse a 
resource during a particular time interval. The culprits in 
this type of conflict are all of the activities that use the 
resource the conflict interval. This sort of conflict 
can be or There are 

no activities in the DATA-CHASER model that can add to 

conflicts occur when two or more activities use 
the same resource at the same time. This type of conflict 
can be resolved 

For type of initial the schedule repairer 
must the correct activities to move, or delete and 
position them in such a way that no conflicts 
remain. The makes decisions at 
certain choice where heuristics are used. 
scheduler relies on some interface functions to PI2 that 
describe the conflicts in the current describe the 
activities that could resolve a and the 
schedule. We first describe the random""'·'"''"...,'"'' 

the heuristic enhancements that facilitate ""'''"'"''-''J'u~ 
within the DATA-CHASER domain. The ultimate task 
the system is to find the best place to schedule the activities 
so as to maximize the of the schedule. In the basic 

all choices are made from the list of 

The is a simple iterative loop over the 
conflicts the schedule 4). a conflict is 
selected from the list of current conflicts. An attempt is 
made to resolve the chosen conflict. a method for 
resolving the conflict is chosen. The repair action will 
depend on which method has been selected. If "move" is 
chosen, then a culprit must be picked from the list of 
culprits in the conflict. A duration and start time are chosen 
for the culprit, and the is moved to the new location. 
If "add" is the chosen method, then the repairer must 
decide which type to instantiate. Again, a duration 
and start time must be chosen for the new activity, and the 
activity is inserted at the chosen time. If the repairer 
chooses to "delete" an activity, then it simply must choose 
an activity to delete, and delete it. After the chosen action 
is performed, the schedule repairer checks to see if 
progress was made. We define progress as either 
decreasing the number of conflicts, decreasing the number 
of culprits, or decreasing the duration of the conflicts. 

If the action did not succeed in resolving the conflict, or 
progress was not made, then the action is "undone." 
Otherwise, the new set of conflicts are found, and the loop 
counter is incremented. This process continues until all 
conflicts are or the loop counter exceeds a user­
defined maximum bound. For every choice in the 
algorithm, where a selection must be made from a list of 
possibilities, the schedule is allowed to backtrack 
to that What this means that if a particular choice 

schedule may choose another from the 
list before up. an choices then a 
decision must have been and the "';;~uu'"'' 
backtrack to the AU choice 
u"·''"''"u''lS the on whether or not to ,....,,,,n·r<H' 

heuristic decisions and may customized to a 
domain. 



Schedule Optimizer-The schedule optimizer is composed 
of additional knowledge supplied by the user and utilized 
by the other components of the scheduler. There are three 
ways to a schedule: heuristics at 
search specifying a 
set of "soft and an 
evaluation function to score results from multiple runs of 
the schedule and rPn>~in'r 

A preJference 
any example, when 

the user 

current 
unnecessary disruption 

vu,~!u,vu closest to its 
scheduler avoid 

schedule. The 
existing schedule, after may have been by the 
user in an to the schedule. 

Preferences can also be what we 
referred to as "soft conflicts." A soft conflict a way of 
specifying a preferred value for a particular resource, 

at a time. For vA<a.UJljJA<v, 

scanned data that has not been stored on at 
of the is considered a soft conflict. This is not a 
hard because the data is not the buffer 
size. the scientist would prefer that of the data 
be written to the tape at the mission's rather than 
leaving it in the on-board memory. After the schedule 
repairer handles all of the hard it continues 

addressing all of the soft conflicts. 
The third approach to optimization involves scoring 

several resulting schedules and choosing the one with the 
highest score. The evaluation function is domain dependent 
and would have to be written separately for each 
'"''"''J"~·auvu. Some basic will be similar 
across applications. For exa.mple, most science spacecraft 
are mainly concerned with collecting the largest number of 
images as possible. A simple evaluation would give a 
higher score to schedules with greater amounts of collected 
data. Once we have the evaluation function, we need to be 
able to produce several different schedules from the same 
goals and initial state. 

This can be done by either changing the heuristics or by 
running the scheduler with a different random seed. Some 
heuristics may work better than others, and it is often 
difficult to tell which is the best for a particular application. 

it may be necessary to resort to empirical tests. 
the scheduler on we can 

simply choose the set of heuristics which generates the 
schedule with the highest score. After choosing the 
heuristics, the scheduler can be run many times with 
different random seeds. At choice where there is no 
heuristic for from the of the 
scheduler makes a random decision. With different random 

these decisions will be and the 
schedule will be different 

Heuristics-The general search and 
described above would be futile without 
guidance. Heuristics have been and 
into DCAPS to help the search to a valid more 

schedule. This comes from 
both domain experts and scheduling experts. There are 
three basic classes of heuristics used in DCAPS: .,v,,v .... ,uv•,•· 
pruning, and heuristics. 

Selection heuristics involve deterministically or 
"'-'1''-''-'u'l': from a list of at a choice in the 

selection is usually based on some property of 
considered. For when choo:smg 

to move in order to resolve a power '-'V'""·''"''' 
choose the culprit that uses the most 

amount of power. this heuristic resolve the 
conflict faster. Another successful heuristic used in 
DCAPS was one that sorted the 
activity placement by the number 
would cause when placed in that 
approach has been referred to as the "min-conflicts" 
heuristic The min-conflicts algorithm we use is 

and it is worthwhile to go into detail. 
For each resource used an we query the 

database for the times where the can be 
placed without violating the resource constraint. Then, 
each interval is assigned an initial score of one. 
we intersect two sets of intervals that resulted from two of 
the resources, using a special "scored" interval intersection 
(see Figure 5). The scored intersection of intervals A and B 
results in four an interval with a score of A 
for positions where A exists and B does not, an interval 
with a score of B where B exists and A does not, an 
interval with a score of A plus the score of B where the two 
intervals intersect, or no interval where neither A nor B 
exist. The result of this intersection is then intersected with 
the third set of intervals. 

This process continues until each set of intervals for 
each resource has been intersected. The result is a set of 
scored intervals, where the score represents the number of 
resources that will not be violated if the is placed 
in that position. Using these intervals, we can choose a 

Legal Intervals 

Resource 1 ....... ...,_,.....; 

Resource 2 

Resource 3 ----""1 

2 1 0 2 3 2 

5: Min-conflicts with scored interval intersection 



position with the highest scar~, in other words, the position 
with the fewest conflicts. 

Another class of heuristics used in DCAPS are the 

conservative 
intervals that would cause more conflicts 
in the schedule. These 
fJV,>lWJH3 that COUld UTIT"ITC"TP 

heuristics are used to 
determine when to continue on the same problem 
and when to move on to a different At each 
choice point, we have a list of If we try one 
possibility, and it we can continue and try the next 
possibility, or move on to a different choice point. 
Heuristics can be used to help make two types of decisions 
about backtracking: on "action failures" and 
deciding on "selection failures." First, the notion of an 
"action failure" is not clear and 
definition. Success is not §imply the chosen 
conflict. When, resolving a conflict, and action attempt 
may fix the chosen conflict, but cause several other 
conflicts. 

Therefore, success can be thought of as improving the 
schedule. But how much? And what defines an 
improvement? Our current definition of progress includes 
observing u'1e change in the number of conflicts, the cha.'lge 
in the number of culprits, and the change in the duration of 
the conflicts. Checking the progress of an action can be 
used as a heuristic for detei:mining whether to accept the 
action, or try a different one. The second opportunity for 
heuristics comes when deciding if there is a "selection 
failure." While trying and failing on a list of possibilities 
for a choice point, at some we must decide that the 
previous choice was a failure. Heuristics can with this 
decision also. 

System Integration 

for the 
CHASER EEMOS consists of seven 

Fault/Event Detection Interaction Reaction 
the Ground 
the software 

testbed, and finally the planning and scheduling system 
(DCAPS). 

The command and control system that we are using, 
System Command also known as 

activities to SCL 
and can be 

"'"'"'-''""'"'"' or rules. These 
"'-1''-'u'uu.u"" and rule activation commands are then sent to 

which forwards that list to the SCL 
Once compiled, the list is sent to the 
next available 

is interfaced with the EEMOS 
02. 02 is an database that will be 

all mission data and that is. 
the It will also store a command 

DCAPS will current 
payload status data in the form of sensor values in the 

history. It will also lists of all commands 
uplinked a time interval. These are used by 
DCAPS to infer command status as well as to 

the current state of the payload so that a new schedule 
can be created. 

mission operations, approximately every four 
hours or so, DCAPS will be asked an operator to 
generate script scheduling commands and rule activations 
for the next six hours to its schedule. Once this 
list is finished, it is reviewed by the Mission Operations 
staff on duty. If to be correct, scheduling and rule 
activation commands will be sent to DATA/IO during the 
next available uplink window. 

If during that six hour period there is a major change in 
the NASA activities, DCAPS will ask if the users want to 
update Lh.e schedule script on-board. If the user accepts it, 
DCAPS will generate a updated list, ask the user to verify 
it, and send the list to DATA/IO to be uplinked. 

Summary and Related Work 

Iterative have been applied to a wide range of 
computer science problems such as salesman [7] 
as well as Artificial Intelligence Planning [8,9,10,11]. 
Iterative have also been used for a 
number of systems. The GERRY/GPSS system 
[ 1, uses iterative with a evaluation 
function and simulated to space shuttle 

activities. The Mission 
Planner (OMP) ( system used m 
combination with a historical model of the scheduler 



performing iterative However, OPIS is more 
informed in the application of its repair methods in that it 
applies a set of analysis measures to classify the bottleneck 
before a method. 

In summary, represents a "'.!';utJlil."~"' 
from several First, from a mission nn<'r"t'nn 

perspective, DCAPS is important in that it '"""u11 .. """' 
reduces the amount of effort and knowledge 
generate command sequences to achieve mission 
operations goals. Second, from the standpoint of Artificial 
Intelligence applications, DCAPS represents a sig;nitica:nt 
application of planning and scheduling technology to the 
complex, real-world problem of spacecraft commanding. 
Third, from the standpoint of Artificial 
Research, DCAPS mixed initiative ~~·~r~~~h 
schedule iterative 
optimization represents a novel approach to solving 
coJmP!ex l·""·uu•u~ and scheduling problems. 

Status Note 

This paper was written based on the status of the DATA­
CHASER project as of Aprill997. There have been recent 
changes to the system architecture due to last minute 
problems integrating the software with the flight hardware. 
Some components, such as the SXEE and LASIT science 
instruments, will not be and therefore not 
scheduled, nominal operations. post-flight 
simulations and testing will be done on the complete, 
original system architecture. 
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