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Abstract 
We describe a methodology for representing and 
optimizing user preferences on plans. Our approach 
differs from previous work on plan optimization in that 
we employ a generalization of commonly occurring 
plan quality metrics, providing an expressive 
preference language. We introduce a domain 
independent algorithm for incrementally improving the 
quality of feasible plans with respect to preferences 
described in this language. Finally, we show that plan 
quality can be significantly increased with very little 
modeling effort for the domain. 

Introduction 

For many planning problems, quality as well as 
feasibility must be considered while generating a plan. 
There may be many undesirable, yet feasible solutions 
that satisfy the goals. In addition, strict feasibility 
constraints may be too weak for most problems, but 
necessary for completeness. For example, while it may 
be physically possible to completely drain a battery, 
reasons of risk and longevity will make it preferable to 
maintain a certain level of charge. However, this 
preferred charge level, if encoded as a hard constraint, 
would preclude solutions where a full battery drain 
was necessary. We build on the traditional 
representation of discrete hard constraints and 
mandatory goals to include continuous soft constraints 
(Le., preferences) and optional goals. In other words, 
we extend the notion of what must be accomplished 
(and how) to what should be accomplished (and how). 
In this way, the user can specify which feasible 
solutions are more desirable, establishing a basis for 
automatically generating high quality plans. 

In many NASA domains, the user can have a 
complicated definition of plan quality. For example, 
scientists typically would like to complete as many 
experiments as possible within given windows of 
opportunity. Other users, such as engineers, might 
have a preference for fewer power switches of a 
spacecraft instrument in order to extend the life of the 
instrument. Certain system states may be more 
desirable than other states. For example, extending an 
arm of a rover might leave the rover unstable, making 
it preferable to keep the arm stowed when not in use. 

Some timing constraints may be flexible but also have 
a preferred time. For example, a calibration may be 
most useful immediately before an experiment, but 
still have some utility up to five minutes earlier. We 
present a general representation of plan quality that is 
capable of encoding a wide range of preferences 
including the ones just described. 

We implement a representation of plan quality and 
an optimization algorithm in the ASPEN planning and 
scheduling system [1, 2]. During iterative 
optimization, low scoring preferences are detected and 
addressed individually until the maximum score is 
attained, or a user-defined time limit has been 
exceeded. A preference is a quality metric for a plan 
variable, and can be improved by making certain 
modifications to the plan. The most common plan 
modifications include moving an activity, adding a 
new instance of an activity, and deleting an activity. 
For each preference, a domain-independent 
improvement expert automatically generates 
modifications that could potentially improve the 
preference score. This is a generalization of the 
iterative repair technique [3, 4] used to resolve 
violations of hard constraints. 

The iterative optimization algorithm has many of the 
same desirable properties as iterative repair. Both 
algorithms can be invoked at any time on any plan, 
making them more amenable to mixed-initiative 
planning. Repairing or improving existing plans 
enables fast turn-around times when small changes 
create conflicts or degrade plan quality. Changes may 
occur from manual modifications or from 
automatically detecting unexpected differences during 
execution. Further discussions with applications to 
spacecraft commanding can be found in [5]. 

The ASPEN Planning Model 

In ASPEN, we have adopted a planning model with an 
explicit representation of constraints for time, 
resources and states [6]. Plan operators, called 
activities, have a set of local variables including a start 
time and duration. Activities may have a set of 
temporal constraint variables, each specifying a 
minimum and maximum separation between two 
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activities in the plan. Activities also share a number of 
global resources or state variables. Local constraint 
variables may be defined in an activity specifying the 
required value of a resource or state variable for the 
activity. The combined effects of the activities define 
the time-varying profiles (Le., timelines) for the values 
of the resources and state variables. Global constraints 
can be defined for each timeline, restricting its set of 
legal values. For resources, these are capacity 
constraints. For state variables, the set of legal states 
and transitions can be specified. The ASPEN planning 
model also includes a representation for activity 
hierarchies. Activities can have a disjunctive set of 
decompositions, each of which expands the activity 
into different set of sub-activities. A local variable 
represents the currently selected decomposition. 
Arbitrary functional relationships can be expressed 
between any of the variables in the activities. This 
allows ASPEN to make external calls to special 
reasoning modules for calculating plan values, if 
necessary. 

Finally, ASPEN has an explicit representation of 
mandatory and optional goals. Goals are simply 
activity specifications that do not immediately appear 
in the plan. A mandatory goal is a conflict until the 
activity has been inserted into the plan (Le., the goal is 
satisfied). Optional goals are not considered conflicts 
when not satisfied but instead degrade plan quality. 

Representing Plan Quality 

We define preferences as quality metrics for variables 
in complete plans. Preferences provide a mechanism 
for specifying which plan variables are important to 
plan quality. Certain values of these variables are 
preferred over others, without regard for legality. We 
define a set of preference classes that directly 
corresponds to the set of plan variable classes. 

Preference Variables 
To better understand what types of preferences are 
included in our semantics, we must describe the types 
of plan variables that can contribute to plan quality. 
There are five basic types: local activity variable, 
activity/goal count, resource/state variable, 
resource/state change count, state duration. 

An activity variable preference indicates a ranking 
for the values of a local variable in an activity instance 
in the plan. Local activity variables include domain­
specific variables as well as internal variables for start 
time, end time, duration, resource usage, temporal 
distance from other activities, and selected 
decomposition. Typically, a preference is made for 
variables with a particular name defined in a particular 

type of activity. For example, minimizing tardiness in 
[7, 8] is a preference on the end times of activities that 
fulfill factory orders. Minimizing work in process 
(WIP) is a preference on the distance between the 
order request and order fulfillment activities. Other 
preferences can score the plan based on the number of 
existing activities of specific types (Le., activity 
count). Or, one can make a general preference for 
satisfying more of the optional goals. A 
preference can also be made for certain values of a 
global resource or state variable. A resource/state 
variable preference ranks the set of resource/state 
values that exist within the planning horizon. For 
example, a preference can be made for maximizing the 
minimum value of a battery over time. Other 
preferences can score the plan based on the number 
changes occurring on a resource/state variable (Le., 
resource/state change count). This type of preference 
could be used to limit the number of power spikes on 
the battery. Finally, a preference can be made on the 
duration of a particular state on a state variable. 
Pointing a spacecraft antenna towards earth, for 
example, is preferred when the spacecraft is not 
constrained to any other state. 

Mapping to Quality Metrics 
A preference is a mapping from a plan variable to a 
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Figure 1: a) Mapping the end time of an activity to a score. This 
implements a preference for minimizing tardiness of an activity. 
The deadline is at the sixth hour and the score decreases to zero 
one hour after the deadline. b) Mapping the distance between 
two activities to a score centered on a given value. This 
implements a preference for maintaining a 10 minute separation 
with a ±2 minute tolerance. 
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quality metric (Le., score) in the interval [0,1] (see 
Figure 1). Specifically, a preference indicates whether 
the score is monotonically increasing or decreasing 
with respect to the plan variable within certain bounds. 
The user can also specify that the score increases as 
the difference with a given fixed value decreases. In 
other words, the high score is centered on a value 
selected from the domain of the variable. From this 
high-level specification, mapping functions are 
generated that take preference variables as arguments 
and return real-valued scores. 

Each preference includes an upper and lower bound 
to indicate the range of the variable for which the 
score increases or decreases. Any values outside this 
range produce a score of either zero or one. For 
example, anything over 90% battery charge may be 
indistinguishable in terms of quality. Therefore, a 
preference can be defined as increasing with minimum 
charge and reaching a maximum score at 90% charge. 
Each preference also includes a weight for specifying 
the relative importance of the preference to overall 
plan quality. The score of a plan is computed as the 
weighted average of scores for plan variables with 
preferences. 

An aggregate preference is defined for many plan 
variables, and can either score each variable 
independently, or score the result of applying a 
function to the variables. If the preference scores each 
variable, then the scores are weighted equally and 
averaged. The built-in functions that can be used in 
aggregate preferences include average, sum, 
minimum, and maximum. These functions constitute 
the set of functions most commonly observed in 
preferences from various domains. For example, 
minimizing makespan is a preference on the maximum 
end time of all activities in the schedule. The specified 
function is computed for the current set of plan 
variables, and the result is mapped to a score for the 
preference. 

Improving Plan Quality 

Preferences allow us to define quality metrics for 
evaluating feasible plans and making quantitative 
distinctions between different plans. The next step is 
to use these preferences to generate high quality plans. 

Local Improvement Experts 
In addition to establishing quality metrics, preferences 
can provide insight into how to improve plan quality. 
We define a domain-independent improvement expert 
for each class of preference to aid in optimization (see 
Figure 2). The expert uses the preference specification 
to find plan modifications that will improve the score 

for the given preference and current plan. In other 
words, an expert is a link between changes in the plan 
and the change in quality. For example, if less 
resource usage were preferred, expert improvements 
would include deleting an activity that is currently 
using the resource. It is a local expert, however, and 
does not guarantee an increase in overall plan quality. 
Improvement experts provide a framework for 
optimization algorithms, defining the search space of 
possible improvements. We define a separate class of 
improvement expert for each class of preference. 

Local activity variable expert. One class of expert is 
used for improving preferences on local activity 
variables. The most obvious modification for 
improving this preference is to change the value of the 
local variable. The expert considers variables that 
contribute to the low score. For example, only the end 
time of activity a2 in Figure 2 can be changed to 
improve the score for this preference. If score is a 
decreasing function of the variable, then making an 
improvement requires assigning a value less than its 
current value. Similar improvements exist for 
increasing functions. In cases where the variable is the 
start or end time of the activity, assigning a value 
implies moving the activity to earlier or later times. An 
expert might create activities with high scoring values 
or delete activities with low scoring values on a 
variable. 

Activity/goal count expert. A different class of 
improvement expert is used preferences on the number 
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Figure 2: Local improvement experts. 
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of activities/goals. When the preference is for more 
occurrences of a goal/activity, creating new activities 
is the only beneficial modification. When the 
preference is for fewer occurrences, deleting existing 
activities is the only improvement. 

Resource/state variable expert. Another class of 
expert improves preference scores for the values of 
resources or state variables. Only activities that use the 
resource or state variable are considered. For a high 
resource preference, the expert selects activities that 
increase the resource when adding and activities that 
decrease the resource when deleting. When moving, if 
the preference is for a higher minimum resource value, 
activities that decrease the resource during this time 
can be moved away from the minimum value. In 
Figure 2, activities a3 and a4 both contribute to the 
low minimum battery level. Similar cases exist for 
lower maximum, higher maximum, and lower 
minimum resource values. 

Resource/state change count expert. A simpler class 
of expert is used for improving scores of preferences 
on the number of times a resource or state variable 
changes over time. Adding activities that use the 
resource or state variable will increase the number of 
changes. Deleting will decrease the number of 
changes. 

State duration expert. The last class of improvement 
expert works on state duration preferences. Activities 
that change the state variable can be created, deleted, 
or moved in order to change the amount of time spent 
in a particular state. When the preference is for a 
longer duration, activities that change to the specified 
state can be created at times when the variable is in a 
different state. Conversely, when the preference is for 
a shorter duration, activities that change to any other 
state can be created at times when the variable is in the 
specified state. Similar reasoning is used when 
deleting or moving activities. 

Monotonic Preference Assumption 
In order to make improvement calculations tractable, 
we make a monotonic preference assumption, 
requiring each mapping from plan variable to quality 
metric to either be consistently increasing or 
decreasing within a given range of the variable. For 
preferences centered on a value, the score must 
increase for values less than the specified center value, 
and decrease for values greater than the center value. 
This assumption allows the problem to be restated as 
simply identifying modifications that increase or 
decrease the current values of plan variables 
participating in preferences. For example, if a variable 
with integer domain [1,10] and current value 4 has a 

decreasing preference, then only values in the range 
[1,3] will increase the score for this preference. 

Iterative Optimization 
The full set of potential plan improvements can be 
quite large. Once the automated expert has identified 
this set, we search for more optimal plans by 
iteratively selecting and making improvements (see 
Figure 3). We call this technique iterative optimization 
because of its similarity to iterative repair. The 
iterative optimization algorithm first selects a 
preference from the list of sub-optimal (i.e., score < 1) 
preferences. Typical heuristics for this decision 
include selecting a preference with one of the lowest 
scores or one with the most potential gain (weight * (1 
- score)). 

The algorithm must then decide which type of 
modification to perform for the selected preference, 
based on the local expert. After making a local 
improvement, the resulting plan may not be optimal or 
even improved. The iterative optimization algorithm 
continues by selecting another preference, and 
repeating the improvement process. After each 
improvement, if the current score exceeds the best 
score and the plan is feasible, the current plan is saved. 
The algorithm halts when the maximum score is 
attained, or a specified time limit is reached. If an 
optimal plan was not found, the saved plan with the 
best score is returned. 

When making modifications during iterative 
optimization, adhering to plan constraints may be too 
restrictive, precluding modifications necessary for 
improving quality. Iterative optimization algorithm 
may create conflicts while searching for an optimal 
plan. Because it is unknown how the plan will change 

Iterative Optimize (1') 
Let P = PbcSl = current plan 
Let S = Sbesl = current score 
While (S <1 and time < T) 

If conflicts exist, Then repair(T-time) 
Let Q = set of preferences with sub-optimal score 
q = choose(Q) 
M = Eq(P) II get the set of modifications 
m = choose(M) 
P = m(P) II apply the chosen modification 
S = score(P) 
If (S > SbcsU II save if best-so-far 

SbcSl = S 
PbcSl = P 

Return PbcSl 

Figure 3: The ASPEN optimization algorithm. Eq(P) returns 
the set of modifications for plan P calculated by the expert E 
for improving preference q. 
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to a.chieve feasibility, we do not define quality for 
infeasible plans. Iterative repair algorithm is invoked 
to restore feasibility when optimization yields an 
infeasible schedule. 

The iterative optimization algorithm does not 
perform strict hill-climbing. Decreasing score suggests 
that a subset of the preferences represent competing 
objectives. We only attempt to increase the score of a 
single preference by stochastically choosing one 
potential improvement rather than optimizing the 
preference. We would expect competing preferences 
with a large disparity to reach a compromise rather 
than thrash between a high score for one and a low 
score for the other. 

Continuous Improvements 
During execution we may notice differences between 
actual and expected values for activities or resources. 
These differences may violate hard constraints or 
degrade plan quality. The CASPER system [9] was 
developed to continuously initiate and monitor the 
execution of an ASPEN plan, updating the plan when 
necessary. As the result of a plan update, CASPER 
uses the iterative algorithms to fix new conflicts and 
improve preference scores. In this way, CASPER 
provides continuous planning and optimization during 
the course of execution. 

Case Study 

New Millennium Earth Observer I (EO-I) is an earth 
imaging satellite featuring an advanced multi-spectral 
imaging device. EO-I mission operations consists of 
managing spacecraft operability constraints (power, 
thermal, pointing, buffers, consumables, telecomm, 
etc.) and science goals (imaging surface targets within 
specific observation constraints). One interesting 
constraint involves the Solar Array Drive (SAD) 
which keeps the solar arrays facing the sun. For a few 
minutes before and during each data-take, the SAD 
must be locked to avoid spacecraft jitter, which can 
corrupt data. The EO-1 model consists of 14 resources, 
10 state variables and total of 38 different activity 
types. 

The EO-1 model includes preferences for (see 
Figure 4): more science goals, more time with the 

SAD tracking the sun, fewer changes of SAD state, 
and less deviation from the preferred separation of 
data-take and SAD locking activities. The last 
preference has a high score centered on a value 
because if the settling time is too small there will be 
too much jitter, but if the separation is too large the 
solar array power output will suffer. 

Optimization begins with no optional goals satisfied 
and no violated constraints. In order to increase plan 
quality, a goal might be added to the plan. Because 
this activity has many requirements, constraint 
violations are immediately identified and addressed. 
After repairing all conflicts, optimization continues to 
make improvements by either adding another goal or 
working on another preference. Optimization and 
repair continue until a time limit is reached, after 
which the best saved plan is reloaded. Random EO-I 
problems were run on a Sun Sparc Ultra 60 for five 
minutes each. Resulting values for each preference 
variable were averaged over the 100 problems. 
Approximate "optimal" values were estimated 
manually considering each preference individually. 
Average values for all preference variables were 
within 50% of the "optimal" value or better. This is 
good considering many of the preferences represent 
competing objectives. 

Studies on other models were performed with 
similar results, including the New Millennium ST-4 
spacecraft, the Data-Chaser shuttle payload, and the 
JPL Rocky-7 planetary rover [10]. 

Related Work 

Much of the recent work in plan optimization has been 
looking at ways to integrate linear programming (LP) 
techniques with symbolic AI and constraint 
propagation [11, 12, 13, 14]. While LP formulations 
have the advantage of taking a global view of plan 
quality, they can be difficult to develop and 
computationally expensive to solve when including 
representations for state, resource, and temporal 
constraints. PYRRHUS [7] is a partial-order planner 
that must evaluate the utility of partial-plans in order 
to address optimization. To compute the upper bound 
on utility of partial plans, they make the restrictive 
assumption that Qverall quality does not decrease 

Prefer linearly more goal all total occurrences between 1 and 30 weighted 200 
Prefer linearly more sad_sv total duration of tracking value 
Prefer linearly less sad_sv total occurrences 
Prefer linearly centered activity ali_data_take parameter sad_front_bound each 

value between 250 and 350 

Figure 4: Preference specifications for the EO·1 model. 
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when making refinements. Myers and Lee [15] view 
the optimization problem as providing a set of 
qualitatively different plans that can be refined by 
human planners. The CABINS [8] system uses a 
similar iterative optimization algorithm to improve 
complete, sUb-optimal schedules. Case-based 
reasoning (CBR) is used to learn preferences from the 
user's evaluation of the plans. Finally, our approach is 
a specialization of black-box optimization techniques. 
The large search space of black-box optimization 
makes both finding and applying the appropriate 
technique prohibitively expensive. 

Conclusions 

We have described an approach to represent and 
optimize quality metrics using generic preferences for 
values of arbitrary variables in the plan. In our 
approach, we efficiently compute the set of local 
improvements for each preference independent of the 
domain by restricting the representation to monotonic 
functions for mapping plan values to quality metrics. 
We have demonstrated the feasibility in a spacecraft 
operations domain. More details can be found in [10]. 
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