
Deterministic Scheduling A Distributed Computing Environment 

Song Yom, Loya 
Hughes Information Technology 

Corporation 
1616 McCormick Drive 

Upper Marlboro, 20774 

Abstract 

A key application within NASA's 
System Data and Infonnation 
System is the 

environment This paper describes the implementation 
of the planning and scheduling 

predicted data availability, site configuration, 
hardware/software resource availability, and on task 
load. 

Introduction 

NASA's Earth Observing System Data and Infonnation 
(EOSDIS) under the Mission to Planet 

Earth (MTPE) program is an open, distributed data and 
infonnation system that will manage data from pre-EOS 
and EOS-era Earth observation satellites and other field 
measurement programs. EOSDIS will provide EOS 
instrument data collection, science data processing, and 
services for distribution of data holdings. The EOSDIS 
Core System (ECS) is the infrastructure of EOSDIS and 
includes the Planning and Data Processing System (PDPS) 
within which the science software is integrated. 

The PDPS is of three components: the first 
provides capabilities to support the integration of delivered 
science software into the production environment; 
the Workbench, is the application framework for 
the planning and scheduling algorithm; and third, the 
science software execution manager with 
an embedded commercial-off-the-shelf (COTS) 1s 
the DrO<ciUC1tion 

The focus of this paper is the 
to: 

Joe Hunt 

enable tnr""""''ctn"' of product availability 
allow of alternative strategies to expedite 
product "'~••or~,_,,~ 

the base schedule to drive production over the 
operational window 

The science software is profiled the integration 
process, so that characteristics of the tasks to be planned 
have been in advance of the planning and 
scheduling activity that is invoked through the Planning 
Workbench. 

The Planning on an off-the-shelf 
C++ scheduling perfonns detenninistic 
scheduling based on the Highest Level First (HLF) List 
Scheduling algorithm otherwise known as the Critical Path 
Method (CPM). The task model consists of having 
precedence relationships between tasks enforced by data 
dependencies; non-preemptive, processor (CPU) allocation 
of task based on requisite runtime (size); communication 
delay embedded in task size; user defmable relative priority 
for tasks; and earliest available start time for tasks based on 
external dependencies and forecast data arrivals. The 
resource model includes computers, processors, near
line/off-line storage system, and planned unavailability of 
these resources. No cache management of disks is 
considered by the algorithm. Internally, the system employs 
a linked-list implementation of a graph data structure for 
tasks; recursive graph traversal for calculating relative 
priority; and merge sort algorithm for task sorting based on 
user specified earliest start time, user specified priority, 
optimal start time, and calculated priority for tasks. The 
algorithm implements best-fit scheduling vpuuuL<:un;IJ 

perfonning "look-ahead" and "look-behind" operations on 
an interval based multi-level linked-list resource data 
structure. 

The 

rroh>le;rn Domain 

focus of the PDPS is the and 



(task) can be both an end product to be disseminated to the 
science community for analysis and an intermediate 
product to be used as input to another task. 

The system is data- and event-driven. Request is made of 
the system to execute a task based on availability of 
required input data products which can be internally 
generated by another task and/or provided by an external 
data source such as raw spacecraft instrument data. As 
illustrated by Figure 1, tasks have precedence relationship 
enforced by data dependency. A task that depends on data 
produced by an upstream (predecessor) task must be 
scheduled after the upstream task. In addition, a task that is 
waiting on data from an external source must be delayed as 
necessary for data arrival. The task model also accounts for 
multiple tasks sharing one or more input data. 

ta'lkl 

near-lincloff-!ine 
storaJ,!e system 

(external source) 

Figure 1. The Task Model describes the precedence 
relationship between tasks enforced by data 
dependency. A task can also depend on data arriving 
from an external source. 

'l asks must be planned and scheduled on resources t.iJ.at 
consist of multiprocessor computing hardware, disks (local 
and network), and near-line/off-line storage system 
(dataserver). Dataserver is a hardware/software component 
of the ECS that provides data archiving and distribution 
services. For raw instrument data 
ingested to the dataserver are retrieved by the PDPS as 
input to science processing software, and output 
data products are inserted back into the dataserver system 
for downstream processing. 

The system must support planned resource unavailability. 
Resource reservations (also referred to in the ECS as 
ground events) can be made against processors, computers, 
and disks. Resources may be reserved for maintenance 
purposes. Forecast data arrival times can also be affected 
by scheduling ground events on the dataserver 
Load is another factor for which the system must 
account. Over and under utilization of resources are to be 

avoided for efficiency of operation. Figure 2 describes the 
resource model. 

r-------------------------------~ 

computer 

disk 

' ' 

2. The Resource Modei consists of 
multiprocessor computers with disks and a near
line/off-line storage system. It also includes planned 
unavailability of resources. 

the two models yields the basic problem domain 
view shown in Figure 3. 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

-Data dependencies between tasks ,. / 
~ User defmable task priority ,., "' 
-User definable task starttlme , ,. 

/ 

/ 
/ 

/ 
/ 

/ 

- computers with CPUs and disks 
-near-line/off-line stare.ge system 
- phmneti resource unavailability 

TIME 

/ 

Figure 3. The overall problem domain view where tasks 
have to be scheduled on resources for optimal 
processing time and efficient resource utilization. 

The challenge is the scheduling of competing tasks on 
resources with planned unavailability to achieve optimal 
processing time and efficient resource utilization. The 
solution must address user-defmable task priority and 
earliest start time for based on 
data arrival from an external source. These two c:mnn:~n•,on 
attributes must be used for task priori:tiz.<tticm 

the of the 



The approach taken to solve this problem was to implement 
the solution in two phases. First, research into the planning 
and scheduling problem domain was followed by the design 
and development of a prototype algorithm software 
application. Once the prototype was completed, the 
algorithm was incorporated into the Planning Workbench 
software component of the PDPS as the planning and 
scheduling engine. 

Algorithm 

The planning and scheduling algorithm implemented is 
based on the Highest Level First (HLF) List Scheduling 
algorithm or the Critical Path Method (CPM) [1][2]. The 
basic principle behind the algorithm is to assign nodes in 
the task graph a level (priority) which is the longest path 
from the node to the leaf node and scheduling the tasks to 
ready resources in descending priority. 

As described previously, the primary use of the algorithm is 
to generate an initial production schedule from a strategic 
planning perspective and for forecasting product 
availability, since the actual task execution is managed by a 
COTS software product. a very and 
elaborate solution would not have been fully utilized. 

Figure 4 depicts the overall scheme of the planning and 
scheduling algorithm. 

Figure 4. The algorithm sorts and prioritizes the tasks 
and performs non-preemptive, processor allocation of 
tasks around planned resource unavailability. 

The processor 
allocation of tasks. Communication between tasks is 
assumed to be embedded in the task size 
the controlled 

Planned processor, computer, and dataserver resource 
unavailability is also taken into account during task-to
resource allocation phase in order to avoid possible 
resource contention between tasks and scheduled outages 
of resources. Finally, user-specified task priority and 
earliest start time for tasks based on external data arrival 
are used for sorting and prioritizing the task graph. Once 
the task graph and resources are loaded, the algorithm 
allocates tasks to earliest possible time slots on processors 
and disks to achieve processing time, while 
attempting to load balance for efficient use of resources. 

The overall data structure utilized in the algorithm 1s 
illustrated by Figure 5. 

Figure 5. The algorithm uses a linked-list 
implementation of a weakly-connected, directed graph 
data structure for tasks and multi-level linked-list data 
structure for resources. Dataserver is a simple linked
list. 

Linked-list implementation of a weakly-connected, directed 
graph data structure was chosen to represent the task graph 
for efficient traversal in loading, sorting, prioritizing, and 
scheduling operations. Multi-level linked-list computer 
hardware resource data structure was designed to logically 
map the available resources. Mapping of disks to physical 
disks was designed to support both local and network 
attached devices. Finally, a simple linked-list data structure 
was implemented for dataserver component of the 
resources for planned resource unavailability purpose. 

There are four steps the algorithm performs in generating a 
schedule: load tasks, load resources and planned 
unavailability of them, sort and prioritize tasks, and 
schedule tasks on resources. 

Tasks with attributes shown in Table 1 are loaded into the 
task graph with task as vertex and predecessor as edge. 



Table 1. Task Definition 

Attribute Description 
name task name 
priority user specified priority 
start time estimated earliest start time for task based 

on data availability 
duration duration of task 
size aggregate size of data 
predecessor predecessor task name 

Next, resources and planned are loaded into 
the multi-level linked-list data structure. Attributes are 
shown in Table 2. 

Table 2. Resource Definition 

Attribute Description 
name computer name 
processor processor name 
disk disk name 
size capacity of disk 
start time resource 'mav>~ihhilitv start time 
duration duration of resource unavailability 

Once tasks and resources are the algorithm sorts 
and prioritizes the tasks. The task graph is traversed to 
calculate and assign priorities and earliest possible start 
times to nodes. The merge-sort algorithm is used for sorting 
the task graph based on comparison criteria 
(from highest to lowest order of precedence): 

• earliest possible start time 
• user-specified priority 
• calculated priority 
• number of immediate successor tasks 

Now the fun begins. Traversing the prioritized task graph, 
the algorithm determines the earliest possible time slot a 
task can be executed on processor and disk resources. This 
time is verified against the dataserver unavailability to 
ensure no conflict exists. If it encounters a situation where 
the task can be allocated to more than one processor at an 
identical time, total processor runtime allocation is used as 
a tie-breaker for load balancing purposes. 

The logic behind the fmding of the earliest possible time 
slot on processors and disks is a simple one. Processor and 
disk resource data structures are traversed in sequence 
starting from time zero reference When a suitable 
time slot is it This design ensures that. 
resources are saturated as much as with ~,.,~;.,n 

tasks so that best-fit is achieved. 

As tasks allocated to available resources, linkage 
between task and resources are established via an abstract 

called the This way, the schedule can 

be retrieved by traversing either the task graph or the 
resource data structure. 

To summarize, the implementation of the planning and 
scheduling algorithm was presented in this section. 
Research into the problem domain was followed by a 
prototype algorithm development approach. Extensions 
were added to the HLF /CPM algorithm to meet the 
requirements of the ECS science data processing system. It 
was shown that (1) user-defmable task priority, (2) earliest 
task start time based on data arrival, and (3) 
planned resource unavailability in a distributed, 
multiprocessor, parallel computing environment were ail 
addressed by the algorithm. 

Implementation 

The planning and scheduling algorithm described in the 
previous section was incorporated into the Planning 
Workbench software component of the PDPS. The 
Planning Workbench system is used to prepare production 
schedules in order to forecast start and times of 
data processing activities at the Distributed Active Archive 
Center (DAAC). 

Using object-oriented methodologies, the Planning 
Workbench was implemented on the Hughes Delphi™ off
the-shelf C++ class library infrastructure. Delphi™ is based 
on a system of distributed, modular where each 
component represents a distinct planning function. 

The architecture of is a variant of 
the model-view-controller (MVC) paradigm [3]. The MVC 
is an idealized view of the heterogeneous world of real 
systems. The model mirrors the structure of the user's 
conceptual model. The view shares the same structure and 
presents the model in a ta.1gible form. The controller 
allows the user to interact with t.~e model. 

Delphi™ provides classes for an abstract model which are 
known collectively as the Resource Model. The Resource 
Model consists of resources, resource states, and all 
relevant resource constraints. Resources necessary for 
planning and scheduling are implemented as objects within 
the Resource Model. Besides modeling real world objects, 
another function of the Resource Model is to keep track of 
resource states over time. 

In addition to resources and resource states, the Resource 
Model contains activities which are schedule-able entities 
known as tasks. and resources 
are to activities and resource states are to 
include activities. Plans are of activities and 
resources that the science data 

of the PDPS. 6 describes the 
Resource Model in the Workbench. 



Figure 6. The Resource Modei view of the Planning 
Workbench system where plans consist of activities and 
resources. 

The Workbench consists of the Resource 
Model, and the Tirneline. The Resource 
Model constructs the resource configuration of the system 
by querying the PDPS database. The Scheduler retrieves 
user-specified science data tasks from the PDPS 
database, static and directs the COTS 
scheduler product to execute tasks on computers. To 
complete the loop, the COTS scheduler product updates the 
PDPS database with status of tasks. Finally, the Tirneline 
component of the Planning Workbench system provides a 
GANTT graphical view of activities and resources 
over time. The internal architecture of the Planning 
Workbench system and the external interfaces to COTS 
products are shown in 7. 

7. The 
Workbench 

of the 
interfaces to COTS 

activation and 

The implementation of the Planning Workbench system 
involved the of the and scheduling 

and the of concrete 
objects in the PDPS domain such 

as computers, processors, resource states, resource 
unavailability, and science data Or<)cessnu>: 

Currently, the PDPS is deployed and operational as a 
Science Software Integration and Test testbed at 
four Distributed Active Archive Centers (DAACs): the 
EROS Data Center the Goddard Flight 
Center ~GSFC), the Research Center (LaRC), and 
the Natwnal Snow and Ice Data Center It is the 
basis for the enhanced ECS which is scheduled for 
deployment in 1998. 

Conclusions and Future 

This paper has presented the of the 
planning and scheduling algorithm to the science 
data processing requirements of the ECS. The overall 
problem domain was described, and details of the algorithm 
development were presented. A heuristic approach was 
taken to the and software 
engineering steps were followed to implement the fmal 
solution. 

The algorithm was for planning and forecasting 
purposes. To take full advantage of the effectiveness of the 
algorithm, and to realize its as a production 
engine, it should be enhanced to perform dynamic 
scheduling where the system manages task execution in 
order to perform decision making in real-time. 

Acknowledgments 

This work was funded by NASA Contract NASS-60000. 
The authors would iike to express appreciation to Torn 
Atwater for comments. 

References 

[I] El-Rewini, H., Ali, H. 1994. Task 
Scheduling in Parallel and Distributed Systems. 
Prentice Hall, pp. 56-81 

[2] Pinedo, M. 1995. Scheduling Theory, Algorithms, 
and Prentice pp. 61-92 

[3] A. 1990. Information Models, Views, 
and Controllers. Dr. Dobb's pp. 54-60 


	1997-2_Part136
	1997-2_Part137
	1997-2_Part138
	1997-2_Part139
	1997-2_Part140



