
Using Generic Preferences to Incrementally Improve Plan Quality

Gregg Rabideau, Barbara Engelhardt, Steve Chien

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive MIS 126-347, Pasadena, CA 91109

(firstname.lastname}@jpl.nasa.gov

Abstract
We describe a methodology for representing and
optimizing user preferences on plans. Our approach
differs from previous work on plan optimization in that
we employ a generalization of commonly occurring
plan quality metrics, providing an expressive
preference language. We introduce a domain
independent algorithm for incrementally improving the
quality of feasible plans with respect to preferences
described in this language. Finally, we show that plan
quality can be significantly increased with very little
modeling effort for the domain.

Introduction

For many planning problems, quality as well as
feasibility must be considered while generating a plan.
There may be many undesirable, yet feasible solutions
that satisfy the goals. In addition, strict feasibility
constraints may be too weak for most problems, but
necessary for completeness. For example, while it may
be physically possible to completely drain a battery,
reasons of risk and longevity will make it preferable to
maintain a certain level of charge. However, this
preferred charge level, if encoded as a hard constraint,
would preclude solutions where a full battery drain
was necessary. We build on the traditional
representation of discrete hard constraints and
mandatory goals to include continuous soft constraints
(Le., preferences) and optional goals. In other words,
we extend the notion of what must be accomplished
(and how) to what should be accomplished (and how).
In this way, the user can specify which feasible
solutions are more desirable, establishing a basis for
automatically generating high quality plans.

In many NASA domains, the user can have a
complicated definition of plan quality. For example,
scientists typically would like to complete as many
experiments as possible within given windows of
opportunity. Other users, such as engineers, might
have a preference for fewer power switches of a
spacecraft instrument in order to extend the life of the
instrument. Certain system states may be more
desirable than other states. For example, extending an
arm of a rover might leave the rover unstable, making
it preferable to keep the arm stowed when not in use.

Some timing constraints may be flexible but also have
a preferred time. For example, a calibration may be
most useful immediately before an experiment, but
still have some utility up to five minutes earlier. We
present a general representation of plan quality that is
capable of encoding a wide range of preferences
including the ones just described.

We implement a representation of plan quality and
an optimization algorithm in the ASPEN planning and
scheduling system [1, 2]. During iterative
optimization, low scoring preferences are detected and
addressed individually until the maximum score is
attained, or a user-defined time limit has been
exceeded. A preference is a quality metric for a plan
variable, and can be improved by making certain
modifications to the plan. The most common plan
modifications include moving an activity, adding a
new instance of an activity, and deleting an activity.
For each preference, a domain-independent
improvement expert automatically generates
modifications that could potentially improve the
preference score. This is a generalization of the
iterative repair technique [3, 4] used to resolve
violations of hard constraints.

The iterative optimization algorithm has many of the
same desirable properties as iterative repair. Both
algorithms can be invoked at any time on any plan,
making them more amenable to mixed-initiative
planning. Repairing or improving existing plans
enables fast turn-around times when small changes
create conflicts or degrade plan quality. Changes may
occur from manual modifications or from
automatically detecting unexpected differences during
execution. Further discussions with applications to
spacecraft commanding can be found in [5].

The ASPEN Planning Model

In ASPEN, we have adopted a planning model with an
explicit representation of constraints for time,
resources and states [6]. Plan operators, called
activities, have a set of local variables including a start
time and duration. Activities may have a set of
temporal constraint variables, each specifying a
minimum and maximum separation between two

2nd NASA International Workshop on Planning and Scheduling for Space 11

activities in the plan. Activities also share a number of
global resources or state variables. Local constraint
variables may be defined in an activity specifying the
required value of a resource or state variable for the
activity. The combined effects of the activities define
the time-varying profiles (Le., timelines) for the values
of the resources and state variables. Global constraints
can be defined for each timeline, restricting its set of
legal values. For resources, these are capacity
constraints. For state variables, the set of legal states
and transitions can be specified. The ASPEN planning
model also includes a representation for activity
hierarchies. Activities can have a disjunctive set of
decompositions, each of which expands the activity
into different set of sub-activities. A local variable
represents the currently selected decomposition.
Arbitrary functional relationships can be expressed
between any of the variables in the activities. This
allows ASPEN to make external calls to special
reasoning modules for calculating plan values, if
necessary.

Finally, ASPEN has an explicit representation of
mandatory and optional goals. Goals are simply
activity specifications that do not immediately appear
in the plan. A mandatory goal is a conflict until the
activity has been inserted into the plan (Le., the goal is
satisfied). Optional goals are not considered conflicts
when not satisfied but instead degrade plan quality.

Representing Plan Quality

We define preferences as quality metrics for variables
in complete plans. Preferences provide a mechanism
for specifying which plan variables are important to
plan quality. Certain values of these variables are
preferred over others, without regard for legality. We
define a set of preference classes that directly
corresponds to the set of plan variable classes.

Preference Variables
To better understand what types of preferences are
included in our semantics, we must describe the types
of plan variables that can contribute to plan quality.
There are five basic types: local activity variable,
activity/goal count, resource/state variable,
resource/state change count, state duration.

An activity variable preference indicates a ranking
for the values of a local variable in an activity instance
in the plan. Local activity variables include domain­
specific variables as well as internal variables for start
time, end time, duration, resource usage, temporal
distance from other activities, and selected
decomposition. Typically, a preference is made for
variables with a particular name defined in a particular

type of activity. For example, minimizing tardiness in
[7, 8] is a preference on the end times of activities that
fulfill factory orders. Minimizing work in process
(WIP) is a preference on the distance between the
order request and order fulfillment activities. Other
preferences can score the plan based on the number of
existing activities of specific types (Le., activity
count). Or, one can make a general preference for
satisfying more of the optional goals. A
preference can also be made for certain values of a
global resource or state variable. A resource/state
variable preference ranks the set of resource/state
values that exist within the planning horizon. For
example, a preference can be made for maximizing the
minimum value of a battery over time. Other
preferences can score the plan based on the number
changes occurring on a resource/state variable (Le.,
resource/state change count). This type of preference
could be used to limit the number of power spikes on
the battery. Finally, a preference can be made on the
duration of a particular state on a state variable.
Pointing a spacecraft antenna towards earth, for
example, is preferred when the spacecraft is not
constrained to any other state.

Mapping to Quality Metrics
A preference is a mapping from a plan variable to a

a)

score

o

b)

score

lower
hound

6hrs

o 8min

center
value

10min

upper
hound

7hrs

activity
end time

activity
separation

12min

Figure 1: a) Mapping the end time of an activity to a score. This
implements a preference for minimizing tardiness of an activity.
The deadline is at the sixth hour and the score decreases to zero
one hour after the deadline. b) Mapping the distance between
two activities to a score centered on a given value. This
implements a preference for maintaining a 10 minute separation
with a ±2 minute tolerance.

12 2nd NASA International Workshop on Planning and Scheduling for Space

quality metric (Le., score) in the interval [0,1] (see
Figure 1). Specifically, a preference indicates whether
the score is monotonically increasing or decreasing
with respect to the plan variable within certain bounds.
The user can also specify that the score increases as
the difference with a given fixed value decreases. In
other words, the high score is centered on a value
selected from the domain of the variable. From this
high-level specification, mapping functions are
generated that take preference variables as arguments
and return real-valued scores.

Each preference includes an upper and lower bound
to indicate the range of the variable for which the
score increases or decreases. Any values outside this
range produce a score of either zero or one. For
example, anything over 90% battery charge may be
indistinguishable in terms of quality. Therefore, a
preference can be defined as increasing with minimum
charge and reaching a maximum score at 90% charge.
Each preference also includes a weight for specifying
the relative importance of the preference to overall
plan quality. The score of a plan is computed as the
weighted average of scores for plan variables with
preferences.

An aggregate preference is defined for many plan
variables, and can either score each variable
independently, or score the result of applying a
function to the variables. If the preference scores each
variable, then the scores are weighted equally and
averaged. The built-in functions that can be used in
aggregate preferences include average, sum,
minimum, and maximum. These functions constitute
the set of functions most commonly observed in
preferences from various domains. For example,
minimizing makespan is a preference on the maximum
end time of all activities in the schedule. The specified
function is computed for the current set of plan
variables, and the result is mapped to a score for the
preference.

Improving Plan Quality

Preferences allow us to define quality metrics for
evaluating feasible plans and making quantitative
distinctions between different plans. The next step is
to use these preferences to generate high quality plans.

Local Improvement Experts
In addition to establishing quality metrics, preferences
can provide insight into how to improve plan quality.
We define a domain-independent improvement expert
for each class of preference to aid in optimization (see
Figure 2). The expert uses the preference specification
to find plan modifications that will improve the score

for the given preference and current plan. In other
words, an expert is a link between changes in the plan
and the change in quality. For example, if less
resource usage were preferred, expert improvements
would include deleting an activity that is currently
using the resource. It is a local expert, however, and
does not guarantee an increase in overall plan quality.
Improvement experts provide a framework for
optimization algorithms, defining the search space of
possible improvements. We define a separate class of
improvement expert for each class of preference.

Local activity variable expert. One class of expert is
used for improving preferences on local activity
variables. The most obvious modification for
improving this preference is to change the value of the
local variable. The expert considers variables that
contribute to the low score. For example, only the end
time of activity a2 in Figure 2 can be changed to
improve the score for this preference. If score is a
decreasing function of the variable, then making an
improvement requires assigning a value less than its
current value. Similar improvements exist for
increasing functions. In cases where the variable is the
start or end time of the activity, assigning a value
implies moving the activity to earlier or later times. An
expert might create activities with high scoring values
or delete activities with low scoring values on a
variable.

Activity/goal count expert. A different class of
improvement expert is used preferences on the number

Preference:
less min battery level

Expert:
who? a3, a4, typeof(a5)
what? delete, create
where? < t2 or > t3

.....
..•..•. \

.'
.... ~ ..

Preference:
earlier end time

Expert:
who? a2
what? move, delete, ...
where? < t3

~\ .. \ ... J~

~:.~~Y l-.L[b~(J==:>==-"" ==""""":1,1-.j,) ~
to t1 (2·" "........... ';3 t4

time

Figure 2: Local improvement experts.

2nd NASA International Workshop on Planning and Scheduling for Space 13

of activities/goals. When the preference is for more
occurrences of a goal/activity, creating new activities
is the only beneficial modification. When the
preference is for fewer occurrences, deleting existing
activities is the only improvement.

Resource/state variable expert. Another class of
expert improves preference scores for the values of
resources or state variables. Only activities that use the
resource or state variable are considered. For a high
resource preference, the expert selects activities that
increase the resource when adding and activities that
decrease the resource when deleting. When moving, if
the preference is for a higher minimum resource value,
activities that decrease the resource during this time
can be moved away from the minimum value. In
Figure 2, activities a3 and a4 both contribute to the
low minimum battery level. Similar cases exist for
lower maximum, higher maximum, and lower
minimum resource values.

Resource/state change count expert. A simpler class
of expert is used for improving scores of preferences
on the number of times a resource or state variable
changes over time. Adding activities that use the
resource or state variable will increase the number of
changes. Deleting will decrease the number of
changes.

State duration expert. The last class of improvement
expert works on state duration preferences. Activities
that change the state variable can be created, deleted,
or moved in order to change the amount of time spent
in a particular state. When the preference is for a
longer duration, activities that change to the specified
state can be created at times when the variable is in a
different state. Conversely, when the preference is for
a shorter duration, activities that change to any other
state can be created at times when the variable is in the
specified state. Similar reasoning is used when
deleting or moving activities.

Monotonic Preference Assumption
In order to make improvement calculations tractable,
we make a monotonic preference assumption,
requiring each mapping from plan variable to quality
metric to either be consistently increasing or
decreasing within a given range of the variable. For
preferences centered on a value, the score must
increase for values less than the specified center value,
and decrease for values greater than the center value.
This assumption allows the problem to be restated as
simply identifying modifications that increase or
decrease the current values of plan variables
participating in preferences. For example, if a variable
with integer domain [1,10] and current value 4 has a

decreasing preference, then only values in the range
[1,3] will increase the score for this preference.

Iterative Optimization
The full set of potential plan improvements can be
quite large. Once the automated expert has identified
this set, we search for more optimal plans by
iteratively selecting and making improvements (see
Figure 3). We call this technique iterative optimization
because of its similarity to iterative repair. The
iterative optimization algorithm first selects a
preference from the list of sub-optimal (i.e., score < 1)
preferences. Typical heuristics for this decision
include selecting a preference with one of the lowest
scores or one with the most potential gain (weight * (1
- score)).

The algorithm must then decide which type of
modification to perform for the selected preference,
based on the local expert. After making a local
improvement, the resulting plan may not be optimal or
even improved. The iterative optimization algorithm
continues by selecting another preference, and
repeating the improvement process. After each
improvement, if the current score exceeds the best
score and the plan is feasible, the current plan is saved.
The algorithm halts when the maximum score is
attained, or a specified time limit is reached. If an
optimal plan was not found, the saved plan with the
best score is returned.

When making modifications during iterative
optimization, adhering to plan constraints may be too
restrictive, precluding modifications necessary for
improving quality. Iterative optimization algorithm
may create conflicts while searching for an optimal
plan. Because it is unknown how the plan will change

Iterative Optimize (1')
Let P = PbcSl = current plan
Let S = Sbesl = current score
While (S <1 and time < T)

If conflicts exist, Then repair(T-time)
Let Q = set of preferences with sub-optimal score
q = choose(Q)
M = Eq(P) II get the set of modifications
m = choose(M)
P = m(P) II apply the chosen modification
S = score(P)
If (S > SbcsU II save if best-so-far

SbcSl = S
PbcSl = P

Return PbcSl

Figure 3: The ASPEN optimization algorithm. Eq(P) returns
the set of modifications for plan P calculated by the expert E
for improving preference q.

14 2nd NASA International Workshop on Planning and Scheduling for Space

to a.chieve feasibility, we do not define quality for
infeasible plans. Iterative repair algorithm is invoked
to restore feasibility when optimization yields an
infeasible schedule.

The iterative optimization algorithm does not
perform strict hill-climbing. Decreasing score suggests
that a subset of the preferences represent competing
objectives. We only attempt to increase the score of a
single preference by stochastically choosing one
potential improvement rather than optimizing the
preference. We would expect competing preferences
with a large disparity to reach a compromise rather
than thrash between a high score for one and a low
score for the other.

Continuous Improvements
During execution we may notice differences between
actual and expected values for activities or resources.
These differences may violate hard constraints or
degrade plan quality. The CASPER system [9] was
developed to continuously initiate and monitor the
execution of an ASPEN plan, updating the plan when
necessary. As the result of a plan update, CASPER
uses the iterative algorithms to fix new conflicts and
improve preference scores. In this way, CASPER
provides continuous planning and optimization during
the course of execution.

Case Study

New Millennium Earth Observer I (EO-I) is an earth
imaging satellite featuring an advanced multi-spectral
imaging device. EO-I mission operations consists of
managing spacecraft operability constraints (power,
thermal, pointing, buffers, consumables, telecomm,
etc.) and science goals (imaging surface targets within
specific observation constraints). One interesting
constraint involves the Solar Array Drive (SAD)
which keeps the solar arrays facing the sun. For a few
minutes before and during each data-take, the SAD
must be locked to avoid spacecraft jitter, which can
corrupt data. The EO-1 model consists of 14 resources,
10 state variables and total of 38 different activity
types.

The EO-1 model includes preferences for (see
Figure 4): more science goals, more time with the

SAD tracking the sun, fewer changes of SAD state,
and less deviation from the preferred separation of
data-take and SAD locking activities. The last
preference has a high score centered on a value
because if the settling time is too small there will be
too much jitter, but if the separation is too large the
solar array power output will suffer.

Optimization begins with no optional goals satisfied
and no violated constraints. In order to increase plan
quality, a goal might be added to the plan. Because
this activity has many requirements, constraint
violations are immediately identified and addressed.
After repairing all conflicts, optimization continues to
make improvements by either adding another goal or
working on another preference. Optimization and
repair continue until a time limit is reached, after
which the best saved plan is reloaded. Random EO-I
problems were run on a Sun Sparc Ultra 60 for five
minutes each. Resulting values for each preference
variable were averaged over the 100 problems.
Approximate "optimal" values were estimated
manually considering each preference individually.
Average values for all preference variables were
within 50% of the "optimal" value or better. This is
good considering many of the preferences represent
competing objectives.

Studies on other models were performed with
similar results, including the New Millennium ST-4
spacecraft, the Data-Chaser shuttle payload, and the
JPL Rocky-7 planetary rover [10].

Related Work

Much of the recent work in plan optimization has been
looking at ways to integrate linear programming (LP)
techniques with symbolic AI and constraint
propagation [11, 12, 13, 14]. While LP formulations
have the advantage of taking a global view of plan
quality, they can be difficult to develop and
computationally expensive to solve when including
representations for state, resource, and temporal
constraints. PYRRHUS [7] is a partial-order planner
that must evaluate the utility of partial-plans in order
to address optimization. To compute the upper bound
on utility of partial plans, they make the restrictive
assumption that Qverall quality does not decrease

Prefer linearly more goal all total occurrences between 1 and 30 weighted 200
Prefer linearly more sad_sv total duration of tracking value
Prefer linearly less sad_sv total occurrences
Prefer linearly centered activity ali_data_take parameter sad_front_bound each

value between 250 and 350

Figure 4: Preference specifications for the EO·1 model.

2nd NASA International Workshop on Planning and Scheduling for Space 15

when making refinements. Myers and Lee [15] view
the optimization problem as providing a set of
qualitatively different plans that can be refined by
human planners. The CABINS [8] system uses a
similar iterative optimization algorithm to improve
complete, sUb-optimal schedules. Case-based
reasoning (CBR) is used to learn preferences from the
user's evaluation of the plans. Finally, our approach is
a specialization of black-box optimization techniques.
The large search space of black-box optimization
makes both finding and applying the appropriate
technique prohibitively expensive.

Conclusions

We have described an approach to represent and
optimize quality metrics using generic preferences for
values of arbitrary variables in the plan. In our
approach, we efficiently compute the set of local
improvements for each preference independent of the
domain by restricting the representation to monotonic
functions for mapping plan values to quality metrics.
We have demonstrated the feasibility in a spacecraft
operations domain. More details can be found in [10].

Acknowledgements

This work was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

References'

[1] Fukunaga, A; Rabideau, G.; Chien, S.; and Yan, D.;
1997. Toward an Application Framework for Automated
Planning and Scheduling, In Proc. of iSAlRAS-97, Tokyo,
Japan.
[2] Rabideau, G.; Knight, R; Chien, S.; Fukunaga, A;
Govindjee, A 1999. Iterative Repair Planning for Spacecraft
Operations Using the ASPEN System, In Proc. of iSAlRAS-
99.
[3] Minton, S.; and Johnston, M. 1988. Minimizing
Conflicts: A Heuristic Repair Method for Constraint
Satisfaction and Scheduling Problems, Artificial
Intelligence, 58:161-205.
[4] Zweben, M.; Daun, B.; Davis, E.; and Deale, M. 1994.
Scheduling and Rescheduling with Iterative Repair, In
Intelligent Scheduling, Morgan Kaufmann, San Francisco,
CA 241-256.
[5] Chien, S.; Smith, B.; Rabideau, G.; Muscettola, N.; and
Raj an, K. 1998. Automated Planning and Scheduling for
Goal-Based Autonomous Spacecraft, IEEE Intelligent
Systems, September/October, 50-55.
[6] Smith, B.; Sherwood, R; Govindjee, A; Yan, D.;
Rabideau, G.; Chien, S.; and Fukunaga, A 1998.

Representing Spacecraft Mission Planning Knowledge in
ASPEN, Artificial Intelligence Planning Systems Workshop
on Knowledge Acquisition, Pittsburgh, PA
[7]Williamson, M.; and Hanks, S. 1994. Optimal Planning
with a Goal-Directed Utility Model, In Proc. of AlPS-94,
176-181. AAAIPress.
[8] Miyashita, K; and Sycara, K. 1995. CABINS: A
Framework of Knowledge Acquisition and Iterative
Revision for Schedule Improvement and Reactive Repair,
Artificial Intelligence, 76(1-2):377-426.
[9] Chien, S.; Knight, R; Stechert, A; Sherwood, R.; and
Rabideau, G. 1999. Integrated Planning and Execution for
Autonomous Spacecraft, In Proc. of the 1999 IEEE
Aerospace Conference.
[10] Rabideau, G.; Engelhardt, B.; Chien, S. 2000. Using
Generic Preferences to Incrementally Improve Plan Quality,
In Proc. of AlPS-2000 (to appear).
[11] Baptiste, P.; Le Pape, C.; and Nuijten, W. 1995.
Incorporating Efficient Operations Research Algorithms in
Constraint-Based Scheduling, In Proc. of the First
International Joint Workshop on Artificial Intelligence and
Operations Research.
[12] Hooker, J. N.; Ottosson, G.; Thorsteinsson, E. S.; and
Kim, H. 1999. On Integrating Constraint Propagation and
Linear Programming for Combinatorial Optimization, In
Proc. of AAAl-99, 136-142.
[13] Kautz, H.; and Walser, J. 1999. State-space Planning by
Integer Optimization, In Proc. of AAAl-99, 526-533.
[14] Vossen, T.; Ball, M.; Lotem, A; and Nau, D. 1999. On
the Use of Integer Programming Models in AI Planning, In
Proc. of IJCAl-99.
[15] Myers, K. L.; and Lee, T. J. 1999. Generating
Qualitatively Difference Plans through Metatheoretic Biases,
In Proc. of AAAl-99, 570-576.

16 2nd NASA International Workshop on Planning and Scheduling for Space

	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part31
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part32
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part33
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part34
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part35
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part36

