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Abstract 

A new generation of reactive, model-based executives 
~e that make extensive use of component-
based models to anomalous situ-
ations and generate novel sequences for the internal 
control of autonomous a 
generative, planner a core element 
that bridges the gap between current and target states 
within the reactive loop. Burton is a sound, complete, 
reactive planner that generates a single control action 
of a valid plan in average case constant time, and com­
pensates for anomalies at every step. Burton will not 
generate irr~versible, potentially damaging sequences, 
~cept to effect repairs. We present model compila­
tiOn, causal analysis, and online policy construction 
methods that are key to Burton's performance. 

Conventional wisdom has largely pushed deductive 
reasoning out of the reactive control loop for nearly 
a decade. However, recent search for the surprisingly 
elusive, hard satisfiability problem foretells a healthy 
return to ~eductive methods(Williams & Nayak 1996b; 
Kautz & :::ielman 1996) based on RISC-like search en­
gines. This paper pushes this perspective down tore­
active time scales, reporting on a model-based plan­
ner, called Burton, that is at the core of a model­
based executive's reactive control loop. By solving the 
NP hard component of deductive problems at compile 
time, Burton exploits the expressiveness of NP hard 
methods, without assuming the risk of falling off the 
elusive cliff. 

Burton's parent model-based executive is particu­
larly well suited to controlling the complex internal be­
haviors of large scale autonomous systems, we call im­
mobile robots (Williams & Nayak 1996a). What distin­
guishes this executive is its ability to sense and control 
hidden state variables indirectly, and the use of compo­
nent models to identify these novel interaction paths. 
A between this model-based executive and 
a method-based executive provides a 
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'""''!'.ll<t!';t: and an extensive 
novel responses to anomalous 

situations. pa:rts of this hybrid executive 
will be demonstrated in late 1998 on NASA's Deep 

One autonomous et al. 1997).-
The paper with an from the space-

craft domain, and then introduces our concurrent tran­
sition system modeling formalism. Next we introduce 
model-based execution as identifying a current state 
(mode identification), generating an optimal target 
state (mode reconfiguration), and generating a con­
trol action to move towards the target (model-based 
reactive planning). The rest of the paper presents the 
Burton model-based reactive planner through a series 
of domain restrictions, model compilation, policy con­
struction and online planning algorithms. 

Example: autonomous spacecraft 
First consider the underlying task. Figure 1 shows 
an idealized schematic of the main engine subsystem 
of the Cassini spacecraft and valve driver circuitry. 
It consists of a helium tank, two propellant tank~, 
two main engines, regulators, latch valves, and pyro 
valves. The helium tank pressurizes the propellant 
tanks. When propellant paths to a main engine are 
open, the propellants flow into the engine and produce 
thrust. The pyro valves are used to isolate parts of the 
engine. They can open or dose only once. 

Valves are controlled valve drivers. Commands to 
the driver are sent via a control unit (VDECU). The 
driver and VDECU can be on or off, and recoverably 
or permanently failed. A recoverably failed component 
can be it. A valve's state o..:u;(l.uJ{e::> 

as a result of a command if the corre:spon,dirtg 
driver and 

In P'"'""'"'l". 
e.g., gener-

ates a sequence of behavior goals, such as producing 
thrust~ The reactive executive achieves this using 
its models to control sequences 
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Figure 1: Schematics of and valve control cir-
cuitry. Valves are closed only when solid black. 

that open the relevant set of valves '"'"''"'w'5 

<::u~;tu•e. Valves are commanded open 1nf1wP•r>r. 

executive must ensure that the control unit and driver 
leading to the valve are on and healthy to com­
"'"'""'"'u•J<.. the valve. Generating sequences to handle a 
breadth of novel situations requires extensive reason­
ing about physical processes as well as state changing 
actions. Doing this reactively is the focus of this paper. 

Concurrent transition systems 
We start by reviewing the propositional, concurrent 
transition system formalism introduced in (Williams 
& Nayak 1996b), which represents normal operation, 
failure, and repair of real-time software and hardware. 
A transition system S is a tuple (II, :E, T). II is a set 
of variables, each ranging over a finite domain. II is 
partitioned into the set II .. of state variables, the set 
lie of control variables, and the set lid of dependent 
variables. :E is the set of feasible assignments to vari­
ables in II. Each element of a state variable's domain is 

nominal or failure. Control variable values 
are determined exogenously by a controller. A state 
is an assignment to each variable in The set r: .. , 
the projection of :E on variables in is the set of all 
feasible states. T is a finite set of transitions. Each 
transition r E is a function r : :E --t r(a) 
is the state obtained transition r to any 
feasible 0". The transition T n E T models 
the nominal while all other tran-
sitions model failures. action is a transition 
that takes a state variable from a failure to nominal 
value. 

sequence of feasi-

ble states S: so, s1, ... such that for each Si there is a 
feasible O"i E :E which agrees with s; on as­
signments to variables in and Si+l = for some 
r E T. A trajectory that involves only the nominal 
transition Tn is called a nominal trajectory. A simple 
trajectory does not repeat any state. 

A transition system is using a restricted 
subset of propositional temporal logic that uses the 0 
operator. The propositions in this logic are all of the 
form y = e, where y is a variable and e is an element 
in domain. 0 is the next denoting truth 
in the next state of a trajectory. 

We specify the set :E of feasible assignments by a 
formula pr:,, i.e., :E is the set of all vari-

=<,,5,.uu"'"'"' that py::,. A transition r of S 
a formula Pr, which is a of 

sptoCZJI'!Cc!tu>ns Pr; of the form 
where is a formula and y; is a state 
variable. A state sk can follow state Sj r if there 
is an ai E :E that agrees with Sj such that 
for all Pr; if ai satisfies then s~;; e; toy;. 

Example 1 Driver 1 has a state dr1 , and 
two dependent variables cmdin1 and cmdout1 • The 
domain of dr1 is {on, off, resettable, failed}, cmdin1 
is {on, off,reset,open, none}, and cmdoutt is 
{open, close, none}. dr1 's transition diagram is: 

cmdinl = reseto 
on resettable 

cmdin1 =on cmdin1 = off 

off 0 failed 

which is specified by formulae like: 

dr1 = resettable 1\ cmdin1 = reset :::::} Odr1 = on 

which describes the effect of resetting a driver. The 
driver's feasible states are specified by formulae like: 

(dr1 =on 1\ cmdin1 =open):::::} (cmdout1 =open) 

The VDECU has control , whose value 
is propagated to cmdin1 when the VDECU is on: 

( vdecu1 onl\drcmdin1 = reset) :::::} ( cmdin1 = reset) 

and driver on, and then '"'"'""''!<, 
to open. The driver's 
the valve's state transitions. 



planner generates a sequence of configuration goals, 
each a behavior like "achieve thrust." The 

evolves that 
COJ1hfmratJ:on goals. 

is achieved a reactive executive that generates 
a sequence of control actions, based on of 
the current state and co:nhJ~I~at·ton 

variable in 
o:::x.cul.LU!•e. c•orr·es]pOJndimg to closing a switch or 
a :reset message across a bus. The current 

observable a set of vari-
U IId, to sensors, and an 

observation is an assignment to each variable in 

Definition 1 A reactive control is a 
where s is a transition e is the ini-

tial state of and C is a reactive executive. C takes 
as input the initial state a sequence 1 : go, 91? ... 
of formulae called 
and a sequence of observations o · oo, 01, ••. , and in­
crementally a sequence of control actions 
f.L : J.Lo, f.Lb ••. so that S evolves a trajectory 
s : s0 , s11 ••• that satisfies: (a) s0 is (b) for each 
s; there is an assignment O'i E E that agrees with s;, 
o;, and J.L; on the corresponding subsets of 
and (c) if Si+l is the result of a nominal transition 
from Si under p,;, i.e., Bi+l = Tn(ai), then either s;+l 

satisfies 9i or is the of a simple nominal 
trajectory that ends in a Sj that satisfies g;. 

The idea is that a reactive executive continually tries 
to transition the system toward a state that satisfies 
the desired goals. It is reactive in the sense that it 
reacts immediately to changes in goals and to failures, 
i.e., each control action p,; is incrementally generated 
using the new information, o; and g;, in each state. 

A model-based executive, uses a specification of a 
transition system to determine the desired control se­
quence in three stages-mode identification (MI), mode 
reconfiguration (MR) and model-based reactive plan­
ning (MRP). MI and MR set up the planning prob­
lem, initial and while MRP 
rP.llLC:tivP.lv generates a plan solution. More specifically, 
· MI incrementally generates the set of most likely plant 
trajectories consistent with the plant transition model 
and the sequence of observations and control actions. 
This is maintained as a set of most likely current states. 
MR uses a transition model and the most 
current state MI to determine a reachable 

state that satisfies the MRP 
the first action in a control sequence for 

from the most current state to the 
nP•-trn-rn~·r1 MI confirms that 

MI 
paper 

focuses on MRP. 
A key decision ---·-~··J 

is the focus on the most by 
MI. The difficulty with the more conservative strategy 
of considering a single control sequence that covers a 
set of likely states (Williams & Nayak 1996b) is that 
the different states will different con-
trol sequences. While can be used to 
select between different control sequences for one that 
maximizes success & the cost of 
generating multiple states and control sequences works 
against our goal of building a fast reactive executive. 

The greedy approach introduces risk: the control ac­
tion appropriate for the most likely trajectory may be 
inappropriate, or worse still if the actual 
state were otherwise. 
of the MRP prE~clu.des 
long-term consequences of thus open 
the that control while not outright 
harmful, may degrade the system's capabilities. For 

firing a pyro valve is an irreversible action 
that forever cuts off access to of the propulsion 
system. Such actions should be taken after due delib­
eration the planner or human operators. 

fundamental to the reliability of our approach 
is the following 

Requirement 1 MRP considers only reversible con­
trol actions, unless the only effect is to failures.! 

Model-based reactive planning 
The definition of MRP (Burton) follows from Defini­
tion 1 and the functions of MI and MR: 

Definition 2 A model-based reactive planner (MRP) 
takes as input a specification of a transition system 
a most likely initial state Si (from MI), and a lowest 
cost target state t; (from MR) that satisfies goal g;. 
The MRP generates a control action J.li such that for 
any ai E E that agrees with s; and f.L;, 
the state Bi+l = Tn(a;) is either the target state ti or 
(s;, Si+l) is the prefix of a simple nominal ""'''"''-·"v" 
that ends in 

Given the of transitions and STRIPS op-
erators, Burton's problem appears similar to STRIPS 

(Weld 1994). the critical differ-
ence is the distinction between classical and 
machine controL The 



variables indirectly through co-temporal, physical in­
teractions (PE). This extension adds enormous expres­

to the planner. 
This extension equally adds to the challenge of 

achieving We eliminate intractability at 
modeling time through an automated model compi­
lation method and four simple modeling requirements. 

models 

Recall that a transition is 1>ut:u.L1"'u 

formulae => 0Yi = ei. What 
a simple transition is that the formula q.i can con­
tain involving variables that 
are not directly controllable, but u"''-'"''-'''"' 
variables the 
of PE. This introduces a pc,teJltl<al cunmttoi::l,olou<:tJ 

To the transition 

of py;, 
that do not contain u"'IJ"''"u'~'-'" 

J.J.J..<OJUv~~V of Qy; = e; is a f'("\t1>1lnf'-

nr<Om)Sl1~10J[!E involving state and control vari­
ables such that the transition 
PE U U.,.ET p.,., entails the formul': I ~ 0Yi ~'· I 
is a prime implicant if no sub-conJunction of I 1s an 
implicant. Given that dependent variables cannot be 
directly controlled, either by control actions or by tran­
sitions, the prime implicants of Qy; = e; completely 
characterize the conditions under which Yi has the 
value ei in the next state. For example, one prime 
implicant of Qdr1 = on (from Example 1) is 

dr1 = resettable 1\ vdecu1 = on 1\ drcmdin1 = reset 

While prime implicant generation is NP-hard, in 
practice even sizable implicants can be generated very 
fast. For example, we use an abductive best-first search 
(Williams & Nayak 1996b) to generate implicants from 
a spacecraft model consisting of over 12, 000 clauses in 
about 40 seconds on a Spare 20. We compute these 
implicants at compile-time, thus avoiding the risk of 
falling over the computational cliff at run-time, while 
"''"'"""'',..,,;ina expressivity in the modeling language. 

The set of prime implicants constitutes the compiled 
transition specification, where each implicant specifies 
a transition for a single state variable. The transition 
specification of a variable Yi is the set of prime 
implicants of = eik, for every eik in y/s domain. 
Antecedents of transition now contain 

state and control variables. For a transition of y;, 
a state variable other than Yi 

ni71.n.''·'"'"'""·· and each antecedent involv-
called If 

for every assignment of y;. The transition diagram for 
the driver after compilation is: 

=on 
drcmdinl = reseot 

resettable 

vdecu1 = on 
drcmdin 1 = off 

Q failed 

STRIPS is 
including antecedent 

y;, form preconditions; the add (delete) list contains 
value of y;. The transition is in-

"'"''rt•nrr all control conditions. 

Albeit simpler than the original specification, these 
compiled transitions have a not found in 
STRIPS. are one 
at a time. In the above, a control action can invoke 
more than one transition. a transition 
can occur spontaneously, and caru1ot be if 
its antecedent contains no control variables. 

While transition can manifest 
these hardware is typically de-
signed to behave like STRIPS operators. It is usually 
the case that each state variable is separately com­
manded and state variables maintain their values in 
the absence of explicit commands. The following re­
auJtrexneilt nrP"U•Pn1r.<:: SPOJ1tane<JUS state ch<mge: 

Requirement 2 Each control variable has an idling 
assignment, and no idling assignment appears in any 
transition. The antecedent of every transition includes 
a (non-idling) control condition. 

For example, drcmdin1 has idling value none, and the 
prime implicant of Qdr1 = on mentioned above con­
tains the non-idling drcmdin1 reset. Exploiting 
this restriction, all state cha.11ges ca.11 be prevented by 
assigning every control variable its idling assignment. 
The following additional restriction guarantees that 
transitions can be individually invoked: 

Requirement 3 No set of control conditions of one 
transition is a proper subset of the control conditions 
of a different transition. 

A transition is invoked by asserting its control 
conditions, and all other control variables 
their idle ass:1giJtm~mt. 
reduce MRP to STRIPS p1auuJcu0 , 



an initial state assignment e and a set of goal assign­
ments "(.2 Burton meets five desiderata. First, it only 
generates non-destructive i.e., an action will 
never undo the effects of previous actions that are still 
needed to achieve top-level Second, Burton will 
not propose actions that lead to deadend plans, it 
will not propose an action to achieve a subgoal when 
one of the sibling subgoals is unachievable. Third, Bur­
ton is complete, i.e., if a planning problem that satisfies 
Requirements 1-4 is solvable, then Burton will generate 

Burton is not to gener-
Burton ensures progress 

to a when execution anomalies 
i.e., the nominalt:r~''"'r-t:r>rv traversed Burton for a 

target is 
active time scales-its average runtime 
constant. This is essential to 
based executive with response times to tra-
ditional executives Simmons 1994). 

Burton avoids runtime 
rithms for threat 
termining future actions or planning for 
are not supported by the first action. Traditional 
ners need such mechanisms to avoid destructive actions 
and deadend 1994). Burton accomplishes 
this speedup by exploiting the requirement, stated ear­
lier, that all actions except repairs be reversible, and 
by exploiting certain topological properties of compo­
nent connectivity that frequently occur in designed sys­
tems. The development of Burton's basic sequencing 
algorithm is the topic of the next three subsections, 
with the introduction of repair actions introduced in 
the fourth subsection. Finally, to achieve average case 
constant time Burton precompiles plans into reactive 
policies, without requiring enormous amounts of stor­
age. This is the topic of the fifth subsection. 

Exploiting causality 

A major leverage point comes from exploiting the 
topological properties of component connectivity. The 
input/output connections of the plant fre-

do not contain feedback loops. When do 
occur are typically local and can be elimi-
nated through modeling. To be precise: 

Definition 3 A causal graph g for (compiled) transi­
tion Sis a directed whose vertices are the 
state variables of S. g contains an from vl to v2 
if vl occurs in the antecedent of one of v2's transitions. 

The causal graph for the valve follows the 
schematic, and is acyclic. 

The basic idea underlying Burton is to solve a con­
junction of goals by working "upstream" along the 
acyclic causal graph, it completes a conjunct 
Yi = eik before conjunct Yi = eik when Yi "'"''""''rl"'" 
Yi in the causal graph. For example, suppose the ini­
tial state has vlv1 = closed 1\ dr1 = off, and the 
has vlv1 = open 1\ = off. Burton first focuses 
on vlv1 = open since the valve is downstream of the 
driver. As we will see, this guar­
antees that Burton generates non-destructive actions 

"'""~-'""'"" threat detection mechanism. 
Burton .,..,,nor·<>T<>c a next control action with the Nex-

tAction shown below. This takes an initial 
state a state 1 
number as discussed later), a transition sys­
tem and the to indicate a call. 
NextAction returns a next control 
no plan exists, or Success if the initial state is a tar­
get state. A control action is a set of control 

All control variables not mentioned are 
assigned their idle value. 

Online 

1. Solvable Goals?: When top?= True, unless each 
goal g E 1 is labeled Reversible, return Failure. 

2. Select unachieved goal: Find an unachieved goal 
assignment with the lowest topological number. Goal 
y = e 1 E 1 is unachieved if it differs from y's ini­
tial assignment y = e; E 8. If all achieved return 
Success. 

3. Select next transition: Let ty be the transition 
graph in S for goal variable y. Find a path p in t 11 
from e; to e f along transitions labeled Allowed. Let 
SC and CC be the state and control conditions of the 
first transition along p. 

4. Enable transition: 
Control = NextAction(8,SC,S' ,False). If Control = 
Success then state conditions SC are already satis­

return CC to effect transition. Otherwise Con­
contains control to progress on SC. 

Return Control. 

Line 1 tests whether or not a conjunction of top-level 
goals can be achieved, as explained in the subsection 
after next. This involves a simple table to see 
if each is labeled Reversible. Burton intra-

hence the test is 

unstrerun D'ro~rrE~ssion is achieved a 
<:::AJJ"'""'"·""' in the next subsection. 



Line 3 takes the first step towards achieving the se-
lected Given an initial y = ei and 
a transition for y, a goal 
ment y = e f is achieved a path along 
transitions of y from ei to e f. Respecting Restriction 
1, Burton traverses transitions with reversible ef-
fects or that a As in the next 
section, the transitions that this restriction are 
those labeled Allowed. Line 3 identifies the first tran­
sition along this from ei to e f. Line 4 subgoals 
on the state conditions of this first transition, which 
results in Burton further upstream. If one or 
more state conditions is unsatisfied then a next control 
action is in Line 4, and returned. If all state 

"'""l·l"lJL<::u, then the transition is to 
be traversed and Line 4 returns the transition's control 
conditions as the next control action. 

A voiding destructive actions 

Burton avoids generating destructive control actions 
(desiderata 1) by exploiting the acyclic nature of the 
causal The only variables needed to achieve 
an assignment y = e are ancestors in the graph. 
For example, turning on the driver use of the 
VDECU but not the valve. In requirements 
2 and 3 guarantee that invoking transitions for y and 
its ancestors, when performed one at a time, will not 
affect any other state vari§.bles. 

This suggests that Burton can achieve a conjunction 
of in an order that moves the 
causal graph from descendants to ancestors, a goal 
conjunct is achieved only after conjuncts that are its 
descendants. For example, dr1 = off 1\ vlv1 = open is 
achieved by working on vlv1 = open then dr1 = off. 
The same ordering holds for conjunctive subgoals, that 
is, state conditions of required transitions. 

Destructive subgoal interaction may occur when a 
variable appears upstream as a subgoal to two con­
juncts. To avoid this danger subgoals are achieved in 
depth first order, achieving one conjunct before start­
ing on a second. For example, dr1 = off 1\ vlv1 = open 
is achieved by turning on the driver, opening the valve, 
and finally the driver off. Achieving subgoals 
in depth first order also ensures that Burton always 
makes progress towards the (desiderata 4). 

first with the 
goal is sufficient to ensure non-
destructive actions. first is imposed 

Line 4 of NextAction. ~''"'"'"'""' the order-
constraint without runtime cost 

cal At time each state variable is 

the way out. For example, tn(vlv1 ) = 1,tn(dr1) = 
2, tn(vlv2) = 3, tn(dr2) = 4, and tn(vdecu1 ) = 5. 
Topological numbering imposes a total that 
satisfies the constraint tn(A) < tn(B) whenever A is 
a strict descendant of B in the causal Hence 
the proper order of goal achievement for all conjunc-
tive subgoals is determined at time sorting 
the conditions of each transition topolog-
ical number. Burton respects an 
in line 2, by 
sorted list of conditions. 

A voiding dead ends through reversibility 
1 re-

desiderata 2 stated that Burton 

'"-'"'"u". and desiderata 3 ..,,.,.,v ... v ... COl:IlP>letenleSs. 
be reactive Burton must achieve these without search. 
Each on the lemma: 

Lemma 1 A 1\ B is reachable from e by reversible 
transitions exactly when A and B are separately reach­
able from e by reversible transitions. 

Proof: Assume without loss of generality that tn(A) < 
tn(B). We previously showed that if A is achieved first, 
it won't be disturbed while B. The transi­
tions used to achieve A are reversible, hence if nothing 
else each variable other than A can be restored to its 
value in 8 and then B can be achieved. o 

Suppose Burton has labeled as Reversible every 
assignment that is reachable from initial state e using 
Reversible transitions. By Lemma 1 a conjunction of 
goal assignments is achievable exactly when each con­
junct is marked Reversible. Hence Burton can deter­
mine plan achievement at runtime simply by one 
table lookup per top-level goal (line 1, NextAction). 

Deadend plans, hence search, are eliminated by re­
moving the possibility of unachievable subgoals. As­
sume Burton labels a transition Allowed only if its 
state conditions are each labeled Reversible. Then 
sequences of Allowed transitions between Reversible 
assignments contain no unachievable subgoals. These 
are the transitions generated by line 3 of NextAction. 

lemma 1 all other sequences lead to deadends or in­
volve irreversible transitions, hence Burton 
some plan if one exists (desiderata 3). Of course Bur-
ton can't all 
isn't allowed. 



Preprocess Algorithm: LabelSystem(S',E>) 
For each state variable y of S' in decreasing topological 
order: 

1. For each transition Ty of y, label Ty Allowed if all its 
state conditions are labeled Reversible. 

2. the connected components (SCCs) 
Allowed transitions of y. 

3. Find initial value y e; E e. Label each assign-
ment in the SCC of y = e; as Reversible. 

JJa.hP.I~v-~t.~>m starts at the roots of the causal 
using topological numbering to move to a descendant 
only after its ancestors have been Line 1 

executes the definition of Allowed. Note when 
Yi is a none of its transitions contain state condi-

and hence are Allowed. Lines 2 and 
Reversible An as~agr1m1ent 

Y = ek can be achieved if there exists a 
Allowed transitions from initial value ei to ek 

and back. Equivalently, the set of y's reversible assign­
ments is the strongly connected component (SCC) of 
y's Allowed transition that contains e;. 

For example, starting with initial value off, the SCC 
for the VDECU, hence its Reversible =~•lJ;iHH't:!u~ 
is {off, on}, with both resettable and excluded. 
Next, the driver has Allowed transitions between on 
and off due to the VDECU's SCC. With initial value 
on, the sec for the drive! is {off, on}. 

Finally, note that LabelSystem is called infrequently. 
Actions Burton move within the 
sees of Reversible assignments, leaving the LGlJCa.Ul" 

unchanged. A relabeling is needed only if an exoge­
nous action or failure moves e to an assignment that 
was not labeled Reversible. 

Failure states and repair 

To dramatically expand Burton's utility we incorpo­
rate repair actions. The occurrence of failures are out­
side Burton's control, since there are no nominal tran­
sitions that lead to failure. Hence a repair sequence is 
irreversible, albeit essential, and thus not covered by 
the development thus far. We extend Burton to permit 
repair sequences if they minimize irreversible effects. 
Burton never uses a failure to achieve a goal assign­
ment if the failure is repairable. However, if it is not 
re})airal>le, then Burton is allowed to the com­

state. For "'~'''""'·~~ 
needed to be open, and it is 
Since stu.Ck--m:~en 
feet, Burton "'""-'1-'lU'l~., 

'""""·'<>A'""" the 

to a nominal assignment, when such a path exists. If 
only one path then y's reversible """''"'o'·u"""''" 
are defined to be those in the sec of the 
assignment reached the path. For example if the 
driver is initially at resettable then it may transition 
to on and the sec is {off, on} If no path 
exists to a nominal then the reversible as­
signments are those in the SCC that contains e f. For 

if the driver is at then the sec is 
{failed}. not discussed 

also handles the case where 
sees exist. 

Although Burton can now traverse irreversible tran­
sitions to effect repair, none of the assignments along 
this up to the selected can be used 
to a state condition or Hence 
this extension does not endanger Burton's previously 
discussed properties. 

concurrent 

The runtime ofNextAction is thus far O(e* 
m), where e is the maximum number of transitions in 
a single component transition system, and m is the 
maximum depth of the causal The cost m is 
incurred on line 4, while on of 

and cost e is incurred on line 3, 
while searching for a path through transitions. Burton 
reduces cost to O(m) by constructing for each variable 
Y a feasible policy rr y. rr y maps pairs ( ei, e f) to the 
sorted conditions of the first transition along a path 
from ei to ef. If y has n values, rry is simply an n 2 table 
computed in O(n *e) where entries for each ei 
are determined by computing a spanning tree directed 
towards e f that connects all values labeled Reversible 
by tr&J.sitions labeled Allowed. Line 3 of Ne:x:tAction 
becomes the table lookup: 

3': (SC,CC) = rry(ei,eJ) 

on is assumed and not 
identifies initial state 



and MR provides target {vlv1 = open,dr1 = off}, 
in order. Selecting the first as­
signment, Burton looks up vlv1 : closed -+ open, 
and gets {dr1 = an,drcmdin1 = open}. The first 
is an unsatisfied state condition, so Burton looks up 
{dr1 : off -+ an}, {drcmdin1 = an}. This 
control assignment is then invoked. 

Burton's feasible are analogous to optimal 
policies in control theory. An important difference is 
that Burton constructs a set of concurrent policies, 
rather than a single policy for the complete state space. 
The latter grows exponential in the number of state 
variables, and is infeasible for models like the space­
craft, which contain over 80 state variables and well 
over 280 states. In the concurrent policies 
grow only linearly in the number of state variables. 

For a fixed target and no intervening failures, Bur­
ton generates successive control actions as a depth 
first traversal the tables. This traversal 

and Burton maintains an in­
a 

sequence Burton traverses each tree edge twice 
and generates one control action per vertex. Since the 
number of edges in a tree is bounded by the number of 
vertices, the amortized average case complexity of gen­
erating each control action is a constant. Desiderata 
5, reactivity, is achieved. 

Related work and conclusions 

Burton combines causal models used in model-based 
reasoning with state transitions used in planning. 
Other researchers have combined model-based diagno­
sis with planning, primarily to generate repair plans 
(Friedrich & Nejdl 1992; Sun & Weld 1993). The 
main difference is that these systems include a STRIPS 
(rather than model-based) planning component with 
utility-theoretic measures for selecting amongst alter­
nate plans. Their computational complexity make 
them inapplicable for on-board reactive execution. 

Burton differs from traditional STRIPS planners 
(Weld 1994) in that plan operators (transitions) are 
generated by a COmpilatiOn pr0C€SS from an 11nr1P1·1v1n 

causal model of the system that includes both within 
and across state constraints (pr, and the Pr, 
tively). Furthermore, the compiled t.r,m.;:·itirm 

is a version of generalv'"'"''"''"<S 
that Burton solves by a worst-case linear time, aver­
age case constant time In contrast, general 

Korf (1987) defines a 
to be serializable if can be solved 

able sets of subgoals. 
Finally, traditional reactive executives (Firby 1987; 

Simmons 1994) differ from Burton's model-based ex­
ecutive in that the former use explicitly scripted pro­
cedures to provide reactive execution, while the lat­
ter uses deductive from a causal model that 
combines an off-line compilation phase with an on-line 
policy generation phase. Other differences include the 
fact that traditional executives a richer set 
of control structures such as execution, while 
Burton's executive a more sophisticated diag­
nosis and monitoring capability embodied in MI. 

In summary, Burton is a sound and complete gen­
erative planner that uses expressive transition system 
models to provide the reactive sequencing capability 
of a model-based executive. It off-line model 
compilation and the of compo-
nent to control ac-
tions in average case constant time. These control ac-
tions are to be while en-
suring progress towards the deadend 
plans. 
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