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Abstract 

Deep One will be the first spa.cec:rar 
be controlled by an autonomous dosed 

'"'""~'"'""'' of 

"''-''"''-''u"~r transforms into ut:cd.ut:u 
to be executed within resource and time limits. 

This paper discusses the knowledge acquisition issues 
involved in this novel technology into 
spacecraft flight software, developing the planner in 
the context of a.la.rge software project and completing 
the work under a compressed development schedule. 
Our experience shows that the planning framework 
used is adequate to address the challenges of DSl and 
future autonomous spacecraft and it points 
to a series of open technological cw:~..m::ng•es 
ing methodologies and tools for l<n<"""'!"n''"' -~ ... -.. ~··· 
and validation. 

Introduction 
The future of the space program calls for ambi­
tious missions of exploration and scientific discovery. 
Searching for life on Mars, Europa and elsewhere in 
the solar system and beyond will require the solution of 
several challenging technical and organizational prob­
lems. A central one is the implementation of increas­
ingly capable and autonomous control systems to en­
sure both mission accomplishment and mission 
(Williams and Nayak Fall 1996; Hayes-Roth 1995; 
Tambe et al. 1995). Without these systems missions 
will have to be run with the current, traditional ap­
proach. This relies on frequent communication with 
Earth and teams of human guiding step 
a mxsston its and analyzing and react-

to the occurrence of malfunctions. The cost and 
lVI'~t:;L,!c:; difficulties of this are so 

that it cannot be carried over to the 
of missions and mission ""'"IJ<>.<Ju• .. ~~. 

fiUi~UJllUlHV VC\.,HUUR1j£,)' iS an answer tO these 
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tOJlOJnv architecture to reside in the flight on)C€!SSClr 
a and control it for 6 
intervention. The is 

One mission of 
New its 

level of using an architecture with three 
components: an integrated planning and scheduling 
system that sequences of actions (plans) 
from a executive (EXEC) 
that carries out actions and can respond to ex-
ecution time anomalies, and a Model-based Identifica­
tion and Recovery system (MIR) that identifies faults 
and suggests strategies. Each module covers a 
different function in the architecture and uses a differ­
ent computational approach. One characteristic how­
ever is common to all of them: the reliance on models 
of the domain that are largely independent from the 
task to be fulfilled. models allow the module to 
rely on a much deeper understanding of the structural 
characteristics of the domain than possible with clas­
sical rule-based approaches, facilitating model analysis 
and model reuse. 

This paper discusses the knowledge acquisition pr~ 
cess used for models and heuristics of the planning and 
scheduling system (PS) of DSL We started the process 
with an approach to planning knowledge representa­
tion (Muscettola 1994) that had been demonstrated in 
a rapid-prototype effort (Pell et al. 1996a). With DSl 
we had to face additional challenges due to having to 
develop PS in the context of the development of the full 
flight software, to the additional complexity of the d~ 
main, to the compressed schedule for development and 
to the risk-management requirements. Also, architec­
tural solutions internal to RA had to be enhanced due 
both to the increase in that were needed 
to control a real and to the need to 
sounder software We will de-
scribe how the 
ried out and the "'"'""'"'-r+ 
our current "'1-'l·"v"""''· 

in 



Figure 1: RA architecture 

ac1qujsition uu;ni<LUtJt~<. references to the 
'"'"'',..,.",..., process, model and uu.en:ac•~s 

Section deals with the 
sues as a of the 
the need for validation and 
sions appear in Section . 

Conclu-

The RA architecture consists of four distinct compo­
nents (Figure 1), the Planner/Scheduler, the Mission 

· Manager (Muscettola et al. 1997), the Smart Executive· 
(EXEC) (Pell et al. 1996b) and the Mode Identifica­
tzon and Recovery (MIR) system (Williams and Nayak 
1996; Fall 1996) . 

The execution of plans-by the EXEC is achieved by 
interaction with a Mode Identification system and a 
lower level real time monitoring and control comoo­
nent. MIR provides the EXEC with a level of abst;ac­
tion to reason about the state of the various devices it 
commands. The monitoring layer takes the raw sensor 
data and discretizes it to the level of abstraction needed 
by MIR. Finally, the control and real-time system layer 
takes commands from the executive and provides the 
actual control of the low level state of the spacecraft. 
It is responsible for providing the low level sensor 
data stream to the monitors. Details of the Remote 
Agent architecture can be found in (Pell et al. 1996a· 
1997). , 

The planner/scheduler (PS) generates a detaiied 
of action from a handful of high-level goals, based 

on of the spacecraft contained in a domain 
model. model describes the set of actions, how 

de•:orno•ose into the constraints among 
a.<A,J.Vll:; resource utilization the actions. The 

searches the space for 
one that the constraints and .,,..,,;~."""" 
The action determine the space of 
The constraints determine which of these are le-

and prune the search space. heuris-
the search order increase the number 

Smart Executive 

Figure 2: Planner /Scheduler Architecture 

Figure 2 describes the overall view of the PS. The 
Mission (MM) contains the 

with for the entire mission. 
tors can interact with the MM to remove or edit 

in the mission When the EXEC a 
new from the the MM selects a new set of 
goals from the mission profile and combines them with 
the initial state provided the EXEC and generates 
a partial for the When the EXEC has 
almost finished the plan, it requests a new 

from the MM and appends it to the current one. 
the RA experiment the plan horizon will consist of 

two three-day segments. 

Knowledge Representation the Planner 

The knowledge representation of the planner is dis-
tributed the domain the planner heuris-
tics, the profile and the plan experts. The 
domain models encode the behavioral and operational 
constraints imposed on the spacecraft by the mission 
and the hardware. The heuristics guide the planner 
search to decrease the computational resources needed 
to find a plan and to increase plan quality. The mis­
sion profile encodes the long term goals and mission 
requirements as determined by the ground controllers 
and mission designers, and resides in the Mission Man­
ager's temporal database. Finally the plan experts are 
special-purpose software modules, written and main­
tained by other teams, with which the planner inter­
acts to obtain knowiedge that cannot be encoded 
in the pla.ll modeL 

Model Representation. The PS uses a hybrid 
planning/ scheduling representation that models con­
tinuous processes on parallel timelines to describe ac­

states and resource allocations. PS 
and l');ll"l>n~<>t.n 

experts. 
Plans consist of several !Y<!J;<~Jlt:t 

which consists of a sequence of tokens. 
scribes the evolution of a "'-'':~.c..,,u 

the 

each of 
A timeline de-



(Define_Compatibility 
;; compats on SEP_Thrusting 
(SEP_Thrusting ?heading ?level ?duration) 
:compatibility_spec 
(AND (equal (DELTA MULTIPLE 

(Pover) (+ 2416 Used))) 
(contained_ by 

(Constant_Pointing ?heading)) 
(met_by (SEP_Standby)) 
(meets (SEP_Standby)))) 

(Define_Compatibility 
;; Transitional Pointing 
(Transitional_Pointing ?from ?to ?legal) 
:parameter_functions 

(?_duration_ <- APE_Slev_Duration 
(?from ?to ?_start_time_)). 

(?_legal_ <-
APE_Slev_Legality 

(?from ?to 

?from)) 
(Constant_Pointing ?to)))) 

(Define_Compatibility 
; ; Constant Pointing 
(Constant_Pointing ?target) 
:compatibility_spec 
(AND (met_by (Transitional_Pointing 

* ?target LEGAL)) 
(meets (Constant_Pointing 

?target * LEGAL)))) 

Figure 3: An example or a compatibility constraint in 
the planner model. 

If the plan is to start in standby, fire up the engine, 
and return to standby, the timeline would have one to­
ken for each of those processes. Each token has a start 
time, and end time, and a duration. Each token can 
have zero or more arguments (e.g., the thrust level at 
which to fire the engine). 

The plan model consists of definitions for all the 
timelines, definitions for all the tokens that can ap­
pear on those timelines, and a set of temporal con­
straints that must hold among the tokens in a valid 
plan. The planner model is described in a domain de­
scription la.11guage (DDL), and is represented as part 
of the planner's data base also called the Plan DB. 

Temporal constraints are specified in DDL by com­
patibilities. A compatibility consists of a master token 
and a boolean of relations that 
must hold between the master token and tokens. 
An example is shown in Figure 3. 

The first compatibility says that the master 
SEP _THRUSTING (when the Solar Electric 

must be 1m:med1a~tely 

Constant Transition Transition Constant 
Pointing(A) Pointing(A,B) Pointing(B, C) Pointing( C) 

__________ ~....:.P.:.;ow::.:e:.:..r.:.:(2::..;4.:.;16::.:W:,:.:):..___........J _ __________ _ 

Figure 4: Plan Fragment 

spacecraft is in a steady state aiming its camera to­
wards a fixed target in space. Transitional paintings 
turn the spacecraft. The SEP standby state indicates 
that the is not thrusting but has not been com­
pletely shut off. A plan fragment on these com­
patibilities is shown in Figure 4. 

Heuristics. Heuristics guide every choice point of 
the planners search. On each iteration of the search, 
the planner chooses an unresolved compatibility con­
straint and a way to resolve it: by constraining an 
existing toisen to satisfy the constraint, adding a new 
token that satisfies it, or assuming that it will be satis­
fied by some token in the next horizon. There are other 
decisions as well, such as grounding under-constrained 
argument values. For all of these decision points a 
heuristic can be provided that tells the planner in what 
order to try the alternatives and which alternatives 
should never be considered. 

Mission Profile. The goals for the entire mission 
are stored in an on-board file called the mission profile, 
which is managed by the Mission Manager. The profile 
ca1:>t1ue~s mission operations knowledge, such as when 

communications passes are scheduled, how much 
fuel is allocated for each segment of the mission, when 
various mission phases start and stop, and so on. The 
profile also serves as the primary interface with the 
ground controllers. The ground team commands the 
spacecraft at a high level by changing or adding goals 
to the profile. 

Plan Experts. A large software project like the 
DSI, requires the contribution of several teams with 
specialized knowledge. Planning Experts are programs 
developed and maintained by other teams. They coor­
dinate with the planner but which are not strictly part 
of its domain ret>re:ser.ttation. 

A is the Attitude control Planning 
answers queries about the du­

and whether a tum violates 
will it expose the camera to a 

. How violation con-



straints are calculated is completely opaque to the 
planner. As a result, the plan experts from 
the planning model simplifies knowledge acquisi-
tion and software maintenance process. Quite often, 
due to the specificity of these modules, the code is 
also reusable across missions. For instance, much of 
the code for attitude constraint violation in APE came 
from NASA/ESA's Cassini mission (G.M.Brown et al. 
1995). 

There are two kinds of plan experts. The first 
kind answers questions about constraints. APE is of 
this variety. The second kind generates goals for the 
planner to achieve. These on-board goal generators 
allow the spacecraft to make autonomous decisions, 
within certain parameters, based on local information. 
The on DS1 is the on-board navigator, 

on trajectory related maneuvers 
.u'"'"'""''"" of nearby celestial bodies from 

N AV can determine the spacecraft position. 
The asks the for when 

the for them. The goal generators 
into the plan, other than whatever in­

formation in the request. When the goals are 
returned, the planner decides how they will be achieved 
in the plan, or whether they are achieved at all. If the 
plan is over-constrained, goals can be rejected based 
on a global scheme. 

The Knowledge Acquisition Process 
Traditionally flight softw_are for a spacecraft consists 
only of low level device drivers, attitude control sys­
tem and sequence execution Com­
manding done from ground allows the operational and 
mission constraints· to be designed and implemented 
at a later time, sometimes even after launch. With 
on-board autonomy, the design process must take a 
more comprehensive view to the full mission life cycle 
including from the very beginning the modes, opera­
tions and expected behaviors of the spacecraft in the 
domain models. To accomplish this we used a spiral 
development model (Boehm 1988). 

In the following sections we discuss the knowledge 
acquisition process and methodology for the planner 
and the resulting problems and issues they raised. 

The Spiral Development Process 

In spiral development (Boehm 1988), functionality is 
added incrementally in distinct software releases. This 
allows base functionality to be understood and de­
veloped before moving to more <-v•;u~.~."' .... u.u'""n_.. ... , .... 
Processes and standards are also 
ral. At the end of each de'V'el~JptneJ:lt 
teams meet to discuss the obstacles 
and the lessons learned. The DS1 
is discussed further in 

At the of each the mlz>SlO>n 
neers a baseline scenario that would 

Subsystem R1 R2 R3 
Mission events 0 1 3 
Power 0 0 2 
Ion Propulsion 1 5 5 
Attitude control 3 4 4 
Communications 0 1 2 
MICAS 1 1 6 
Beacon experiment 0 0 2 
RCS system 1 1 3 
Navigation 3 3 4 
Planner /scheduler 1 1 1 
Total 10 17 32 

Table 1: Number of timelines changed in the model for 
each development release. 

the new functionality for that spiral while still requir­
ing the old functionality. The hardware management 
team (HWMT) then arranged several days of knowl­
edge acquisition meetings with the hardware develop­
ers, who would detail the software requirements for 
their hardware to work correctly. 

Each of the modeling and software development 
teams sent representatives to these meetings. The 
hardware developers presented the baseline behavior 
for the upcoming spiral, and the modelers asked ques­
tions to elicit further details. Since each component of 
the RA models the hardware at a different level, having 
representatives from each team was particularly help­
ful in identifying interaction issues across the different 
levels. 

The DS1 Spiral releases were designated Rl through 
R3. To give the reader the scope of development that 
took place, we show the evolution of the planner model 
sizes for each revision in Tables 1, 2, and 3. 

From the PS perspective each revision in the spiral 
development model involved successively sophisticated 
constraint modeling of the spacecraft. In the first re­
vision the model only dealt with simple turns and pic­
ture taking for navigation images; more complex issues 
such as power, thermal modeling were ignored. In the 
next revision the model included the modeling the SEP 
engines and obtaining more detailed trajectory infor­
mation from the navigation The third spiral 
release added power management, advanced turns, and 
comet related activities. 

In each revision of the Spiral development approxi­
eight weeks were needed for knowledge capture 

and another weeks for model development and 
ofthe search. 

Model Acquisition 

Model acquisition in each 
nizant 

started with the cog­
the baseline func-

of-~.-.,.,.w 



Subsystem R1 R2 R3 
Tot Add Mod Del Tot Add Mod Del Tot 

Mission events 0 1 1 5 6 
Power 0 0 3 3 
Ion Propulsion 1 11 1 12 1 3 13 
Attitude control 4 4 8 6 2 1 14 
Communications 0 3 3 2 2 5 
MICAS 3 5 8 14 22 
Beacon -.. 0 0 4 4 
RCS system 1 1 4 1 5 
Navigation 6 2 6 3 9 
Planner I scheduler 2 2 2 
Total 17 41 69 

Table 2: Number of ~oken modifications to the model for each development release. 

Subsystem Rl R2 R3 
Mission events 0 2 4 
Power 0 0 0 
Ion Propulsion 3 11 14 
Attitude control 2 11 16 
Communications 0 3 7 
MICAS 3 3 20 
Beacon experiment 0 0 4 
RCS system 0 0 2 
Navigation 4 3 7 
Planner I scheduler 2 2 2 
Total 16 36 76 

Table 3: Number of compatibilities changed in the 
model for each development release. 

oped a specification called a Problem Statement which 
described how that functionality would be achieved. 
For the planner, this described changes to the planning 
model and engine and described changes to interfaces 
with the EXEC and plan experts. Teams with inter­
faces with the planner (especially the EXEC) would 
comment and propose design changes and any addi­
tional requirements. After a few iterations of this pro­
cess, the modeler would update the Token Dictionary. 
The token dictionary details the syntax and seman­
tics of each token type on all the timelines and forms 
the primary document for all negotiated informal in­
terfaces with the EXEC. 

We used an informal elicitation methodology to a.c­
the models described in the statements. 

elicitation with a standard list of ques-
tions about how operated and what 
constraints or interactions it had with other 
terns. These would then lead to more detailed ques­
tions. The """''Y"""""'r~ lcrlowlect!le 
formal document and the en;gtn,eeJrs 
v~··~·"'""" session. There was no formal '"'''""'"'"''"VIo;.Y 
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line scenario. Nonetheless, this was to build 
the models and successfully complete the scenar-
ios each spiral release. In retrospect, an acquisi-
tion methodology that resulted in a formal specifica­
tion with guaranteed coverage would have been useful 
for rigorously validating the model (see Section ). 

Issues in Domain Modeling. In modeling for the 
DS1 mission, we discovered that a relatively large num­
ber of modeling tasks were easy to do, given the syntax 
and semantics of DDL. In a couple of cases we had to 
introduce auxiliary timelines to support the planner's 
reasoning process. 

With each iteration of the development cycle the fi­
delity of the planner models was increased. Knowledge 
acquisition from each spiral cycle affected the plan­
ner's domain model and it's heuristics. Changes to the 
domain model itself were fairly straightforward. How­
ever, these changes often required re-tuning the heuris­
tics which consumed significant development effort. 

Heuristics. Because of the tight coupling of the do­
main model to the heuristics, changes to the model 
almost always require corresponding changes to the 
heuristics. This makes it difficult to introduce incre­
mental changes to the model. Normally, a family of 
timelines corresponding to a new device or capabiih.y 
can be added with minimal impact on other timelines. 
Most of the constraints are among the timelines in the 
family, with a handful of constraints to external re­
sources such as power or spacecraft attitude. However, 
the new timelines change the optimal search strategy, 
and this requires the heuristics to be re-tuned. 

Activities 

Sometimes the ground controllers want to execute un-
usual maneuvers that are not modeled the For 

may want to execute a turn 
in order to loose a stuck solar 

a way for the "'nn.u•.u 

"'""'""'•"':t maneuvers such as 



this without uploading a new model. Changing the 
model maybe fine for permanent patches, but the time 
and cost needed to develop and test the patch makes 
them impractical for one-time emergency maneuvers. 

In support of this requirement the model provides 
a special activity token that can stand in for any 
activity the ground wants to execute but is not oth­
erwise supported by the planning model. The ground 
controllers insert the token where they want it in the 
mission profile. It can be scheduled for a specific time, 
or scheduled relative to other events. The activities 
performed by the token are specified in a file of time­
tagged low-level commands that the EXEC executes 
at the beginning of the token. 

Since the actions executed in the special activity to­
ken are not modeled by the planner, it is possible that 
they could conflict with planned activities. For exam-

the could be to hold the "~-''~""''""' 
still in to take an image while the 
ity token is executing a high speed turn. avoid such 
conflicts, constraints can be specified between the spe­
cial activity token and other tokens in the plan. In this 
case, attitude dependent activities would be disallowed 
while the special activity token was active. These con­
straints can be specified in the mission profile. 

The interfaces between the planner and other parts of 
the flight software impact the knowledge acquisition 
and representation. The planner has two main inter­
faces: interfaces with plan experts, and interfaces with 
the Smart Executive component of the RA. 

Plan Expert Interfaces. Negotiating the plan ex­
pert interfaces was among the easiest of the knowledge 
acquisition tasks. This is largely due to the opaque­
ness of the plan experts to the planner and vice versa. 
The bulk of the knowledge acquisition was in the very 
first meeting, where the focus was understanding how 
the plan expert worked and explaining planner con­
cepts to the plan expert developers. In the case of 
APE, the planning team needed to understand how to 
specify a turn, and what information was needed for 
APE to compute a turn. The details of how turns are 
computed were irrelevant. 

Once this initial knowledge acquisition was com­
pleted, subsequent interface negotiations were com­
pleted in a matter of hours, usually by phone or emaiL 
The interfaces were formally defined as C structures 
that specified the information passing from the plan­
ner to the expert and back. These were captured 

•nr<>ri"<>ra control and in an executable 

in the plan as needed without affecting its duration or 
legality. The planner model and heuristics exploited 
this knowledge to simplify the design and speed up the 
search. Assumptions of this sort were rare, and cap­
tured explicitly in the interface control documents. 
EXEC Interfaces. The interfaces between the plan­
ner and the Smart Executive (EXEC) are embodied by 
the timeline and token definitions included in the plan­
ner's model. 

In order for the EXEC to execute it must 
know what tokens can appear in the plan and how to 
expand those tokens into detailed commands to the 
real-time flight software. This creates a very strong 
coupling between EXEC and the planner. All of the 
timelines, tokens, and their semantics were negoti­
ated at the beginning of each spiral before any im­
plementation took place. However, if the need for 
another token was discovered development, or 
some token needed another argument, or the seman­
tics were wrong, then the EXEC and PS had to change 
their implementations accordingly. Because the tokens 
are such a major part of the model implementation, 
changes of this sort occurred in every development spi­
ral despite strong efforts to prevent them. 

Several solutions to this interface issue were consid­
ered for DSl. One successful approach was to use in­
formation hiding to create private token arguments. 
Additional arguments are often needed to hold values 
derived from other arguments, or to propagate values 
from other tokens. The need for these arguments of­
ten goes unnoticed until development begins in earnest. 
Private arguments are seen by the planner, but are do 
not appear in the plan. This allowed modelers to add 
arguments for bookkeeping and propagation purposes 
without impacting the EXEC. This capability was in­
troduced at the end of the R2 spiral, and used with 
great success in R3. 
Interface Management Process. To ensure dis­
connects were kept to a minimum, another requirement 
added by the project during the design phase of each 
revision, was the development of Problem Statements, 
with details of each modules' design, interfaces and as­
sumptions for that revision cycle. The planner in ad­
dition also had a token dictionary with the negotiated 
token level interfaces with the EXEC. With the EXEC 
with which the planner representation was tightly cou­
pled, any agreements and assumptions in the planner's 
model were accurately document and easily accessible 
via a world wide web (WWW) interface to the dic­
tionary and disconnects caught early on. In order to 
avoid disconnects with respect to the hardware speci.fi­
'-"'""'u.""'· est)ec:xruiv as hardware delivery quantified the 

was the central of con-
disisexnirtat:ing information. 



concept review would take Each team would 
publish a short document detailing their design choices 
and the assumptions made, especially towards generat­
ing the scenario in the current cycle and the interface 
requirements. Any disconnects found would require 
the project to follow through with the team in question 
to ensure the new design actually covered the complete 
scenario. 

Development 

Because of geographically distributed teams, design 
documents and interface agreements were exchanged 
primarily via a WWW interface with auto-posting fea­
tures as mentioned in (Compton et al. 1997). The use 
of an intranet was decisive in successfully collaborating 
among remote sites especially when exchanging device 
level knowledge. 

Additionally, for short and reviews 
we used an arachno-conference where people 
engaged in a conference call while accessing the web to 
view documents. This greatly reduced the time, effort 
and expense of commuting to a central site. Note also 
that the source code was under revision control. 

Issues 
The DSl project presented several challenges in knowl­
edge acquisition, representation, and validation. The­
DSl planner proved capable of addressing these issues, 
at least to the extent needed to satisfy the require­
ments of DSL However, there are a number of issues 
that must be resolved before this technology can be 
used on a risk-intolerant science mission by spacecraft 
engineers with minimal support from the planner de­
velopment team. 

Acquiring Heuristics is Difficult 

Good heuristics are needed to make the planner search 
computationally tractable. Heuristics tell the planner 
what decisions are most likely to be best at each choice 
point in the planner search algorithm, thereby reduc­
ing the search. Developing a good set of heuristics 
for the DSl planner is currently very difficult, both 
because it requires an intimate knowledge of how the 
planner search algorithm interacts with the model, and 
because the planner requires exceptionally good heuris­
tics to achieve computational tractability. The DSl 
model developers had this experience and so were able 
to develop good heuristics, but these obstacles must be 
overcome before spacecraft engineers can be expected 
to develop heuristics on their own. 

One solution is to tools that derive heuris-
tools have been discussed in 

lea.rni[ng and literature. Two of 
are to derive heuris-

a.u.Lutua.LL"-,i:t.ll.Y vAu,vu.r;u a Static Of the 
or to learn them 

model 1996). Unfortunately, the DSl 
ner requires exceptionally good heuristics to .,,.. • .,,.,,,, 
tractability, and these methods generally do not pro­
duce heuristics of that caliber. The sensitivity of the 
planner to the heuristic must be reduced before auto­
matic heuristic acquisition can be feasible. 

and Debugging Tools Needed 

Modeling could be made considerably easier with even 
a few simple tools. Although there was insufficient 
time to develop them for DSI, our experience with 
developing and debugging models suggested a number 
of desirable features. Developing tools along these lines 
is one of our near term goals. 

Plan Visualization Tools. One problem with the 
current system is that it is very difficult to under­
stand what the planner is doing, despite copious out­
put. This makes it difficult to isolate the decisions 
that lead to bugs in the plan, or prevent the planner 
from finding any plan at all. A visualization tool would 
help modelers to track the planners behavior, as well 
as making it easier for new users to understand how 
the planner works. 

Deactivating Timelines. When debugging, the 
modeler often suspects the bug is within a small fam­
ily of timelines. But as the model gets more complex, 
it becomes difficult to focus on the behavior of those 
timelines. A simple way to address this problem is to 
disable irrelevant timelines. The planner ignores the 
timelines and all compatibilities associated with them. 
This facility is rather easy to add, though there was in­
sufficient time to implement given the compressed DSI 
schedule. 

Model Visualization Tools. As the model gets 
larger, it becomes harder to keep in mind all the con­
straints among the parts of the modeL A model vi­
sualization tool that displayed a graphic view of the 
model (or a subset) and the constraints would help the 
modeler view this information as a whole. 

Validation of the Planner 

Before any spacecraft is launched, its flight software 
must be throughly tested and validated. The same 
is true for autonomous flight software. However, the 
validation methods used for traditional software are 
not generally applicable to autonomous software. New 
methods must be developed. 

The planner can generate thousands of plans, de­
pending on the mission goals, the spacecraft state, 

generated on-board by experts and varia-
tions on the model To fully validate the 

one must sure that it will ""'v'"''"·~r, 
one of those 

executed ,..,..,.,..,,~r 



we considered for DSl but did not have time to 
ment was a constraint checker that tested whether 
plan satisfied certain correctness constraints. These 
include the constraints in the model, plus additional 
constraints derived from flight rules and other opera­
tional constraints. 

An alternative to generating and testing plans is to 
validate the model and verify that the planner always 
produces plans that are consistent with the model. 
One approach is to capture the flight rules and other 
requirements as constraints, and ensure that 
the model is consistent with all of them. A related pos­
sibility is to convert the models into a human-readable 
form and have them approved by cognizant system en­
gineers (domain experts). 

DS1 will be the first deep-space under au­
tonomous control. The complexity of this domain 
raised a number of important knowledge acquisition 
and representation issues, some of which we were able 
to address and some of which remain open. Issues were 
also raised by the fast-paced spiral development cycle, 
the embedding of the planner within the autonomy ar­
chitecture, and the risk-management requirements of 
the space flight domain. 

These issues are not unique to and are likely to . 
occur on other projects that require autonomous con­
trol of a complex environment. As the role of auton­

increa..c;es in space exploration and other areas, so 
the importance of finding good solutions to these 

issues. 

Acknowledgments 
This paper describes work partially performed at 
the Jet Propulsion Laboratory, California Institute of 
Technology, under contract from the National Aero­
nautics and Space Administration. This work would 
not have been possible without the extraordinary ef­
fort and dedication of the rest of the Remote Agent 
Planning Team: Steve Chien, Charles Fry, Sunil Mo­
han, Paul Morris, Gregg Rabideau, and David Yan. 

References 
Barry Boehm. A Spiral Model of Software Devel­
opment and Enhancement. Computer, pages 61-72, 
May 1988. 

Michael 

Oren Etzioni. Acquiring Search Control Knowledge 
via Static Analysis. Artificial Intelligence, 62, 1993. 
G.M.Brown, D.Bernard, and R.Rasmussen. Attitude 
and Articulation Control for the Cassini Spacecraft. a 
fault tolerance overview. In 14th AIAA/IEEE Digital 
Avionics Conference, 1995. 
Barbara Hayes-Roth. An Architecture for Adaptive 
Intelligent Systems. Artificial Intelligence, 72, 1995. 
IEEE. Proceedings of the IEEE Aerospace 
ence, Snowmass, CO, 1997. 
Sanford Krasner and Douglas E. Bernard. Integrating 
Autonomy Technologies into an Embedded Spacecraft 
System-Flight Software System Engineering for New 
Millennium. In Proceedings of the IEEE Aerospace 
Conference (1997). 
Steven Minton. Automatically configuring constraint 
satisfaction programs: A case study. Constraints, 
1(1), 1996. 
Nicola Muscettola, Ben Smith, Charles Fry, Steve 
Chien, Kanna Rajan, Gregg Rabideau, and David 
Yan. On-Board Planning for New Millennium Deep 
Space One Autonomy. In Proceedings of the IEEE 
Aerospace Conference (1997). 
Nicola Muscettola. HSTS: Integrating planning and 
scheduling. In Mark Fox and Monte Zweben, editors, 
Intelligent Scheduling. Morgan Kaufmann, 1994. 
Barney Pell, Douglas E. Bernard, Steve A. Chien, Er­
ann Gat, Nicola Muscettola, P. Pandurang Nayak, 
Michael D. Wagner, and Brian C. Williams. A Re­
mote Agent Prototype for Spacecraft Autonomy. In 
Proceedings of the SPIE Conference on Optical Sci­
ence, Engineering, and Instrumentation, 1996. 
Barney Pell, Erann Gat, Ron Keesing, Nicola Muscet­
tola, and Ben Smith. Plan Execution for Autonomous 
Spacecraft. In Louise Pryor, editor, Procs. of the 
AAAI Fall Symposium on Plan Execution. AAAI 
Press, 1996. 
Barney Pell, Douglas E. Bernard, Steve A. Chien, Er­
ann Gat, Nicola Muscettola, P. Pandurang Nayak, 
Michael D. Wagner, and Brian C. Williams. An Au­
tonomous Spacecraft Agent Prototype. In Proceedings 
of the First International Conference on Autonomous 
Agents. ACM Press, 1997. 
M. Tambe, W. Lewis Johnson, R. M. Jones, F. Koss, 
J. E. Laird, PaulS. Rosenbloom, and K. Schwamb. 
Intelligent Agents for Interactive Simulation Environ­
ments. AI Magazine, 16(1):15-39, Spring 1995. 
Brian C. Williams and P. Pandurang Nayak. A 
model-based approach to re(1.ctive self-configuring sys­
tems. In Procs. of AAAI-96, pages 971-978, Cam-

Mass., 1996. AAAI Press. 
Brian C. Williams and P. 
bile AI in the New Millennium. AI 

1996. 


	1997-2_Part99
	1997-2_Part100
	1997-2_Part101
	1997-2_Part102
	1997-2_Part103
	1997-2_Part104
	1997-2_Part105
	1997-2_Part106



