
Acting on information: A plan language for manipulating data 

Keith Golden 
NASA Ames Research Center 

MIS 269-2 
Moffett Field, CA 94035-1000 
kgolden@ptolemy.arc.nasa.gov 

Abstract 

Information manipulation is the creation of new infor
mation based on existing information sources. This 
paper discusses problems that arise when planning for 
information manipulation and introduces an action lan
guage, ADLIM, that addresses these problems. Topics 
include 

• How to represent information in a way sufficient to 
express the effects of actions that modify the infor
mation. 

• How to concisely represent actions that copy infor
mation, or produce new information that is based on 
existing information sources. 

• How to generate a pipeline of information-processing 
commands that will produce an output containing 
the desired information. 

1 Introduction 
A big part of NASA's job is information management. 
Satellites, unmanned spacecraft, planetary rover~ and 
observatories, for all their complexity, can all be vIewed 
as remote sensors; their sole purpose is to gather data, 
which they transmit across a vast, interplanetary net
work where it is processed, delivered to the scientific 
com~unity, and archived. Just as controlling space
craft is a complex task that can benefit from automa
tion, so is managing the data that spacecraft returns. 
Currently, automation usually consists of writing so~e 
scripts to handle expected cases. Some problems WIth 
this approach are lack of flexibility in the face of chang
ing requirements or one-time requests, lack of robust
ness in the face of errors or unanticipated events, and 
poor data tracking. The latter is a serious problem, 
since much of the information about various data files 
and how they are inter-related is stored in the heads of 
operators, who will eventually go on to other missions, 
or forget. 

We are developing a system, called IMAGEbotl, to 
automate information manipulation tasks, such as gen
erating mosaics or converting file formats, and to 

1 IMAGE stands for Information Manipulation, Archiv
ing, Gathering and Extraction 

automati~ally record in a database the vital meta
information about files that have been produced, such 
as how they were generated, or which parts of the 
telemetry logs correspond to which science data. IM
AGEbot will robustly respond to errors, such as disks 
filling up, and will be able to provide greater function
ality than hand-generated scripts, since it will generate 
its own scripts based on user-supplied goals. 

This work builds on experience with the Internet 
Softbot (Etzioni & Weld 1994) and other information
gathering agents. However, the information manipula
tion problem is beyond the grasp of current softbots. 
There has been considerable work on developing plan
ners for gathering information, but almost no work on 
planners for manipulating information. That is not be
cause manipulating information is not important, but 
because representing actions that manipulate informa
tion is hard. For example, in the Internet Softbot, the 
copy action was never cleanly or accurately represented, 
and it was impossible to represent Unix pipes (which 
redirect the output of one command to the input of 
another) or actions like tar C~vhich creates .an a:chive 
of a collection of files) and difficult to achIeve Image 
processing tasks. 

We present an action language, ADLIM, that is ca
pable of representing such actions easily and concisely. 
ADLIM stands for Action Description Language for In
formation Manipulation, and is an extension of Ped
nault's ADL (Pednault 1989). It is intended for problem 
domains, such as space science missions, w~ere informa
tion manipulation tasks, like image processmg and data 
archiving and distribution, are commonplace. 

The next section discusses how actions and goals 
for information manipulation are represented in ADLIM. 
Section 3 discusses a problem that comes up when try
ing to represent actions that copy or modify information 
and shows how it is a generalization of the frame prob
lem. Section 4 discusses temporal projection in ADL!M 
and illustrates it with a simple example from a plane
tary rover domain. Section 5 discusses related work. 

2 Information manipulation 
Since the purpose of ADLIM is to represent actions that 
process data inputs and produce data outputs, inputs 

28 2nd NASA International Workshop on Planning and Scheduling for Space 



and outputs are explicitly declared in action descrip
tions. Every variable is declared as an input, output, 
parameter or quantified variable. Inputs and outputs 
are distinct from other variables in that an input is not 
guaranteed to exist after the action is executed, and an 
output does not exist before the action is executed. 

An action that has no inputs and one or more outputs 
is called an information source. An action that has one 
or more inputs and no outputs is an information sink. 
An action that has one or more inputs and one or more 
outputs is an information filter. An information filter 
processes the inputs, producing the outputs. Contrary 
to the behavior of a physical filter, it does not neces
sarily remove anything from the input, and may add 
something or change it completely. 

Effects 
UWL (Etzioni et al. 1992) and SADL (Golden & Weld 
1996) represent information-producing actions using 
the annotation observe. For example, to represent 
that executing the action Is /bin reveals the name of 
every file in /bin, the SADL encoding would be: 

Vf3n when (in.dir(f, /bin)) observe(name(f, 
n)) 

However, the encoding using the observe annotation 
does not actually represent the effects of Is, but rather 
the combination of Is with a program to interpret its 
output and produce a set of knowledge base updates. 
Such a program is called a wrapper. Since a filter works 
on the syntactic output of a program, not the semantic 
interpretation, using observe throws away vital infor
mation that a planner needs to reason about the effect 
of a filter: the syntax. Instead, we describe the syntax 
of the output directly. We divide conditions that can 
be sensed into two categories: simple observables and 
fluents. 

Simple observables are functions or relations 
whose value is independent of the situation in which 
they are evaluated. For example, the relation con
tains("foobar", "foo") is easily answerable by examin: 
ing only the syntactic representation of "foobar" and 
"foo". Rather than providing a sensing action for a 
simple observable, we provide a function that returns 
its value (if all arguments are bound), or provides addi
tional constraints for its arguments (if some arguments 
are not bound). 

Fluents are functions or relations whose value de
pends on the situation. For example, the relation 
in.dir(foo, /bin), which means the file foo is in the di
rectory /bin, will be true in some situations and false 
in others. A sensing action can be described using con
ditional effects, where the antecedent refers to the sit
uation in which the action is executed, described using 
fluents, and the consequent refers to the contents of the 
output, described using simple observables. E.g., the 
effect of Is discussed above would be 

Vf (parent.dir(f) = /bin) --+ 
contains-line(name(J), out) 

This translates to "For each file in directory /bin, there 
is a line in the output that is equal to the name of the 
file." The --+ is used instead of when (which is used in 
SADL) to indicate a conditional effect. The reason for 
this notation will become clear in the next subsection. 
We will use LHS to designate the expression on the left 
hand side of the --+ and RHS to denote the expression 
to the right of the --+. Note that we use function com
position as a shorthand. The above goal is equivalent 
to 

Vf,n (parent.dir(j) = /bin 1\ n = name(f»--+ 
contains-line(n, out) 

Two things to note are that name(f) is now on the LHS 
and n is universally quantified (3 was used in the SADL 
example). V and 3 are equivalent when the variable 
represents the value of a function, since there is alway 
exactly one possible value. We use V here because it's 
simpler. Other examples in the paper can be trans
formed in the same way: replace each nested function 
with a new universally quantified variable and add an 
equality constraint between the variable and the func
tion to the LHS. 

Goals 

Information manipulation goals, like effects, must be 
explicit about the syntax of the output. Consider the 
goal of outputting the result of a query to a file. Merely 
ensuring that the file contains the information is not 
sufficient. For example, a list of file names should not be 
mixed up with a list of userids, since it may be difficult 
to tell which is which. Furthermore, if the file is to be 
read by another program, there will be exact formatting 
requirements. 

Suppose our goal is to to produce a killfile, which is 
a list of email addresses that we don't want to receive 
email from, each on a separate line. Let's say we don't 
want to receive email from anyone who has sent us email 
containing the string "MAKE MONEY FAST." We might 
express this goal as: 

Vem email-received (em) 1\ 
contains (subject (em) , "MAKE MONEY FAST") 

--+ contains-line(sender(em), killfile) 

This has the same form as the conditional effects dis
cussed in Section 2, but the meaning is slightly differ
ent. Whereas, in effects, the statement A --+ B indi
cates that if A is true before the action is executed 
then B will be true after the action is executed, in 
goals it means that if A is true before the plan is exe
cuted, then B must be true after the plan is executed. 
In SADL goals, A would be represented using initially 
and B would be expressed using satisfy (Golden & 
Weld 1996). One problem with the above goal is that 
including all known email addresses in the killfile would 
also satisfy the goal. To express more restrictive goals, 
we also allow expressions of the form A ~ B, which is 
equivalent to (A --+ B) 1\ (-,A --+ -,B). 

2nd NASA International Workshop on Planning and Scheduling for Space 29 



Information pipelines 
An information pipeline is one or more information 
sources followed by a sequence of filters, possibly ter
minated by an information sink, in which the output 
of each action is directed to the input of a following 
action. The effects of an information pipeline can be 
represented in the same way as the effects an individual 
action. The LHS refers to the conditions that are true 
when the first action is executed and the RHS refers to 
the contents of the output and the conditions that are 
true after the last action is executed. This representa
tion can be generated automatically from the individual 
action descriptions, using the same process that is used 
in planning (see Section 4). In this manner, a precise 
description of of the contents of the output of a pipeline 
is generated, relating the meaning of the information 
to its form. This description can be archived, along 
with the time and circumstances under which the out
put was generated, for later use by IMAGEbot. Thus, 
if IMAGEbot has a goal, or subgoal, of generating a file 
with particular properties, and it has generated such 
a file before, it can use the previously generated file 
instead. 

The same approach can be used to describe files. or 
other information resources not generated by IMAGE
bot. It can then use these as information sources for in 
its plans. 

3 The copy problem 
The representation of information filters presents a 
challenge. A filter creates a new object, such as a text 
file, which is based on an existing object. Although the 
input and output of a filter are distinct objects, they 
have much in common. The output may be a copy of 
the input, with some changes. 

We call this the copy problem, which can be under
stood by considering the effects of a photocopier. Ini
tially, we have an original of a document and a blank 
sheet of paper. After running the photocopier, every
thing that was true about the original is still true (the 
frame problem). Additionally, most everything that 
was true about the original is now also true about the 
formerly blank page (the copy problem). In some ways, 
the copy will differ from the original - for instance, it 
may be of lower quality, or the original may be color 
whereas the copy is black and white, but if the original 
contained, say, a tax form, or the first 500 digits of 7f, 

then so will the copy. Listing all of these conditional 
effects explicitly would be impractical. 

The copy problem is just a generalization of the frame 
problem; if the original and the copy are the same ob
ject, then we have a restatement of the frame problem. 
But we are interested in the case where the objects are 
different. 

There have been many solutions to the frame prob
lem, from the STRIPS assumption to logical formalisms 
such as (Reiter 1991). None ofthese directly meets our 
needs, since they are solving a different problem. What 

we need is to explicitly state that an output is identi
cal to an input unless stated otherwise. For example, 
when creating a compressed copy of a file, one should be 
able to declare that the size and compression of the files 
are different, but in all other respects they are identi
cal. We refer to such declarations as generalized frame 
effects (GFEs): The effect frame(source, dest) in an ac
tion a means that, for any predicate or function p, the 
value of p(dest) after a is executed is the same as the 
value of p(source) before a is executed, unless contra
dicted by another effect of a. Source and dest need 
not be the same type, but predicates defined for source 
must also be defined for dest. Given such declarations, 
it is straightforward to formalize them using one of the 
elegant formal solutions to the frame problem. 

We require that each dest be a newly created object 
and the target of only one GFE. However, a single out
put can comprise many distinct objects, each of which 
may be the target of a separate GFE (see the descrip
tion of tare below). Given incomplete information, 
not all the consequences of the GFE will be known, 
but anything known about source will be known about 
dest, and all prior positive knowledge will still be valid. 
However, negative knowledge, including LCW knowl
edge, may be invalidated. 

One might imagine dispensing with the inputs and 
outputs and representing all actions as destructive. 
Then the STRIPS assumption could be used to preserve 
attributes of the files that don't change. This would re
quire that all files that need to be preserved be explicitly 
copied (Chien et al. 1997). However, doing so merely 
pushes the frame problem into the action eopY(h, fz), 
since for any proposition p(h) that is true before the 
copy, p(fz) should be true afterward. Furthermore, this 
approach is only applicable in cases where a single in
put is mapped to a single output. It will not help when 
modeling the effects of an action that generates mosaics 
(combining many images into one). 

Example 
To illustrate the use of frame effects, consider the Unix 
command tar, for creating and extracting tar files. A 
tar file is an archive (tar stands for tape archive) of 
some collection of files. It is really little more that a 
concatenation of all the files, with some extra informa
tion to indicate where one file begins and another ends 
and the relative pathnames of the files. We refer to the 
portion of a tar file representing a particular file as a 
file record, and we use the predicate contains(t, r) to 
indicate that tar file t contains file record r. There is 
no magic in contains. In fact, it's a simple observable, 
since, given the complete contents of a tar file and a 
file record, testing whether the file contains the record 
is a matter of a linear search through the tar file for 
contents that exactly match the record. 

We represent the two functions of the tar command 
with two different actions .. The tare action creates a 
tar file from the contents of a directory, descending the 
directory hierarchy recursively. To avoid representing 

30 2nd NASA International Workshop on Planning and Scheduling for Space 



the recursion explicitly, tare does not refer to directo
ries, but to pathnames. A file is (recursively) contained 
within a directory if the pathname of the directory is 
a prefix of its own pathname. The parent.dir function 
can also be defined in terms of path name. The out
put of tare is a newly created tar file, containing a file 
record for each file reachable from the directory. Each 
file record is identical to the original file, except that it 
has only a relative pathname, and it is not located on 
any machine. 

action tarc (path dp, exec-context ec) 
output: tarfile out 
precond: pathname(currentdir(ec» = dp 
effect: 

V file(j) ,path (lp) 
(pathname(j) = concat(pd, "/" ,lp) /\ 
host-Ioc(j) = currenthost(ec» 

-+ 3 file-record(fr) 
frame(f, fr)/\ 
host-Ioc (fr) = nil /\ 
contains(out, fr)/\ 
pathname(fr) = lp 

exec: "tar cf _II 

The tarx action extracts information from the tarfile 
and creates the corresponding files and directories in a 
new location. For each file record in the tarfile, a new 
file is created, identical to the file record, except that 
it has a new pathname and host location. Although 
these action descriptions omit some minor details, they 
are essentially complete. The key to their brevity is 
the frame effects, which stand for a huge number of 
statements. 

action tarx (path dp, exec-context eqn) 
input: tarfile in 
precond: pathname(currentdir(eC;n» = dp 
effect: 

V file-record (fr) ,path(lp) 
(pathname(fr) = lp /\ contains(in, fr» 

-+ 3 file(j) 
frame (fr, j) /\ ,contains (in, j) /\ 
host-Ioc (j) = cu rrenthost (eC;n) /\ 
pathname(j) = concat(dp,"/",lp) 

exec: "tar xf _II 

It is common practice in Unix to use tar to copy large 
file hierarchies from one machine to another. In Section 
4, we provide a short example showing how the frame 
effects allow properties to be preserved across copy op
erations using tar. 

4 Reasoning about plans 
Our definition of a planning problem is the standard 
one: Given descriptions of allowable actions, a goal and 
the initial state, produce a plan that, when executed 
starting from the initial state, will move the world to a 
state satisfying the goal. Regardless of the specifics of 
planning algorithm used, a planner following this defi
nition must be able to answer one of the following ques
tions: 

• If I execute this action, how will the state change? 
(progression) 

• If I want my goal to be satisfied after I execute this 
action, what needs to be true beforehand? (regres
sion) 

We discuss regression in ADLIM. We do not discuss pro
gression, which is somewhat more complicated, but we 
note that since part of an ADLIM goal refers to the initial 
state, progression affects not just the initial state, but 
also the goal. We conjecture that under some circum
stances (such as information gathering) that forward 
planning will be more efficient than backward planning, 
and that a mixed strategy is likely to work the best. 

Regression 
Goal regression means determining the conditions that 
need to be true in the initial state for an action or action 
sequence to achieve a given goal. We will use Ra (r) 
to represent the result of regressing r through action 
a, and R{a}~ (r) to represent the result of regressing r 
through the action sequence al; a2; ... ; an. Regression 
closely follows (Pednault 1986). 

Regression of the empty plan succeeds iff, in the ini
tial state, the LHS implies the RHS. 

R{}(q> -+ w) = (q> * w) 

Regression of a plan consists of successively regressing 
each action, starting with the last. 

R{a}~(r) = Ral(Ra2('" RaJf))) 

Conjunction, disjunction, quantification and negation 
are handled in the usual manner. Namely, Ra (r 1 /\ 

r 2 ) = Ra(r1 ) /\ Ra(r2 ), Ra(rl V r 2 ) = Ra(r1 ) V Ra(r2 ), 

Ra(,r) = -,Ra(r), Ra(Vxr) = VxRa(r) and Ra(3xr) = 
3xRa(r). 

Given a goal of the form q> -+ W, regress the wand 
leave the q> alone (since it already refers to the initial 
state). 

Ra(q> -+ w) = q> -+ Ra(w) 

Finally, to regress a single literal: cp is true iff the action 
makes it true, or if it was true previously and the action 
doesn't make it false. 

Ra(CP) = (~~ V (cp /\ II~)) 

where ~~ means action a enables CP. (makes it true) 
and II~ means a preserves cp (doesn't make it false). 
Informally, ~~(c) is true iff a has an effect p(c), or if 
p(o) is true, and a has an effect of the form frame(o, c) 
and doesn't have an effect -,p(c). II~ is equivalent to 
-'~~q,' 

Example 
To illustrate goal regression, consider the following 
highly simplified example. Suppose our goal is to store 
the images downlinked from a planetary rover in the 
directory !images, with a compression quality of 95%. 
Achieving this goal requires no sensing. 

2nd NASA International Workshop on Planning and Scheduling for Space 31 



V image j ::3 file f, filename fn 
fromdownlink (j) /\format (j) =JPEG ---+ 
pathname(f) = concat("/images/", fn)/\ 
copy-quality(f, j)::::: 0.95 

We will regress this goal over "lifted" actions, as a 
planner would, but we gloss over certain subtleties of 
constraint reasoning, skolemization, and the like. The 
last action in the plan will be tarx, to extract files 
from a tar file, so we, regress through tarx first. We 
will call that action aI, and rename all variables from 
the action by prefixing them with "al." The goal path
name(f) = concat(" /images/", fn) is satisfied by al 
if concat("/images/", fn) = concat(al.dp, "j", al.lp). 
Note that one solution for this constraint is al.dp = 
"/images". If we provide the background knowledge 
that fn, being a filename, cannot contain "j", and 
al.dp, being a pathname, cannot be the empty string, 
then that solution is unique. However, even without 
that background knowledge, al.dp = "/ images" is the 
only solution that will be found as part of a correct and 
unambiguous plan. Any other solution either leaves the 
suffix of parameter al.dp unspecified or adds an unsup
ported constraint to the prefix of al.lp. 

The predicate copy-quality does not appear in the ef
fect of action aI, but there is an effect frame(al.fr, 
al.f), which will transfer the copy-quality of al·fr to f. 
Thus, the goal copy-quality(f, j)::::: 0.95 will be satisfied 
if copy-quality(al.frj, j)::::: 0.95 is true in the prior state, 
where al.frj is a new existentially quantified variable, 
within the scope of j, that is used in place of the V 
variable al.fr. Finally, the LHS of the conditional ef
fect and the precondition of the action must be true. 
Thus, the goal is now: 

fromdownlink (j) /\format (j) =JPEG ---+ 
al.dp = "/images" /\ 
pathname(al·frj) = fn /\ 
contains(al.in, al.frj) /\ 
copy-quality(al.frj, j)::::: 0.95 /\ 
currentdir(al.ecin) = al.dp. 

Regressing through the cd action satisfies the currentdi
rectory goal. Then regress through tarc, which we will 
designate a2. The contains condition will be satisfied if 
al.in = a2.out. The pathname condition is satisfied if 
the LHS is true. Once again, the copy-quality condition 
can be satisfied by resorting to the frame effect of a2, 
resulting in the goal copy-quality(a2.fi, j)::::: 0.95. The 
resulting goal agenda is: 

fromdownlink (j) /\format (j) =JPEG ---+ 
al.dp = "/images" /\ al.in = a2.out /\ 
copy-quality (a2.fj, j)::::: 0.95 /\ 
pathname(a2.!i) = concat(a2.pd, "/" ,fn) /\ 
host-loc(a2.fj) = current.host(a2.ec) /\ 
currentdir(a2.ec) = a2.dp 

The constraint on al.dp specifies a parameter of tarc, 
the directory to extract the tar file into. The constraint 
al.in = a2.out specifies that the output of tarx must 

be directed to the input of tare. Once again, regress
ing through cd satisfies the currentdirectory goal. Now 
suppose there is an action get-downlink, which gets all 
the JPEG images from the downlink and stores them in 
a directory /downlink/jpg, ensuring that each image 
has a quality of 0.99. Call that action a3. The effect of 
a3 would be 

fromdownlink (a3.g) /\format (a3.g) =JPEG ---+ 
copy-quality (a3.c, a3.g)= 0.99 /\ 
path name (a3.c) = 
concat("/downlink/jpg/", filename(a3.c) /\ 
host-loc(a3.c) = current.host(a3. ec) 

The resulting goal agenda would be 

fromdownl i nk (j) /\ format (j) =JPEG ---+ 
al.dp = "/images" /\ al.in = a2.out /\ 
a2.pd = "/downlink/jpg/" /\ a2.ec = a3.ec /\ 
fromdownlink (a3.g) /\format (a3.g) =JPEG 

The last two conditions are implied by the LHS 
of the goal, so they are automatically satis
fied. The remaining conditions are parameter 
choices, which are trivially satisfied. Thus, the 
plan get-downlinkjcd /downlink/jpgj tar xi - I 
'(cd /images j tar cf -)' achieves the goal. In 
practice, downlinks are not initiated directly by the 
planner, and the goal would involve moving the files 
to a different machine rather than just a different di
rectory. That could be accomplished by inserting an 
rsh (remote shell) command between the tarx and cd 
commands. 

5 Conclusions 
We presented ADLIM, the Action Description Language 
for Information Manipulation, which can concisely rep
resent actions that copy all or part of an input to an 
output. We observed that this is a generalization of 
the frame problem, which has not been noted before in 
the planning literature, and presented a solution, using 
frame effects. We showed how information gathering 
can be accomplished in this framework. 

Future work 
We are building l a constraint-based planner for ADLIM, 
but many issues still need to be resolved. Constraint 
reasoning in AD LIM is especially challenging, since most 
constraint solvers assume that variable domains are 
static, whereas, in ADLIM, domains may be completely 
or partially unknown. We are working on a constraint 
solver, using procedural constraints (Jonsson 1997), 
that can cope with unknown domains. 

Related work 
We have already discussed the relation between ADLIM 
and UWL (Etzioni et al. 1992), ADL (Pednault 1989) 
and SADL (Golden & Weld 1996). Collage (J.,ansky & 
Philpot 1993) and MVP (Chien et al. 1997) both auto
mate image manipulation tasks, a motivating problem 

32 2nd NASA International Workshop on Planning and Scheduling for Space 



for ADLIM. However, they don't focus as much on accu
rate causal models of information manipulation. MVP 

requires actions to destructively modify their inputs, re
lying on the STRIPS assumption to preserve properties 
not listed in the action's effects. Collage relies solely on 
abstract action decomposition and thus does not need 
a precise causal theory of the actions. 

Representing actions that manipulate information is 
related to representing sensing actions. (Moore 1985) 
introduced a theory of knowledge and action, based on 
a variant of the situation calculus with possible-worlds 
semantics, which included an analysis of information
providing effects. (Scherl & Levesque 1993) built on 
Moore's work, providing a solution to the frame prob
lem for knowledge-producing actions. The semantics 
for ADLIM has been specified following their formal
ization, but we base our language on ADL, which al
lows for more tractable planning. Our treatment of 
knowledge-producing actions using conditional effects 
follows (Pryor & Collins 1996) and others, but we are 
unaware of work that treats goals in a similar manner. 

There are many other action languages that repre
sent sensing, but none of them have the expressiveness 
of ADLIM. They either disallow sensing the value of 
a variable (Levesque 1996; Goldman & Boddy 1996; 
Pryor & Collins 1996), thus restricting sensors to re
turning a finite set of possible values, or they disallow 
the use of conditional effects to describe sensing actions 
(Kwok & Weld 1996; Levy, Rajaraman, & Ordille 1996; 
Knoblock 1996; Babaian & Schmolze 1999; Etzioni et 
al. 1992), which is essential for representing informa
tion outputs that can be manipulated by other actions. 

Acknowledgements 

I would like to thank Jeremy Frank, Ari Jonsson, David 
Smith, Ellen Spertus, Richard Washington and the 
anonymous reviewer for helpful comments. 

References 

Babaian, T., and Schmolze, J. G. 1999. PSIPLAN: Plan
ning with 'f/i-forms over partially closed worlds. Unpub
lished. 

Chien, S.; Fisher, F.; Lo, E.; Mortensen, H.; and Greeley, 
R. 1997. Using artificial intelligence planning to automate 
science data analysis for large image database. In Proc. 
1997 Conference on Knowledge Discovery and Data Min
ing. 

Etzioni, 0., and Weld, D. 1994. A softbot-based interface 
to the Internet. C. ACM 37(7):72-6. 

Etzioni, 0.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; 
and Williamson, M. 1992. An approach to planning with 
incomplete information. In Proc. 3rd Int. Conf. on Princi
ples of Knowledge Representation and Reasoning, 115-125. 

Golden, K, and Weld, D. 1996. Representing sensing 
actions: The middle ground revisited. In Proc. 5th Int. 
Conf. Principles of Knowledge Representation and Reason
ing, 174-185. 

Goldman, R. P., and Boddy, M. S. 1996. Expressive Plan
ning And Explicit Knowledge. In Proc. 3rd Inti. Conf. AI 
Planning Systems. 
Jonsson, A. 1997. Procedural Reasoning in Constraint 
Satisfaction. Ph.D. Dissertation, Department of Computer 
Science, Stanford University. 

Knoblock, C. 1996. Building a planner for information 
gathering: A report from the trenches. In Proc. 3rd Inti. 
Conf. AI Planning Systems. 

Kwok, C., and Weld, D. 1996. Planning to gather infor
mation. In Proc. 13th Nat. Conf. AI. 

Lansky, A. L., and Philpot, A. G. 1993. AI-based plan
ning for data analysis tasks. In Proceedings of the Ninth 
IEEE Conference on Artificial Intelligence for Applications 
(CAIA-93). 

Levesque, H. 1996. What is planning in the presence of 
sensing? In Proc. 13th Nat. Conf. AI. 
Levy, A. Y.; Rajaraman, A.; and Ordille, J. J. 1996. Query 
answering algorithms for information agents. In Proc. 13th 
Nat. Conf. AI. 

Moore, R. 1985. A Formal Theory of Knowledge and 
Action. In Hobbs, J., and Moore, R., eds., Formal Theories 
of the Commonsense World. Ablex. 

Pednault, E. 1986. Toward a Mathematical Theory of Plan 
Synthesis. Ph.D. Dissertation, Stanford University. 

Pednault, E. 1989. ADL: Exploring the middle ground be
tween STRIPS and the situation calculus. In Proc. 1st Int. 
Conf. Principles of Knowledge Representation and Reason
ing,324-332. 

Pryor, L., and Collins, G. 1996. Planning for contingen
cies: A decision-based approach. J. Artificial Intelligence 
Research. 

Reiter, R. 1991. The frame problem in the situation calcu
lus: A simple solution (sometimes) and a completeness re
sult for goal regression. In Lifschitz, V., ed., Artificial Intel
ligence and Mathematical Theory of Computation: Papers 
in Honor of John McCarthy. Academic Press. 359-380. 

Scherl, R., and Levesque, H. 1993. The frame problem and 
knowledge producing actions. In Proc. 11th Nat. Conf. AI, 
689-695. 

2nd NASA International Workshop on Planning and Scheduling for Space 33 


	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part48
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part49
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part50
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part51
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part52
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part53

