
A Reactive Planner for a Model-based Executive*

c.
Computational Sciences

NASA Ames H<>•o<><>rr-h

Moffett Field, CA 94035 USA
E-mail: williams«lptolemy. arc . nasa. gov

Abstract

A new generation of reactive, model-based executives
~e that make extensive use of component-
based models to anomalous situ-
ations and generate novel sequences for the internal
control of autonomous a
generative, planner a core element
that bridges the gap between current and target states
within the reactive loop. Burton is a sound, complete,
reactive planner that generates a single control action
of a valid plan in average case constant time, and com­
pensates for anomalies at every step. Burton will not
generate irr~versible, potentially damaging sequences,
~cept to effect repairs. We present model compila­
tiOn, causal analysis, and online policy construction
methods that are key to Burton's performance.

Conventional wisdom has largely pushed deductive
reasoning out of the reactive control loop for nearly
a decade. However, recent search for the surprisingly
elusive, hard satisfiability problem foretells a healthy
return to ~eductive methods(Williams & Nayak 1996b;
Kautz & :::ielman 1996) based on RISC-like search en­
gines. This paper pushes this perspective down tore­
active time scales, reporting on a model-based plan­
ner, called Burton, that is at the core of a model­
based executive's reactive control loop. By solving the
NP hard component of deductive problems at compile
time, Burton exploits the expressiveness of NP hard
methods, without assuming the risk of falling off the
elusive cliff.

Burton's parent model-based executive is particu­
larly well suited to controlling the complex internal be­
haviors of large scale autonomous systems, we call im­
mobile robots (Williams & Nayak 1996a). What distin­
guishes this executive is its ability to sense and control
hidden state variables indirectly, and the use of compo­
nent models to identify these novel interaction paths.
A between this model-based executive and
a method-based executive provides a

IJCAI-97.

Pandurang Nayak
Recom Technologies

NASA Ames Research Center, MS 269-2
Moffett CA 94035 USA

E-mail: nayak«lptolemy. arc. nasa. gov

'""''!'.ll<t!';t: and an extensive
novel responses to anomalous

situations. pa:rts of this hybrid executive
will be demonstrated in late 1998 on NASA's Deep

One autonomous et al. 1997).-
The paper with an from the space-

craft domain, and then introduces our concurrent tran­
sition system modeling formalism. Next we introduce
model-based execution as identifying a current state
(mode identification), generating an optimal target
state (mode reconfiguration), and generating a con­
trol action to move towards the target (model-based
reactive planning). The rest of the paper presents the
Burton model-based reactive planner through a series
of domain restrictions, model compilation, policy con­
struction and online planning algorithms.

Example: autonomous spacecraft
First consider the underlying task. Figure 1 shows
an idealized schematic of the main engine subsystem
of the Cassini spacecraft and valve driver circuitry.
It consists of a helium tank, two propellant tank~,
two main engines, regulators, latch valves, and pyro
valves. The helium tank pressurizes the propellant
tanks. When propellant paths to a main engine are
open, the propellants flow into the engine and produce
thrust. The pyro valves are used to isolate parts of the
engine. They can open or dose only once.

Valves are controlled valve drivers. Commands to
the driver are sent via a control unit (VDECU). The
driver and VDECU can be on or off, and recoverably
or permanently failed. A recoverably failed component
can be it. A valve's state o..:u;(l.uJ{e::>

as a result of a command if the corre:spon,dirtg
driver and

In P'"'""'"'l".
e.g., gener-

ates a sequence of behavior goals, such as producing
thrust~ The reactive executive achieves this using
its models to control sequences

Legeod

% Valve

:1£: Pyro valve

Figure 1: Schematics of and valve control cir-
cuitry. Valves are closed only when solid black.

that open the relevant set of valves '"'"''"'w'5

<::u~;tu•e. Valves are commanded open 1nf1wP•r>r.

executive must ensure that the control unit and driver
leading to the valve are on and healthy to com­
"'"'""'"'u•J<.. the valve. Generating sequences to handle a
breadth of novel situations requires extensive reason­
ing about physical processes as well as state changing
actions. Doing this reactively is the focus of this paper.

Concurrent transition systems
We start by reviewing the propositional, concurrent
transition system formalism introduced in (Williams
& Nayak 1996b), which represents normal operation,
failure, and repair of real-time software and hardware.
A transition system S is a tuple (II, :E, T). II is a set
of variables, each ranging over a finite domain. II is
partitioned into the set II .. of state variables, the set
lie of control variables, and the set lid of dependent
variables. :E is the set of feasible assignments to vari­
ables in II. Each element of a state variable's domain is

nominal or failure. Control variable values
are determined exogenously by a controller. A state
is an assignment to each variable in The set r: .. ,
the projection of :E on variables in is the set of all
feasible states. T is a finite set of transitions. Each
transition r E is a function r : :E --t r(a)
is the state obtained transition r to any
feasible 0". The transition T n E T models
the nominal while all other tran-
sitions model failures. action is a transition
that takes a state variable from a failure to nominal
value.

sequence of feasi-

ble states S: so, s1, ... such that for each Si there is a
feasible O"i E :E which agrees with s; on as­
signments to variables in and Si+l = for some
r E T. A trajectory that involves only the nominal
transition Tn is called a nominal trajectory. A simple
trajectory does not repeat any state.

A transition system is using a restricted
subset of propositional temporal logic that uses the 0
operator. The propositions in this logic are all of the
form y = e, where y is a variable and e is an element
in domain. 0 is the next denoting truth
in the next state of a trajectory.

We specify the set :E of feasible assignments by a
formula pr:,, i.e., :E is the set of all vari-

=<,,5,.uu"'"'"' that py::,. A transition r of S
a formula Pr, which is a of

sptoCZJI'!Cc!tu>ns Pr; of the form
where is a formula and y; is a state
variable. A state sk can follow state Sj r if there
is an ai E :E that agrees with Sj such that
for all Pr; if ai satisfies then s~;; e; toy;.

Example 1 Driver 1 has a state dr1 , and
two dependent variables cmdin1 and cmdout1 • The
domain of dr1 is {on, off, resettable, failed}, cmdin1
is {on, off,reset,open, none}, and cmdoutt is
{open, close, none}. dr1 's transition diagram is:

cmdinl = reseto
on resettable

cmdin1 =on cmdin1 = off

off 0 failed

which is specified by formulae like:

dr1 = resettable 1\ cmdin1 = reset :::::} Odr1 = on

which describes the effect of resetting a driver. The
driver's feasible states are specified by formulae like:

(dr1 =on 1\ cmdin1 =open):::::} (cmdout1 =open)

The VDECU has control , whose value
is propagated to cmdin1 when the VDECU is on:

(vdecu1 onl\drcmdin1 = reset) :::::} (cmdin1 = reset)

and driver on, and then '"'"'""''!<,
to open. The driver's
the valve's state transitions.

planner generates a sequence of configuration goals,
each a behavior like "achieve thrust." The

evolves that
COJ1hfmratJ:on goals.

is achieved a reactive executive that generates
a sequence of control actions, based on of
the current state and co:nhJ~I~at·ton

variable in
o:::x.cul.LU!•e. c•orr·es]pOJndimg to closing a switch or
a :reset message across a bus. The current

observable a set of vari-
U IId, to sensors, and an

observation is an assignment to each variable in

Definition 1 A reactive control is a
where s is a transition e is the ini-

tial state of and C is a reactive executive. C takes
as input the initial state a sequence 1 : go, 91? ...
of formulae called
and a sequence of observations o · oo, 01, ••. , and in­
crementally a sequence of control actions
f.L : J.Lo, f.Lb ••. so that S evolves a trajectory
s : s0 , s11 ••• that satisfies: (a) s0 is (b) for each
s; there is an assignment O'i E E that agrees with s;,
o;, and J.L; on the corresponding subsets of
and (c) if Si+l is the result of a nominal transition
from Si under p,;, i.e., Bi+l = Tn(ai), then either s;+l

satisfies 9i or is the of a simple nominal
trajectory that ends in a Sj that satisfies g;.

The idea is that a reactive executive continually tries
to transition the system toward a state that satisfies
the desired goals. It is reactive in the sense that it
reacts immediately to changes in goals and to failures,
i.e., each control action p,; is incrementally generated
using the new information, o; and g;, in each state.

A model-based executive, uses a specification of a
transition system to determine the desired control se­
quence in three stages-mode identification (MI), mode
reconfiguration (MR) and model-based reactive plan­
ning (MRP). MI and MR set up the planning prob­
lem, initial and while MRP
rP.llLC:tivP.lv generates a plan solution. More specifically,
· MI incrementally generates the set of most likely plant
trajectories consistent with the plant transition model
and the sequence of observations and control actions.
This is maintained as a set of most likely current states.
MR uses a transition model and the most
current state MI to determine a reachable

state that satisfies the MRP
the first action in a control sequence for

from the most current state to the
nP•-trn-rn~·r1 MI confirms that

MI
paper

focuses on MRP.
A key decision ---·-~··J

is the focus on the most by
MI. The difficulty with the more conservative strategy
of considering a single control sequence that covers a
set of likely states (Williams & Nayak 1996b) is that
the different states will different con-
trol sequences. While can be used to
select between different control sequences for one that
maximizes success & the cost of
generating multiple states and control sequences works
against our goal of building a fast reactive executive.

The greedy approach introduces risk: the control ac­
tion appropriate for the most likely trajectory may be
inappropriate, or worse still if the actual
state were otherwise.
of the MRP prE~clu.des
long-term consequences of thus open
the that control while not outright
harmful, may degrade the system's capabilities. For

firing a pyro valve is an irreversible action
that forever cuts off access to of the propulsion
system. Such actions should be taken after due delib­
eration the planner or human operators.

fundamental to the reliability of our approach
is the following

Requirement 1 MRP considers only reversible con­
trol actions, unless the only effect is to failures.!

Model-based reactive planning
The definition of MRP (Burton) follows from Defini­
tion 1 and the functions of MI and MR:

Definition 2 A model-based reactive planner (MRP)
takes as input a specification of a transition system
a most likely initial state Si (from MI), and a lowest
cost target state t; (from MR) that satisfies goal g;.
The MRP generates a control action J.li such that for
any ai E E that agrees with s; and f.L;,
the state Bi+l = Tn(a;) is either the target state ti or
(s;, Si+l) is the prefix of a simple nominal ""'''"''-·"v"
that ends in

Given the of transitions and STRIPS op-
erators, Burton's problem appears similar to STRIPS

(Weld 1994). the critical differ-
ence is the distinction between classical and
machine controL The

variables indirectly through co-temporal, physical in­
teractions (PE). This extension adds enormous expres­

to the planner.
This extension equally adds to the challenge of

achieving We eliminate intractability at
modeling time through an automated model compi­
lation method and four simple modeling requirements.

models

Recall that a transition is 1>ut:u.L1"'u

formulae => 0Yi = ei. What
a simple transition is that the formula q.i can con­
tain involving variables that
are not directly controllable, but u"''-'"''-'''"'
variables the
of PE. This introduces a pc,teJltl<al cunmttoi::l,olou<:tJ

To the transition

of py;,
that do not contain u"'IJ"''"u'~'-'"

J.J.J..<OJUv~~V of Qy; = e; is a f'("\t1>1lnf'-

nr<Om)Sl1~10J[!E involving state and control vari­
ables such that the transition
PE U U.,.ET p.,., entails the formul': I ~ 0Yi ~'· I
is a prime implicant if no sub-conJunction of I 1s an
implicant. Given that dependent variables cannot be
directly controlled, either by control actions or by tran­
sitions, the prime implicants of Qy; = e; completely
characterize the conditions under which Yi has the
value ei in the next state. For example, one prime
implicant of Qdr1 = on (from Example 1) is

dr1 = resettable 1\ vdecu1 = on 1\ drcmdin1 = reset

While prime implicant generation is NP-hard, in
practice even sizable implicants can be generated very
fast. For example, we use an abductive best-first search
(Williams & Nayak 1996b) to generate implicants from
a spacecraft model consisting of over 12, 000 clauses in
about 40 seconds on a Spare 20. We compute these
implicants at compile-time, thus avoiding the risk of
falling over the computational cliff at run-time, while
"''"'"""'',..,,;ina expressivity in the modeling language.

The set of prime implicants constitutes the compiled
transition specification, where each implicant specifies
a transition for a single state variable. The transition
specification of a variable Yi is the set of prime
implicants of = eik, for every eik in y/s domain.
Antecedents of transition now contain

state and control variables. For a transition of y;,
a state variable other than Yi

ni71.n.''·'"'"'""·· and each antecedent involv-
called If

for every assignment of y;. The transition diagram for
the driver after compilation is:

=on
drcmdinl = reseot

resettable

vdecu1 = on
drcmdin 1 = off

Q failed

STRIPS is
including antecedent

y;, form preconditions; the add (delete) list contains
value of y;. The transition is in-

"'"''rt•nrr all control conditions.

Albeit simpler than the original specification, these
compiled transitions have a not found in
STRIPS. are one
at a time. In the above, a control action can invoke
more than one transition. a transition
can occur spontaneously, and caru1ot be if
its antecedent contains no control variables.

While transition can manifest
these hardware is typically de-
signed to behave like STRIPS operators. It is usually
the case that each state variable is separately com­
manded and state variables maintain their values in
the absence of explicit commands. The following re­
auJtrexneilt nrP"U•Pn1r.<:: SPOJ1tane<JUS state ch<mge:

Requirement 2 Each control variable has an idling
assignment, and no idling assignment appears in any
transition. The antecedent of every transition includes
a (non-idling) control condition.

For example, drcmdin1 has idling value none, and the
prime implicant of Qdr1 = on mentioned above con­
tains the non-idling drcmdin1 reset. Exploiting
this restriction, all state cha.11ges ca.11 be prevented by
assigning every control variable its idling assignment.
The following additional restriction guarantees that
transitions can be individually invoked:

Requirement 3 No set of control conditions of one
transition is a proper subset of the control conditions
of a different transition.

A transition is invoked by asserting its control
conditions, and all other control variables
their idle ass:1giJtm~mt.
reduce MRP to STRIPS p1auuJcu0 ,

an initial state assignment e and a set of goal assign­
ments "(.2 Burton meets five desiderata. First, it only
generates non-destructive i.e., an action will
never undo the effects of previous actions that are still
needed to achieve top-level Second, Burton will
not propose actions that lead to deadend plans, it
will not propose an action to achieve a subgoal when
one of the sibling subgoals is unachievable. Third, Bur­
ton is complete, i.e., if a planning problem that satisfies
Requirements 1-4 is solvable, then Burton will generate

Burton is not to gener-
Burton ensures progress

to a when execution anomalies
i.e., the nominalt:r~''"'r-t:r>rv traversed Burton for a

target is
active time scales-its average runtime
constant. This is essential to
based executive with response times to tra-
ditional executives Simmons 1994).

Burton avoids runtime
rithms for threat
termining future actions or planning for
are not supported by the first action. Traditional
ners need such mechanisms to avoid destructive actions
and deadend 1994). Burton accomplishes
this speedup by exploiting the requirement, stated ear­
lier, that all actions except repairs be reversible, and
by exploiting certain topological properties of compo­
nent connectivity that frequently occur in designed sys­
tems. The development of Burton's basic sequencing
algorithm is the topic of the next three subsections,
with the introduction of repair actions introduced in
the fourth subsection. Finally, to achieve average case
constant time Burton precompiles plans into reactive
policies, without requiring enormous amounts of stor­
age. This is the topic of the fifth subsection.

Exploiting causality

A major leverage point comes from exploiting the
topological properties of component connectivity. The
input/output connections of the plant fre-

do not contain feedback loops. When do
occur are typically local and can be elimi-
nated through modeling. To be precise:

Definition 3 A causal graph g for (compiled) transi­
tion Sis a directed whose vertices are the
state variables of S. g contains an from vl to v2
if vl occurs in the antecedent of one of v2's transitions.

The causal graph for the valve follows the
schematic, and is acyclic.

The basic idea underlying Burton is to solve a con­
junction of goals by working "upstream" along the
acyclic causal graph, it completes a conjunct
Yi = eik before conjunct Yi = eik when Yi "'"''""''rl"'"
Yi in the causal graph. For example, suppose the ini­
tial state has vlv1 = closed 1\ dr1 = off, and the
has vlv1 = open 1\ = off. Burton first focuses
on vlv1 = open since the valve is downstream of the
driver. As we will see, this guar­
antees that Burton generates non-destructive actions

"'""~-'""'"" threat detection mechanism.
Burton .,..,,nor·<>T<>c a next control action with the Nex-

tAction shown below. This takes an initial
state a state 1
number as discussed later), a transition sys­
tem and the to indicate a call.
NextAction returns a next control
no plan exists, or Success if the initial state is a tar­
get state. A control action is a set of control

All control variables not mentioned are
assigned their idle value.

Online

1. Solvable Goals?: When top?= True, unless each
goal g E 1 is labeled Reversible, return Failure.

2. Select unachieved goal: Find an unachieved goal
assignment with the lowest topological number. Goal
y = e 1 E 1 is unachieved if it differs from y's ini­
tial assignment y = e; E 8. If all achieved return
Success.

3. Select next transition: Let ty be the transition
graph in S for goal variable y. Find a path p in t 11
from e; to e f along transitions labeled Allowed. Let
SC and CC be the state and control conditions of the
first transition along p.

4. Enable transition:
Control = NextAction(8,SC,S' ,False). If Control =
Success then state conditions SC are already satis­

return CC to effect transition. Otherwise Con­
contains control to progress on SC.

Return Control.

Line 1 tests whether or not a conjunction of top-level
goals can be achieved, as explained in the subsection
after next. This involves a simple table to see
if each is labeled Reversible. Burton intra-

hence the test is

unstrerun D'ro~rrE~ssion is achieved a
<:::AJJ"'""'"·""' in the next subsection.

Line 3 takes the first step towards achieving the se-
lected Given an initial y = ei and
a transition for y, a goal
ment y = e f is achieved a path along
transitions of y from ei to e f. Respecting Restriction
1, Burton traverses transitions with reversible ef-
fects or that a As in the next
section, the transitions that this restriction are
those labeled Allowed. Line 3 identifies the first tran­
sition along this from ei to e f. Line 4 subgoals
on the state conditions of this first transition, which
results in Burton further upstream. If one or
more state conditions is unsatisfied then a next control
action is in Line 4, and returned. If all state

"'""l·l"lJL<::u, then the transition is to
be traversed and Line 4 returns the transition's control
conditions as the next control action.

A voiding destructive actions

Burton avoids generating destructive control actions
(desiderata 1) by exploiting the acyclic nature of the
causal The only variables needed to achieve
an assignment y = e are ancestors in the graph.
For example, turning on the driver use of the
VDECU but not the valve. In requirements
2 and 3 guarantee that invoking transitions for y and
its ancestors, when performed one at a time, will not
affect any other state vari§.bles.

This suggests that Burton can achieve a conjunction
of in an order that moves the
causal graph from descendants to ancestors, a goal
conjunct is achieved only after conjuncts that are its
descendants. For example, dr1 = off 1\ vlv1 = open is
achieved by working on vlv1 = open then dr1 = off.
The same ordering holds for conjunctive subgoals, that
is, state conditions of required transitions.

Destructive subgoal interaction may occur when a
variable appears upstream as a subgoal to two con­
juncts. To avoid this danger subgoals are achieved in
depth first order, achieving one conjunct before start­
ing on a second. For example, dr1 = off 1\ vlv1 = open
is achieved by turning on the driver, opening the valve,
and finally the driver off. Achieving subgoals
in depth first order also ensures that Burton always
makes progress towards the (desiderata 4).

first with the
goal is sufficient to ensure non-
destructive actions. first is imposed

Line 4 of NextAction. ~''"'"'"'""' the order-
constraint without runtime cost

cal At time each state variable is

the way out. For example, tn(vlv1) = 1,tn(dr1) =
2, tn(vlv2) = 3, tn(dr2) = 4, and tn(vdecu1) = 5.
Topological numbering imposes a total that
satisfies the constraint tn(A) < tn(B) whenever A is
a strict descendant of B in the causal Hence
the proper order of goal achievement for all conjunc-
tive subgoals is determined at time sorting
the conditions of each transition topolog-
ical number. Burton respects an
in line 2, by
sorted list of conditions.

A voiding dead ends through reversibility
1 re-

desiderata 2 stated that Burton

'"-'"'"u". and desiderata 3 ..,,.,.,v ... v ... COl:IlP>letenleSs.
be reactive Burton must achieve these without search.
Each on the lemma:

Lemma 1 A 1\ B is reachable from e by reversible
transitions exactly when A and B are separately reach­
able from e by reversible transitions.

Proof: Assume without loss of generality that tn(A) <
tn(B). We previously showed that if A is achieved first,
it won't be disturbed while B. The transi­
tions used to achieve A are reversible, hence if nothing
else each variable other than A can be restored to its
value in 8 and then B can be achieved. o

Suppose Burton has labeled as Reversible every
assignment that is reachable from initial state e using
Reversible transitions. By Lemma 1 a conjunction of
goal assignments is achievable exactly when each con­
junct is marked Reversible. Hence Burton can deter­
mine plan achievement at runtime simply by one
table lookup per top-level goal (line 1, NextAction).

Deadend plans, hence search, are eliminated by re­
moving the possibility of unachievable subgoals. As­
sume Burton labels a transition Allowed only if its
state conditions are each labeled Reversible. Then
sequences of Allowed transitions between Reversible
assignments contain no unachievable subgoals. These
are the transitions generated by line 3 of NextAction.

lemma 1 all other sequences lead to deadends or in­
volve irreversible transitions, hence Burton
some plan if one exists (desiderata 3). Of course Bur-
ton can't all
isn't allowed.

Preprocess Algorithm: LabelSystem(S',E>)
For each state variable y of S' in decreasing topological
order:

1. For each transition Ty of y, label Ty Allowed if all its
state conditions are labeled Reversible.

2. the connected components (SCCs)
Allowed transitions of y.

3. Find initial value y e; E e. Label each assign-
ment in the SCC of y = e; as Reversible.

JJa.hP.I~v-~t.~>m starts at the roots of the causal
using topological numbering to move to a descendant
only after its ancestors have been Line 1

executes the definition of Allowed. Note when
Yi is a none of its transitions contain state condi-

and hence are Allowed. Lines 2 and
Reversible An as~agr1m1ent

Y = ek can be achieved if there exists a
Allowed transitions from initial value ei to ek

and back. Equivalently, the set of y's reversible assign­
ments is the strongly connected component (SCC) of
y's Allowed transition that contains e;.

For example, starting with initial value off, the SCC
for the VDECU, hence its Reversible =~•lJ;iHH't:!u~
is {off, on}, with both resettable and excluded.
Next, the driver has Allowed transitions between on
and off due to the VDECU's SCC. With initial value
on, the sec for the drive! is {off, on}.

Finally, note that LabelSystem is called infrequently.
Actions Burton move within the
sees of Reversible assignments, leaving the LGlJCa.Ul"

unchanged. A relabeling is needed only if an exoge­
nous action or failure moves e to an assignment that
was not labeled Reversible.

Failure states and repair

To dramatically expand Burton's utility we incorpo­
rate repair actions. The occurrence of failures are out­
side Burton's control, since there are no nominal tran­
sitions that lead to failure. Hence a repair sequence is
irreversible, albeit essential, and thus not covered by
the development thus far. We extend Burton to permit
repair sequences if they minimize irreversible effects.
Burton never uses a failure to achieve a goal assign­
ment if the failure is repairable. However, if it is not
re})airal>le, then Burton is allowed to the com­

state. For "'~'''""'·~~
needed to be open, and it is
Since stu.Ck--m:~en
feet, Burton "'""-'1-'lU'l~.,

'""""·'<>A'""" the

to a nominal assignment, when such a path exists. If
only one path then y's reversible """''"'o'·u"""''"
are defined to be those in the sec of the
assignment reached the path. For example if the
driver is initially at resettable then it may transition
to on and the sec is {off, on} If no path
exists to a nominal then the reversible as­
signments are those in the SCC that contains e f. For

if the driver is at then the sec is
{failed}. not discussed

also handles the case where
sees exist.

Although Burton can now traverse irreversible tran­
sitions to effect repair, none of the assignments along
this up to the selected can be used
to a state condition or Hence
this extension does not endanger Burton's previously
discussed properties.

concurrent

The runtime ofNextAction is thus far O(e*
m), where e is the maximum number of transitions in
a single component transition system, and m is the
maximum depth of the causal The cost m is
incurred on line 4, while on of

and cost e is incurred on line 3,
while searching for a path through transitions. Burton
reduces cost to O(m) by constructing for each variable
Y a feasible policy rr y. rr y maps pairs (ei, e f) to the
sorted conditions of the first transition along a path
from ei to ef. If y has n values, rry is simply an n 2 table
computed in O(n *e) where entries for each ei
are determined by computing a spanning tree directed
towards e f that connects all values labeled Reversible
by tr&J.sitions labeled Allowed. Line 3 of Ne:x:tAction
becomes the table lookup:

3': (SC,CC) = rry(ei,eJ)

on is assumed and not
identifies initial state

and MR provides target {vlv1 = open,dr1 = off},
in order. Selecting the first as­
signment, Burton looks up vlv1 : closed -+ open,
and gets {dr1 = an,drcmdin1 = open}. The first
is an unsatisfied state condition, so Burton looks up
{dr1 : off -+ an}, {drcmdin1 = an}. This
control assignment is then invoked.

Burton's feasible are analogous to optimal
policies in control theory. An important difference is
that Burton constructs a set of concurrent policies,
rather than a single policy for the complete state space.
The latter grows exponential in the number of state
variables, and is infeasible for models like the space­
craft, which contain over 80 state variables and well
over 280 states. In the concurrent policies
grow only linearly in the number of state variables.

For a fixed target and no intervening failures, Bur­
ton generates successive control actions as a depth
first traversal the tables. This traversal

and Burton maintains an in­
a

sequence Burton traverses each tree edge twice
and generates one control action per vertex. Since the
number of edges in a tree is bounded by the number of
vertices, the amortized average case complexity of gen­
erating each control action is a constant. Desiderata
5, reactivity, is achieved.

Related work and conclusions

Burton combines causal models used in model-based
reasoning with state transitions used in planning.
Other researchers have combined model-based diagno­
sis with planning, primarily to generate repair plans
(Friedrich & Nejdl 1992; Sun & Weld 1993). The
main difference is that these systems include a STRIPS
(rather than model-based) planning component with
utility-theoretic measures for selecting amongst alter­
nate plans. Their computational complexity make
them inapplicable for on-board reactive execution.

Burton differs from traditional STRIPS planners
(Weld 1994) in that plan operators (transitions) are
generated by a COmpilatiOn pr0C€SS from an 11nr1P1·1v1n

causal model of the system that includes both within
and across state constraints (pr, and the Pr,
tively). Furthermore, the compiled t.r,m.;:·itirm

is a version of generalv'"'"''"''"<S
that Burton solves by a worst-case linear time, aver­
age case constant time In contrast, general

Korf (1987) defines a
to be serializable if can be solved

able sets of subgoals.
Finally, traditional reactive executives (Firby 1987;

Simmons 1994) differ from Burton's model-based ex­
ecutive in that the former use explicitly scripted pro­
cedures to provide reactive execution, while the lat­
ter uses deductive from a causal model that
combines an off-line compilation phase with an on-line
policy generation phase. Other differences include the
fact that traditional executives a richer set
of control structures such as execution, while
Burton's executive a more sophisticated diag­
nosis and monitoring capability embodied in MI.

In summary, Burton is a sound and complete gen­
erative planner that uses expressive transition system
models to provide the reactive sequencing capability
of a model-based executive. It off-line model
compilation and the of compo-
nent to control ac-
tions in average case constant time. These control ac-
tions are to be while en-
suring progress towards the deadend
plans.
Acknowledgements: We would like to thank Jim
Kurien and Dan Weld for helpful comments on the
paper.

References
Firby, R. 1987. An investigation into reactive planning in
complex domains. In Procs. of AAAI-87, 202-206.

Friedrich, G., and Nejdl, W. 1992. Choosing observations
and actions in model-based diagnosis/repair systems. In
Procs. of KR-92, 489-498.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Procs. of AAAI-96, 1194-1201.

Korf, R. 1987. Planning as search: A quantitative ap­
proach. Artificial Intelligence 33(1):65-88.

Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Fox, M., and Zweben, M., eds., Intelligent
Scheduling. Morgan Kaufmann.

Pell, B.; Bernard, D.; Chien,
N.; Nayak, Wagner, M.; and
autonomous spacecraft agent prototype.
First Int. Conf. on Autonomous Agents.

M uscettola,
B. 1997. An
Procs. of the

::imlm<)ns, R. 1994. Structured control for autonomous
Trans. on Robotics and Automation 10(1).

Y., and Weld, D. 1993. A framework for model-based
repair. In Procs. of 182-187.

Weld, D. 1994. An introduction to least commitment
planning. AI JVI(Ltmzzn"

and

	1997-2_Part128
	1997-2_Part129
	1997-2_Part130
	1997-2_Part131
	1997-2_Part132
	1997-2_Part133
	1997-2_Part134
	1997-2_Part135

