
Automating Schedule Development Shuttle Operations

G. Rabideau1
, S. Chien\ C. Eggemeyer\ T. Mann1

, J. WiHis2
, S. SiewertsZ, P. Stone3

1 Jet Propulsion Laboratory
4800 Oak Grove Dr, MS 525-3660

Pasadena, CA 91109-8099
{gregg.rabideau, steve.chien,
tobias.mann, curt.eggemeyer}

@jpl.nasa.gov

2University of Colorado
Colorado Space Grant College

Campus Box 520
Boulder, CO 80309

{jason. willis,sam.siewert}
@colorado.edu

3Carnegie Mellon University
Computer Science Department

Pittsburgh, PA 15213-3891
pstone@cs.cmu.edu

Abstract
This paper describes DATA-CHASER Automated
Planner/Scheduler (DCAPS) system for automatically
generating and repairing low-level command sequences for
the DATA-CHASER shuttle DCAPS uses general
Artificial Intelligence (AI) an iterative
repair framework in which the system
conflicts with the resource and ''""''~-'''""
payload activities.

Introduction

Command sequence generation for spacecraft operations
can be a laborious process requiring a great deal of
specialized knowledge. Command sets can be with
each command performing a low-level task. There may be
many interactions between the commands due to the use of
resources. In addition, due to-power and weight uuut<luLm:s.

the resources available on-board spacecraft tend to be
scarce. Because of this complexity, tools to assist in
planning and scheduling spacecraft activities are critical to
reducing the cost and effort of mission operations.

This paper describes a general system that uses Artificial
Intelligence Planning and Scheduling technology to
automatically generate command sequences for the DATA­
CHASER shuttle payload operations. The DATA­
CHASER Automated Planner/Scheduler (DCAPS)
architecture presented supports direct, interactive
commanding, rescheduling and repair, resource allocation,
and constraint maintenance.

The DCAPS search was developed based on
the "iterative repair" used in this
technique iteratively selects a schedule conflict and
performs some action in an attempt to resolve the conflict.
Using a repair algorithm, DCAPS is naturally well-adapted
for human interaction. Therefore, the scheduler can be used
as a tool to assist command With the
use of this
accomplished by and .,..,,.u""'"''""'
such as the mission scientists. This allows the scientist to
become involved the

U!llJINHl~ anyvu~·~~"

the

resources and constraints are consistently monitored and
conflicts avoided automatically.

The DCAPS system is being developed for operation of
the DATA-CHASER shuttle payload, which is being
developed and managed by students and faculty of the
University of Colorado at Boulder. DATA-CHASER is a
science payload, with a focus on solar observation.
The main activities the
instrument observations, data "'''"''"''.::"', co:mnam1Icati•on,
control of the power

three solar
Spectrometer (FARUS), Soft and Extreme
Ultraviolet Experiment (SXEE), and Lyman-alpha Solar

e!e:sCOJpe (LASIT), that are devices at
various spectra.

The payload resources include power, tape storage, local
memory, the three instruments, and the communication
bus. DATA-CHASER is also constrained by externally­
driven states such as the shuttle orientation, which affects
when certain science activities can be scheduled. Payload
activities must be sequenced while avoiding or resolving
conflicts with resources and temporal constraints.

When using the DCAPS system, there are three modes
of operation. First, by simply providing a small set of high­
level science and engineering goals, an initial schedule can
be generated. The goals, which describe high-level mission
objectives, are automatically translated into a sequence of
executable activities. The second phase offers an
interactive scheduling session. the repair-based
scheduler, the user can work with the low-level activities
while consistency with resources and
constraints.

After making any change in the schedule, the user can
one command to resolve all conflicts in the

current schedule. A schedule free of conflicts, however,
may not be the highest quality schedule. In the final stage,
the user can call on the optimizer to generate several
additional solutions based on information and
select the best.

The main "'"''"'u'u"m~
is the search this alg:or]thtn,
the scheduler first collects all of the conflicts in the current
schedule and classifies them based on the resource
violated the

must select an action to perform in an attempt to resolve
the conflict. Actions include adding, and deleting
activities. If the action resolves the the scheduler
iterates on the resulting schedule. Otherwise, the scheduler
tries a different action for the persistent conflict.

The remainder of this paper is organized as follows.
First, we describe the DATA-CHASER shuttle payload and
mtsswn we describe how the payload is
modeled. We then go into detail about the DCAPS
approach to automated command sequence generation and
repair. Then, we describe how DCAPS fits in to the overall
flight and ground system architecture for the DATA­
CHASER mission. Finally, we discuss related work and
conclusions.

DATA-CHASER Payload

DATA-CHASER consists of two projects (see
DATA and which will fly as a

Hitchhiker aboard STS-85 on the
International Extreme Hitchhiker Bridge
2) in July 1997 A technology experiment, DATA
(Distribution and Automation Technology Advancement)
seeks to advance
operations. CHASER (Colorado Hitchhiker .

of Solar Radiation) is a solar sctence
experiment that serves to test DATA. The DATA
technologies support cooperative distributed
between different geographic sites as well as between
humans and on-board autonomy, human control,
and ground automation. -

CHASER is of three instruments
that take data in the far and extreme ultraviolet wave­
lengths. The first and oldest of these instruments (17 years
old) is FARUS, which takes a continuous spectrum from
115 nm to 190 nm with a resolution of .12 nm. LASIT
takes images of the full solar disk of the sun in the
alpha wavelength (121.6 nm) with a ~harge I?jec_t~d
Device imager. The final instrument m the scientific
package, SXEE, consists of four photometers, each having
a different metallic coating so as to enable them to look at
different wavelengths between 1 and 40 nm. The objective
of these instruments is to measure the full disk solar
ultraviolet irradiance and obtain of the sun in the
Lyman-alpha a correlation ?e~ween
solar and radiation as well as an associatiOn of
Lyman-alpha fluxes with individual active of the

medium rate (available when scheduled, at 200 kbps). The
,,. ,, '"'1u is also capable of receiving commands sent from

ground system when is available.

the mission, the DATA-CHASER payload will
be operating in four different modes. Most of the time,
when DATA-CHASER is powered, it will be in a passive
mode where it is monitoring its state and notifying the

of any changes. the time in the mission
when the orbiter is scheduled to point the bay at the sun,
the DATA-CHASER payload will shift into solar active
mode where all instruments take data.

Figure 1: DATA-CHASER payload

The data is both written to the DAT drive on board and
downlinked to the system for immediate data
analysis. Several times the DATA-
CHASER will take data while not pointing at the sun. This
data is used for various portions of the DATA
experiment with nonsolar pointing data in addition to being
used for instrument calibration.

One of the consequences of flying on the shuttle system
is that shuttle resources are limited, and their availability is
subject to change every 12 hours. These resources include
access to uplink and downlink cha.'1nels, and time that your
payload is allowed to operate. In addition to these
resources, any given payload may also have environmental
constraints as to how much contamination the payload can
take. Another example is thermal constraints, such as
maximum solar time.

the that DATA-CHASER is
scheduled to fly on, is one of the most complicated flights
that the shuttle has flown to date. In addition to the DATA­
CHASER payload, there are four other payloads sharing
the same HH In addition to the IEH-2 there
is another HH a and a

satellite. Needless to say the shuttle f.!V.""·'"E

when we have to protect the scientific instruments from
contamination events.

DATA-CHASER is an scenario for
because of the and power

management involved in the science gathering. An
automated scheduler must find an "data

while adhering to the resource constraints. In
the scientists would like to ,.,, ... ~,.,.rrn

the mission. As an the
summary data may indicate the of a solar flare. If
this occurs, scientists have and

such as on certain instruments or
longer times. These new may a
different schedule of activities.

Modeling the Payload

In order to use the DCAPS system, the user must write a
software model of the mission activities and "''-'''"""'
resources. This process involves a set
and how they interact. These definitions are then by
the scheduler to create instances of the The two

types to be defined are activities and
resources.

Activities

Activities are used to model the events that happen that
affect the DATA-CHASER payload, and the actions that
the DATA-CHASER payload can take. All activities have
some basic components: a duration, a list of slots, and a list
of slot-value assignments. The activity duration is simply a
time range. Slots are parameters of activities that may
represent resource usages. In addition, certain types of
activities (described below) have a list of subactivities. For
these activities, the user can also define a set of temporal
constraints between the subactivities. Next, we describe in
more detail the four basic types of activities: events,
step-activities, and activities.

Events are used to model activities that do not occur in a
fixed relation to other activities (e.g. and Data
Relay Satellite System (TDRSS) contacts) and are not part
of an activity hierarchy.

Steps are the "leaf' nodes in the hierarchy tree.
In other words, they do not contain any subactivities. Steps
cannot be instantiated witliout t.~eir a."1d are used to
model the activities at the lowest level of detail. For
'""''<U,_, we model an called CHASER-heating,
which consists of two steps, CHASER-heater-on and
CH..-\SER -heater -off.

are used to model activities at a middle
abstraction. can contain steps, but must also

activities. In we model an
which models the SXEE instrument

a scan. In this case, there is
which has sensor

itself.

Activities are used to model activities at the highest level
of abstraction. are the "root" nodes in the hierarchy

but no parent An
inherits all attributes of its pn~d<::cessclrs.

~V·-~AVY, the abstract is
events and resource usages at a

and event are what the
and methods are to

levels of abstraction.

Resources

Resources define the various physical resources and the
constraints Resources come in five
varieties: state, concurrency, and

State resources are used to model the systems in the
DATA-CHASER that have states associated with
them. For each state resource, the modeler must the
possible values that the state can be. Most of the
have at least one state which is or not
they are activated. The orientation of the payload is also
modeled as a state variable.

Concurrency resource constraints are used to model
rules that stipulate that an activity either must occur with
another activity or cannot occur with another One
relationship that is modeled with a concurrency resource is
the requirement that a downlink or uplink can only occur
during contact with a TDRSS satellite. This is modeled as a
resource that is present when there is TDRSS contact
activity, and required when there is a downlink or uplink
activity.

Depletable resources are used to model resources with a
fixed quantity, such a fuel or RAM. Activities can use
some finite amount of a depletable resource, which may or
may not be restorable. The amount used by the activity is
persistent to the end of the schedule. In addition, the
modeler must specify a maximum for each
depletable resource. In DCAPS, RAM is modeled as a
depletable resource. Science observations produce data and
use some amount of the depletable resource. Other
activities, such as a transfer to permanent storage, may
restore this resource.

Non-depletable resources are used to model resources
which have a limit to the at any one time, but are
reset at the end of the consumes the resource.
Similar to depletable resources, nondepletables are
assigned a maximum capacity. Resources like power are
modeled with nondepletable resources.

resources are used to model devices that can
one each of the

instruments on board
and are "1~-'''"""
and are modeled with

The DATA-CHASER Automated Planner I Scheduler will
be of the DATA-CHASER mission

It will be a ground-based used for
a schedule of commands for to the

payload. The user's manual [3] can be found at the Jet
Propulsion There are three of operating
the DCAPS system: a goal satisfaction phase, an
interactive repair and an optimization

In the satisfaction DCAPS
vv•m'-''"''"' valid schedule of

Schedule Reasoner

Schedule
Generator

GUI Schedule DB

2: DCAPS architecture

The planner/scheduler consists of two main parts, the
Plan-IT II (PI2) sequencing tool [4] and the schedule
reasoner (see Figure 2). PI2 was written by William C.
cggeine:ver and designed as an assistant
se<me:ncing tooL" PI2 includes a GUI that for easy
manipulation of the schedule. In addition, it serves as an
activity/resource database that valuable
information to the schedule reasoner. supports complex
mcm11tonmg and reasoning about activities and the various
constraints between them. The schedule reasoner uses
Artificial to ,,vuuu.'""'"

uuJ.HH>L'-' valid schedules. PI2
about resource and -.,v''""'"'"
must decide which activities to use to resolve the conflicts
and where to The two

to and fast
sec1uencimg of missiOn activities.

Data-Base
In the DCAPS system, PI2 is used as a "schedule
database" and resource constraint checker. It was ~"'"'"""''J

as a tool. Activities and
resources are An
rer>re:;ents some mission event that occurs over a
time and uses some of the mission resources. A resources
retlre~;en.ts some limited available material whose usage is
modeled as discrete blocks over time.

For each of and resource, PI2
represents the behavior

type over a of time.
activities are created, they are placed at a "~'~'-'•utou
the timeline. Resources used by that are u!Ju"''cu

reflect the additional usage. In addition to
uaJLAL•'""""' PI2 an easy-to-use input interface

the schedule. activities is as simple
cncK-ar:to-,ant!! with a mouse.

ease the burden on sequencers continually
all activities in the sequence. As activities are

added or the in resource usage is
automatically updated, and the new resource are

With this information user can
immediately see the effects of a schedule change on the
mission resources. For each resource, PI2 also monitors
any conflicts that are on the resource.

Conflicts are time intervals where the limitations of the
resource have been exceeded. These conflict intervals are
highlighted in red to flag their existence for easy
identification. Finally, PI2 monitors any dependencies that
have been defined between activities and resources. The
values of specific parameters of activities and resources
may be functionally dependent on values of other
parameters. PI2 automatically keeps these parameter values
consistent.

PI2 also helps out by serving as an activity and resource
database, producing/accepting information to/from a
sequencer. The functional interface to PI2 has been
extended to better assist an automated sequencer. A basic
set of "fetch" functions have been developed to quickly
retrieve information about conflicts and the resources and
activities involved in the conflict. For example, an interface
function has been written to fetch the times where an

can occur in the schedule. "legal times"
refers to positions where no conflicts are caused by any of
the resources used by the

In addition to ""'""'"'"' information about the current
state of the the user will need to be able to

an<oUlJf'' to fix or the
Some basic are

PI2 to allow an external system to add and move
their etc. These make up the set

that a scheduler can to resolve
conflicts.

Schedule Reasoner
The second of DCAPS is the automated
schedule reasoner. This the next step in and
simplifying the spacecraft command process.
There are three to the schedule reasoner: a schedule

a schedule and a schedule
the schedule generator will transform a set of user-

defined into a valid sequence of low-level
comm~nds. the schedule will
automatically restore the of the sequence after

user interaction
actions. The scheduler repairer iteratively attempts to
resolve each conflict, which involves choices on
what to and how to it. the schedule

uu.uu'"'- a valid schedule to increase the

Schedule Generator-The m
spacecraft commands is to come an initial schedule
of events for each of the This process has
been partially automated in DCAPS with the schedule
generator. schedules and partial schedules to be
.,.,,,, •. ,.u•f1 is done through user defined There are
two ways in which user goals are handled in DCAPS. Fi~st,
initial science and engineering are handled w1th
parameterized scheduling functions. Each function
implements a For the~e is_a "Plac~-P?we~"
function that schedules power sw1tchmg activities m
appropriate places based on some engineerin~ I?arameters.
Parameters may include such things as a mm1mum tlme
between switching, or a power on during a particular state
of a different resource.

Second, science goals can also be expressed through
data-take requests, which do not have to be a]Jart_ of the
initial schedule generation. For example, a sc1ent1st can
request ten additional scans from a particu~ar_instru111ent to
occur any time during some phase of the ffilsswn. ~s type
of general request does not include specific lo~att~ns or
necessary supporting activities. The scheduler will ~Imply
place them at random positions and allow any conflicts to
be resolved by the automated repairer.

Schedule initial schedule
still violate some of t,.;e constraints. Also,
scientists and engineers might feel that their goals were not
completely satisfied, and may need to interact with and
modify the schedule. By modifying the schedule,
new conflicts may be introduced. we need some
way of any conflicts in the

'"'""u'"'u"}; the current state of the schedule
the process automated allows

and therefore less time on
the activities. When

all conflicts can be
command to invoke the

Before describing the schedule repairer, we must present
a few definitions. A "hard conflict," or just "conflict," is a
violation of one of the resource constraints. A conflict
occurs over a certain time period and is caused by activities
called "culprits." For example, if the power is
exceeded from time tl to time then a exists
from time tl to time t2, and the are any activities
that use power during this time 3). A "soft
conflict" is a violation of one of the user's level goals.
"Hard conflicts" are violations of legal constraints, while
"soft conflicts" are violations of user "Choice
points" are places in the scheduling when a
decision must be made. For example, when there are many
conflicts to resolve, the scheduler must decide which
conflict to resolve first. A "hard choice," or "choice,"
is a decision made on the basis of hard
conflicts. It may be for not to place an
activity at a certain time because new conflicts will be
added as a result of that A "soft choice" is a
decision made on the basis of user or heuristics
with the of a more optimal schedule. An
example of a user preference is a priority scheme on c~rt~n
activities. One heuristic may be to move lowest-pnonty
culprits to the nearest legal position .

There are three possible actions to take in attempt to
resolve a conflict: move, add, or delete an activity. The
"move" action involves one of the of the
conflict to a positions that will either resolve the conflict ?r
at least ensure that the moved activity is no longer a culpnt.
Some conflicts can be resolved by adding a new activity.
These activities usually provide some resource that was
previously not available. Finally, a conflict can also be
resolved by simply deleting the culprits. This is obviously
not a preferred method and is only used as a last resort. ·

The resolution of a conflict greatly depends on the type
of resource that is in violation. There are five different
types of conflicts corresponding to the f~v~ types_ of
resources. A state conflict occurs when an acuv1ty requrres
the resource to be in a state which it is not. The culprits in
this type of conflict are all of the activities that require the
incorrect state and the activity that changed the resource to
the incorrect state. Several possibilities for resolving a state
conflict include moving the culprits to another interval

Conflict
Power
-capacity-- --

3: Conflicts

ResolveConflicts (max_iterations)
{

iterations = 1
conflicts = GetConflicts()
Loop while (length(conflicts)> 0 &&

iterations<= max_iterations) {
conflict= ChooseConflict(conflicts)
method= ChooseMethod(conflict)
case {
'move'

= ChooseCulpritToMove(conflict)
duration= ChooseDuration(conflict, culprit)

:::

ChooseStartTime(conflict,culprit,duration)
success=

'add'
,,.. •. ,""" = ChooseActivityToAdd(conflict)
duration= ChooseDuration(conflict, activity)

success
'delete'

culprit= ChooseCulpritToDelete(conflict)
success= DeleteCulprit(conflict,culprit)

nroPTe:ss = GetProgress()
suc:ce!;s II progress) then UndoLastAction()

conflicts = GetConflicts()
iterations = iterations + 1

Figure 4: Iterative Algorithm

where the required state is or adding an activity that
will change the state of the resource to the required state.

A concurrency conflict is when an activity requires the
presence of the resource a time for which it is
absent. The culprits in this type of conflict are all of the
activities that require the presence of the resource. To
resolve a concurrency conflict, the scheduler can move the
culprits to an interval where the resource is present or add
an activity that provides the presence of the resource.

A depletable conflict means that the activities of the
schedule have used too much of the resource. In this type
of conflict, the culprit is the activity that caused the
resource to overflow during the time that it first overflows.
Some depletable resources have "resetter" activities and
this sort of conflict can be resolved by adding an activity
that "resets" the available resource. For example, a
downlink activity wm free space in the downlink buffer.
A nondepletable conflict when activities overuse a
resource during a particular time interval. The culprits in
this type of conflict are all of the activities that use the
resource the conflict interval. This sort of conflict
can be or There are

no activities in the DATA-CHASER model that can add to

conflicts occur when two or more activities use
the same resource at the same time. This type of conflict
can be resolved

For type of initial the schedule repairer
must the correct activities to move, or delete and
position them in such a way that no conflicts
remain. The makes decisions at
certain choice where heuristics are used.
scheduler relies on some interface functions to PI2 that
describe the conflicts in the current describe the
activities that could resolve a and the
schedule. We first describe the random""'·'"''"...,'"''

the heuristic enhancements that facilitate ""'''"'"''-''J'u~
within the DATA-CHASER domain. The ultimate task
the system is to find the best place to schedule the activities
so as to maximize the of the schedule. In the basic

all choices are made from the list of

The is a simple iterative loop over the
conflicts the schedule 4). a conflict is
selected from the list of current conflicts. An attempt is
made to resolve the chosen conflict. a method for
resolving the conflict is chosen. The repair action will
depend on which method has been selected. If "move" is
chosen, then a culprit must be picked from the list of
culprits in the conflict. A duration and start time are chosen
for the culprit, and the is moved to the new location.
If "add" is the chosen method, then the repairer must
decide which type to instantiate. Again, a duration
and start time must be chosen for the new activity, and the
activity is inserted at the chosen time. If the repairer
chooses to "delete" an activity, then it simply must choose
an activity to delete, and delete it. After the chosen action
is performed, the schedule repairer checks to see if
progress was made. We define progress as either
decreasing the number of conflicts, decreasing the number
of culprits, or decreasing the duration of the conflicts.

If the action did not succeed in resolving the conflict, or
progress was not made, then the action is "undone."
Otherwise, the new set of conflicts are found, and the loop
counter is incremented. This process continues until all
conflicts are or the loop counter exceeds a user­
defined maximum bound. For every choice in the
algorithm, where a selection must be made from a list of
possibilities, the schedule is allowed to backtrack
to that What this means that if a particular choice

schedule may choose another from the
list before up. an choices then a
decision must have been and the "';;~uu'"''
backtrack to the AU choice
u"·''"''"u''lS the on whether or not to ,....,,,,n·r<H'

heuristic decisions and may customized to a
domain.

Schedule Optimizer-The schedule optimizer is composed
of additional knowledge supplied by the user and utilized
by the other components of the scheduler. There are three
ways to a schedule: heuristics at
search specifying a
set of "soft and an
evaluation function to score results from multiple runs of
the schedule and rPn>~in'r

A preJference
any example, when

the user

current
unnecessary disruption

vu,~!u,vu closest to its
scheduler avoid

schedule. The
existing schedule, after may have been by the
user in an to the schedule.

Preferences can also be what we
referred to as "soft conflicts." A soft conflict a way of
specifying a preferred value for a particular resource,

at a time. For vA<a.UJljJA<v,

scanned data that has not been stored on at
of the is considered a soft conflict. This is not a
hard because the data is not the buffer
size. the scientist would prefer that of the data
be written to the tape at the mission's rather than
leaving it in the on-board memory. After the schedule
repairer handles all of the hard it continues

addressing all of the soft conflicts.
The third approach to optimization involves scoring

several resulting schedules and choosing the one with the
highest score. The evaluation function is domain dependent
and would have to be written separately for each
'"''"''J"~·auvu. Some basic will be similar
across applications. For exa.mple, most science spacecraft
are mainly concerned with collecting the largest number of
images as possible. A simple evaluation would give a
higher score to schedules with greater amounts of collected
data. Once we have the evaluation function, we need to be
able to produce several different schedules from the same
goals and initial state.

This can be done by either changing the heuristics or by
running the scheduler with a different random seed. Some
heuristics may work better than others, and it is often
difficult to tell which is the best for a particular application.

it may be necessary to resort to empirical tests.
the scheduler on we can

simply choose the set of heuristics which generates the
schedule with the highest score. After choosing the
heuristics, the scheduler can be run many times with
different random seeds. At choice where there is no
heuristic for from the of the
scheduler makes a random decision. With different random

these decisions will be and the
schedule will be different

Heuristics-The general search and
described above would be futile without
guidance. Heuristics have been and
into DCAPS to help the search to a valid more

schedule. This comes from
both domain experts and scheduling experts. There are
three basic classes of heuristics used in DCAPS: .,v,,v ,uv•,•·
pruning, and heuristics.

Selection heuristics involve deterministically or
"'-'1''-''-'u'l': from a list of at a choice in the

selection is usually based on some property of
considered. For when choo:smg

to move in order to resolve a power '-'V'""·''"'''
choose the culprit that uses the most

amount of power. this heuristic resolve the
conflict faster. Another successful heuristic used in
DCAPS was one that sorted the
activity placement by the number
would cause when placed in that
approach has been referred to as the "min-conflicts"
heuristic The min-conflicts algorithm we use is

and it is worthwhile to go into detail.
For each resource used an we query the

database for the times where the can be
placed without violating the resource constraint. Then,
each interval is assigned an initial score of one.
we intersect two sets of intervals that resulted from two of
the resources, using a special "scored" interval intersection
(see Figure 5). The scored intersection of intervals A and B
results in four an interval with a score of A
for positions where A exists and B does not, an interval
with a score of B where B exists and A does not, an
interval with a score of A plus the score of B where the two
intervals intersect, or no interval where neither A nor B
exist. The result of this intersection is then intersected with
the third set of intervals.

This process continues until each set of intervals for
each resource has been intersected. The result is a set of
scored intervals, where the score represents the number of
resources that will not be violated if the is placed
in that position. Using these intervals, we can choose a

Legal Intervals

Resource 1,_,.....;

Resource 2

Resource 3 ----""1

2 1 0 2 3 2

5: Min-conflicts with scored interval intersection

position with the highest scar~, in other words, the position
with the fewest conflicts.

Another class of heuristics used in DCAPS are the

conservative
intervals that would cause more conflicts
in the schedule. These
fJV,>lWJH3 that COUld UTIT"ITC"TP

heuristics are used to
determine when to continue on the same problem
and when to move on to a different At each
choice point, we have a list of If we try one
possibility, and it we can continue and try the next
possibility, or move on to a different choice point.
Heuristics can be used to help make two types of decisions
about backtracking: on "action failures" and
deciding on "selection failures." First, the notion of an
"action failure" is not clear and
definition. Success is not §imply the chosen
conflict. When, resolving a conflict, and action attempt
may fix the chosen conflict, but cause several other
conflicts.

Therefore, success can be thought of as improving the
schedule. But how much? And what defines an
improvement? Our current definition of progress includes
observing u'1e change in the number of conflicts, the cha.'lge
in the number of culprits, and the change in the duration of
the conflicts. Checking the progress of an action can be
used as a heuristic for detei:mining whether to accept the
action, or try a different one. The second opportunity for
heuristics comes when deciding if there is a "selection
failure." While trying and failing on a list of possibilities
for a choice point, at some we must decide that the
previous choice was a failure. Heuristics can with this
decision also.

System Integration

for the
CHASER EEMOS consists of seven

Fault/Event Detection Interaction Reaction
the Ground
the software

testbed, and finally the planning and scheduling system
(DCAPS).

The command and control system that we are using,
System Command also known as

activities to SCL
and can be

"'"'"'-''""'"'"' or rules. These
"'-1''-'u'uu.u"" and rule activation commands are then sent to

which forwards that list to the SCL
Once compiled, the list is sent to the
next available

is interfaced with the EEMOS
02. 02 is an database that will be

all mission data and that is.
the It will also store a command

DCAPS will current
payload status data in the form of sensor values in the

history. It will also lists of all commands
uplinked a time interval. These are used by
DCAPS to infer command status as well as to

the current state of the payload so that a new schedule
can be created.

mission operations, approximately every four
hours or so, DCAPS will be asked an operator to
generate script scheduling commands and rule activations
for the next six hours to its schedule. Once this
list is finished, it is reviewed by the Mission Operations
staff on duty. If to be correct, scheduling and rule
activation commands will be sent to DATA/IO during the
next available uplink window.

If during that six hour period there is a major change in
the NASA activities, DCAPS will ask if the users want to
update Lh.e schedule script on-board. If the user accepts it,
DCAPS will generate a updated list, ask the user to verify
it, and send the list to DATA/IO to be uplinked.

Summary and Related Work

Iterative have been applied to a wide range of
computer science problems such as salesman [7]
as well as Artificial Intelligence Planning [8,9,10,11].
Iterative have also been used for a
number of systems. The GERRY/GPSS system
[1, uses iterative with a evaluation
function and simulated to space shuttle

activities. The Mission
Planner (OMP) (system used m
combination with a historical model of the scheduler

performing iterative However, OPIS is more
informed in the application of its repair methods in that it
applies a set of analysis measures to classify the bottleneck
before a method.

In summary, represents a "'.!';utJlil."~"'
from several First, from a mission nn<'r"t'nn

perspective, DCAPS is important in that it '"""u11 .. """'
reduces the amount of effort and knowledge
generate command sequences to achieve mission
operations goals. Second, from the standpoint of Artificial
Intelligence applications, DCAPS represents a sig;nitica:nt
application of planning and scheduling technology to the
complex, real-world problem of spacecraft commanding.
Third, from the standpoint of Artificial
Research, DCAPS mixed initiative ~~·~r~~~h
schedule iterative
optimization represents a novel approach to solving
coJmP!ex l·""·uu•u~ and scheduling problems.

Status Note

This paper was written based on the status of the DATA­
CHASER project as of Aprill997. There have been recent
changes to the system architecture due to last minute
problems integrating the software with the flight hardware.
Some components, such as the SXEE and LASIT science
instruments, will not be and therefore not
scheduled, nominal operations. post-flight
simulations and testing will be done on the complete,
original system architecture.

Acknowledgments

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

References

[1] M. Zweben, B. Daun, E. Davis, and M. Deaie,
"Scheduling and Rescheduling with Iterative Repair," in
Intelligent San
1994.

[2] DATA-CHASER Documents, Annual Report.

[3] G. Rabideau, S. Chien, T. Mann, C. Eggemeyer, P.
Stone, and J. "DCAPS User's Manual," JPL
Technical Document D-13741, 1996.

[4] W. Eggemeyer, "Plan-IT-II Bible", JPL Technical
1995.

Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

[6] S. Siewert and E. Hansen, "A Distributed Operations
Automation Testbed to Evaluate System Support for

and Operator Interaction Protocols," 4th
International Symposium on Space Mission Operations and
Ground Data Systems, ESA, Forum der Munich,
Germany, September, 1996.

[7] S. Lin and B. Kernighan, "An Effective Heuristic for
the Traveling Salesman Problem," Operations Research
Vol. 1973.

[8] S. Chien and G. DeJong, "Constructing Simplified
Plans via Truth Criteria Approximation," Proceedings of
the Second International Conference on Artificial
Intelligence Planning Systems, Chicago, June 1994, pp.
19-24.

[9] K. "Case-based Planning: Viewing
Planning as a Memory Task," Academic Press, San Diego,
1989. .

[1 0] R. Associational and Causal
Reasoning to Solve Interpretation and Planning Problems,"
Technical Report, MIT Artificial Laboratory,
1988.

[11] G. Sussman, "A Computational Model of Skill
Acquisition," Technical Report, MIT Artificial Intelligence
Laboratory, 1973.

[12] M. Deale, M. Yvanovich, D. Schnitzius, D. Kautz, M.
Ca.rpenter, M. Zweben, G. Davis, and B. Daun, "The Space
Shuttle Ground Processing System," in Intelligent
Scheduling, Morgan Kaufman, San Francisco, 1994.

[13] E. Biefeld and L. Cooper, "Bottleneck Identification
Using Process Chronologies," Proceedings of the 1991
International Joint Conference on Artificial Intelligence,
Sydney, Australia, 1991.

[14] S. Smith, "OPIS: A Methodology and Architecture for
Reactive Morgan

~ '"u'-"••>vv, 1994.

	1997-2_Part57
	1997-2_Part58
	1997-2_Part59
	1997-2_Part60
	1997-2_Part61
	1997-2_Part62
	1997-2_Part63
	1997-2_Part64
	1997-2_Part65

