
Approximate Planning in the
Probabilistic-Planning-as-Stochastic-Satisfiability Paradigm

Stephen M. Majercik and Michael L. Littman
Department of Computer Science

Duke University
Durham, NC 27708-0129

{majercik,mlittman}@cs.duke.edu

Abstract

ZANDER is a state-of-the-art probabilistic planner
that extends the probabilistic-planning-as-stochas­
tic-satisfiability paradigm to support contingent
planning in domains where there is uncertainty
in the effects of the agent's actions and where
the scope and accuracy of the agent's observations
may be insufficient to establish the agent's current
state with certainty (Majercik & Littman 1999).
We describe ZANDER and then discuss an approxi­
mation technique we,are developing that will help
us to scale up our SSAT-based technique to large
planning problems. We report results using this
approximation algorithm on random SSAT prob­
lems and discuss issues that arise in the application
of this algorithm to SSAT encodings of planning
problems.

Introduction
Planning is a critical activity in space exploration
efforts. Uncertainty in the various domains­
especially partial observability-makes it impossi­
ble to rely on a simple straight-line plan. One ap­
proach to dealing with this uncertainty is to con­
struct a plan as if the environment were determin­
istic, and then replan quickly if the plan fails. If
the uncertainty in the environment is quantifiable,
however, we can use that knowledge to construct a
plan with contingencies so that there is less likeli­
hood of having to replan.

Our work focuses on the latter approach. ZAN­
DER is a probabilistic planner that extends the
probabilistic-planning-as-stochastic-satisfiability
paradigm to support contingent planning in do­
mains where there is uncertainty in the effects
of the agent's actions and where the scope and
accuracy of the agent's observations may be insuf­
ficient to establish the agent's current state with
certainty (rvIajercik & Littman 1999). ZANDER
solves a planning problem by converting it into
an instance of stochastic satisfiability (SSAT), a
type of satisfiability problem in which some of the
variables have probabilities attached to them. A
solution to the SSAT problem yields a plan that
has the highest probability of succeeding. Initial

results have been very encouraging-zANDER
operates at state-of-the-art speeds on planning
problems drawn from the literature-and we are
now developing techniques based on this paradigm
that will allow us to scale up to large, real-world
problems. A natural approach is an approximation
technique and, in this paper, we describe efforts
to develop such an algorithm for solving the SSAT
encodings of planning problems generated by our
planner.

We envision two possible applications of our
planning technique (Brooks 2000). First, our plan­
ner has the potential to accept a list of requests
for use of a particular spacecraft, organize these re­
quests into a viable sequence of activities, and con­
vert these requests into input for other elements of
the uplink data system. Second, our planner could
be used as part of an on-board fault protection sys­
tem in a spacecraft. Given a fault condition, the
planner would observe the condition of the space­
craft, plan more diagnostic tests if necessary, create
a contingent plan to correct the fault and, finally,
replan any interrupted or unexecuted activities and
continue the sequence.

In the remainder of this section, we describe our
domain representation, the SSAT framework, and
how contingent planning problems can be encoded
as SSAT problems. After a brief description of ZAN­
DER, we describe our approximation algorithm, re­
port results on a large number of random SSAT
problems, and discuss issues that arise in apply­
ing this algorithm to SSAT encodings of planning
problems. We conclude with an assessment of the
strengths and weaknesses of this approach.

Probabilistic Planning Representation
ZANDER uses a propositional representation for
planning problems. A planning problem is de­
scribed using a finite set P of n distinct proposi­
tions, each of which may be True or False at any
(discrete) time t. A state is an assignment of truth
values to P. A probabilistic initial state is specified
by a set of decision trees, one for each proposition.
Goal states are specified by a partial assignment G
to the set of propositions; any state that extends

60 2nd NASA International Workshop on Planning and Scheduling for Space

G is considered to be a goal state. Each of a fi­
nite set A of actions probabilistically transforms a
state at time t into a state at time t + 1 and so
induces a probability distribution over the set of
all states. In this work, the effect of each action
on each proposition is represented as a separate de­
cision tree (Boutilier & Poole 1996). For a given
action a, each of the decision trees for the differ­
ent propositions are ordered, so the decision tree
for one proposition can refer to both the new and
old values of previous propositions. The leaves of a
decision tree describe how the associated proposi­
tion changes as a function of the state and action. A
subset of the set of propositions is the set of observ­
able propositions, each of which has, as its basis, a
proposition that represents the actual status of the
thing being observed. The planning task is to find
a plan that selects an action for each step t as a
function of the value of observable propositions for
steps before t. We want to find a plan that maxi­
mizes (or exceeds a user-specified threshold for) the
probability of reaching a goal state.

Stochastic Satisfiability
In the deterministic satisfiability problem, or SAT,
we are given a Boolean formula and wish to de­
termine whether there is some assignment to the
variables in the formula that results in the formula
evaluating to True. Papadimitriou (1985) explored
an extension of SAT in which a random quantifier is
introduced. The stochastic SAT (SSAT) problem is
to evaluate a Boolean formula in which existential
and random quantifiers alternate:

:JXl, ~X2, :JX3, ... , :JXn-l, ~xn (E[¢>(x)] 2: B).
In words, this formula asks whether there is a value
for Xl such that, for random values of X2 (choose 0
or 1 with equal probability), there exists a value of
Xs ... such that the expected value, or probability of
satisfaction, of the Boolean formula ¢>(x) is at least
a threshold 0 :S B :S 1. In our SSAT problems, we
will allow blocks of existential and random quanti­
fiers to alternate. Furthermore, we will allow anno­
tated random quantifiers such as ~O.2, which takes
on value True with probability 0.2 and False with
probability 0.8. The specification of an SSAT prob­
lem consists of the Boolean formula ¢>(x), the prob­
ability threshold B, and the ordering of the quanti­
fiers. In what follows, we will refer to existentially
quantified variables in the SSAT formula as existen­
tial variables and randomly quantified variables as
randomized variables.

Encoding Planning Problems
In an SSAT formula, the value of an existential vari­
able X can be selected on the basis of the values
of all the variables to x's left in the quantifier se­
quence. This suggests a way of mapping contin­
gent planning problems to stochastic satisfiability:

encode the contingent plan in the variable ordering
associated with the SSAT formula. By alternating
blocks of existential variables that encode actions
and blocks of randomized variables that encode ob­
servations, we can condition the value chosen for
any action variable on the possible values for all
the observation variables that appear earlier in the
ordering. A generic SSAT encoding for contingent
plans appears in Figure 1.

The quantifiers fall into three segments: a plan­
execution history, the domain uncertainty, and
the result of the plan-execution history given the
domain uncertainty. The plan-execution-history
segment is an alternating sequence of existential­
variable blocks (one for each action choice) and
randomized-variable blocks (one for each set of pos­
sible observations at a time step).

The domain uncertainty segment is a single block
containing all the randomized variables that mod­
ulate the impact of the actions on the observation
and state variables. These variables are associ­
ated with random quantifiers; when we consider
a variable that represents uncertainty in the envi­
ronment, we want to take the probability weighted
average of the success probabilities associated with
the two possible settings of the variable.

The result segment is a single block containing
all the non-observation state variables. These vari­
ables are associated with existential quantifiers, in­
dicating that we can choose the best truth setting
for each variable. In reality, all such "choices" are
forced by the settings of the action variables in the
first segment and the chance variables in the sec­
ond segment. If these forced choices are compatible,
then the preceding plan-execution history is possi­
ble and has a non-zero probability of achieving the
goals. Otherwise, either the plan-execution history
is impossible, given the effects of the actions, or it
has a zero probability of achieving the goals.

An attractive feature of this planning technique
is that it is straightforward to add additional con­
straints to the SSAT encoding of the planning prob­
lem. This means, for example, that human judg­
ments about activities that must be performed can
easily be enforced.

ZANDER
We briefly describe ZANDER, our SSAT-based
probabilistic planner. Details are available else­
where (lVIajercik & Littman 1999). ZANDER must
find an assignment tree that specifies the optimal
existential-variable assignment given all possible
settings of the observation variables. The most ba­
sic variant of the solver follows the variable ordering
exactly, constructing a binary tree of all possible
assignments. Each node in the tree contains a vari­
able under consideration, and each path through
the tree describes a plan-execution history, an in-

2nd NASA International Workshop on Planning and Scheduling for Space 61

first action first observation last observation last action
.--_--"" A A. A'-__ __

3Xl,1, ... ,3Xl,Cl'~Wl,1' ... , tlWl,C2'· .. ~Wn-l,l' ... , tlwn -l,c2'3xn ,1, ... ,3Xn ,Cl'

random outcomes the state
r A ,~

tl P1 Zl, ... , tl PC4 Zq 3Yl, ... ,:3YC 3 (E[¢>(x)] ~ e).
Cl = number of variables it takes to specify a single action (the number of actions),
C2 = number of variables it takes to specify a single observation,
C3 = number of state variables (one for each proposition at each time step), and
C4 = number of chance variables (one for each possible stochastic outcome at each time step).

Figure 1: A contingent planning problem can be encoded as an instance of SSAT.

stantiation of the domain uncertainty, and a pos­
sible setting of the state variables. An observation
variable is a branch point; the optimal assignment
to the remaining variables will, in general, be dif­
ferent for different values of this variable.

The solver does a depth-first search of the tree,
constructing a solution subtree by calculating, for
each node, the probability of a satisfying assign­
ment given the partial assignment so far. For an
existential variable, this is a maximum probability
and produces no branch in the solution subtree; the
solver notes which value of the variable yields this
maximum. For a randomized variable, the proba­
bility will be the probability weighted average of the
success probabilities for that node's subtrees and
will produce a branch point in the solution subtree.
The solver finds the optimal plan by determining
the subtree with the highest success probability.

,Ve use three pruning techniques to avoid check­
ing every possible truth assignment. Whenever an
existential or randomized variable appears alone
in an active clause, unit propagation assigns the
forced value to that variable. Whenever an exis­
tential variable appears always negated or always
not negated in all active clauses, variable purifi­
cation assigns the appropriate value to that vari­
able. Thresholding allows us to prune plans based
on a prespecified threshold probability of success
(i.e. find a plan whose probability of success meets
or exceeds the threshold probability).

An SSAT Approximation Algorithm
ZANDER performs at state-of-the-art speeds on
problems drawn from the literature (lVIajercik &
Littman 1999). This is encouraging since there are
a number of potential improvements to ZANDER

that have shown promise for scaling up to larger
problems (better data structures to optimize the
application of heuristics, more compact and effi­
cient SSAT encodings, encoding domain knowledge,
memoization for contingent planning, using learn­
ing to accelerate the solution process, and more so­
phisticated splitting heuristics). In order to scale

up to even larger problems, however, it may be nec­
essary to develop approximation techniques. In this
section we describe one possible approach.

Our approximation algorithm randevalssat takes
an SSAT formula and returns an approximation of
its value, along with the policy that approximately
produces this value. The algorithm uses a policy
tree representation. Policy trees include multiple
copies of each existential variable-one for each
possible assignment to the randomized variables
that precede it in the quantifier ordering-thus em­
phasizing the fact that the value of each existential
variable can be a function of the values of the pre­
ceding randomized variables. Figure 2 shows the
policy tree for the following SSAT instance:

3Xl, 3X2, tlYl, tlY2, 3X3, 3X4, tlY3, tlY4,
E[(XI V X3 V Y3)(X2 V X4 VY2)(X3 VYI V Y4)] ~ e.

Existential variables, and their copies, are called
dec-ision variables and are shown as rectangular de­
cision nodes in the policy tree. To indicate that the
value of each instance of a copied variable can be
set independently, these variables are renumbered
in the policy tree (parenthesized subscripts).

Each leaf of the policy tree represents a partial
assignment consisting of an assignment to all ran­
domized variables in the SSAT formula. The proba­
bility of a leaf is the product of the probabilities of
the outcomes along the path from the root to the
leaf. A policy is an assignment of Boolean values
to the decision variables in the policy tree. Given a
policy, all the root-to-Ieaf paths in the policy tree
represent complete assignments to the variables in
the formula, each of which is either satisfying (value
1) or unsatisfying (value 0). The value of a policy is
the weighted sum of the probabilities of the satisfied
leaves. The value of a policy tree is the maximum
over all policies of the policy values.

A systematic search for the policy with the high­
est value would solve the SSAT problem, but this is
a doubly exponential process: the size of the pol­
icy tree is exponential in the number of random­
ized variables and systematically searching for the
best policy is exponential in the number of decision

62 2nd NASA International Workshop on Planning and Scheduling for Space

o

o o

Simplified Fonnulae at Leaves Gi",n Random Variable Assignments

Leaf 1: (xl V x3) Leaf 9: (Xl V x7)(x7)

Leaf 2: (Xl V x3) Leaf 10: (xl VX7)

Leaf3: Satisfied Leaf 11: (x7)

Leaf 4: Satisfied Leaf 12: Satisfied

LeafS: (Xl V xS)(x2 V x6) Leaf 13: (Xl V x9)(x2 V xlO)(x9)

Leaf 6: (Xl V xS)(x2 V X6) Leaf 14: (x I V X9)(X2 V X 10)

Leaf 7: (x2 V X6) Leaf 15: (x2 V X lO)(x9)

Leaf 8: (x2 V x6) Leaf 16: (x2 V xlO)

Figure 2: A policy tree (a) represents the set of
contingent choices in an SSAT problem.

nodes in the policy tree. Instead, the algorithm
randevalssat uses stochastic sampling to limit the
size of the policy tree constructed and randomized
local search to find the best policy for that reduced
tree. This approach is similar to that of Kearns,
Mansour, & Ng (1999) for choosing approximately
optimal actions with high probability in infinite­
horizon discounted lVIarkov decision processes.

The algorithm constructs a partial policy tree by
choosing a set TV of w assignments to the random­
ized variables proportional to their probability and
independently of the policy. These sampled assign­
ments select out a set of leaves from the full policy
tree, with the probability of an assignment given
by its frequency of selection in the random sample.
The top of Figure 3 gives a partial policy tree de­
rived from the sample in the bottom of Figure 3
and the policy tree of Figure 2. The value of a
policy is then estimated as the proportion of the
w sampled leaves that are satisfied by the policy.
A direct application of Chernoff bounds shows that
w = O(~ log(!-)) samples are sufficient to be sure
with probability 1- J of having an estimate no fur­
ther than E away from the true value (Littman, Ma-

o

o o

o

02 @ 8
Original Fonnula: (XI V x3 V Y3)(x2 V x4 V Y2)(x3 V Yj v Y 4)

Assignments Responsible for Leaves in Partial Decision Tree

Leaf 1: Yl = 1 Y2 = 1 Y3 = 1 Y4 = 1

Leaf2: Yl = 1 Y2 = 1 yp 1 Y4 = 0

Leaf S: Yl = 1 Y2 = 0 Y3 = 1 Y4 = 1

Leaf 8: Yl = 1 Y2 = 0 Y3 = 0 Y4 = 0

Leaf 13: Yl = 0 Y2 = 0 Y3 = 1 Y4 = 1

Leaf14: Yl = 0 Y2 = 0 Y3 = 1 Y4 = 0

Leaf1S: Yl = 0 Y2 = 0 YP 0 Y4 = 1

Figure 3: Randomized local search can be applied
to a partial policy tree, obtained by sampling, to
provide an approximate answer for an SSAT in­
stance.

jercik, & Pitassi 2000). Note that this number does
not depend on n, m, k, or how the SSAT formula
or the policy was created.

As illustrated in Figure 2, the effect of a policy
on a leaf can be summarized by a Boolean formula,
called a path formula, for that leaf. Each random
sample can potentially produce a different path for­
mula, and the union of all the path formulas pro­
duces a treeSAT formula, which can be viewed as
both a collection of clauses and a collection of path
formulas. A satisfying assignment to the treeS AT
formula corresponds to a setting of the decision
variables that satisfies the original SSAT formula
along all paths in the partial policy tree. In gen­
eral, this will not be possible; instead randevalssat
use randomized local search to search for a treeSAT
assignment that maximizes the number of path for­
mulas that are satisfied. In our experiments, this
was done by hillclimbing on an objective function
that counts both clauses satisfied and path formu­
las satisfied. A satisfied path formula is weighted
as heavily as the number of clauses in the original

2nd NASA International Workshop on Planning and Scheduling for Space 63

0.07 SAT +

w MAJSAT

~ OTHER SSAT --B-

:2 0.06

~
w
:::J
..J 0.05
~
S
:::J
:2 0.04 c:
~
~
c: 0.03
0 c:
c: w
0

0.02 w c: «
:::J
0
(/J

z 0.D1

lli
:2

0
1 10 100 1000 10000

NUMBER OF ASSIGNMENTS SAMPLED

Figure 4: As the number of sampled assignments in­
creases, the accuracy of the randomized local search
algorithm increases. Because of local optima in the
search space, increasing the number of sampled as­
signments does not drive the error to zero.

SSAT formula, so that satisfying all the clauses in
a path formula contributes more to the treeS AT
formula's value than satisfying the same number of
clauses scattered over more than one path formula.

Experiments
The performance of randevalssat for computing the
value of SSAT instances was tested on 27 sets of
100 random formulas, generated under the fixed­
clause model using a modified version of makewff
that guarantees a formula with exactly n variables.
For each problem a SAT instance (all existential
variables), a MAJSAT instance (all randomized vari­
abIes), and all possible instances that contain an
equal number of existential and randomized vari­
ables in alternating blocks of the same size were
constructed. For each of these problems, 10 differ­
ent partial policy trees were created by sampling
randomized variable assignments and constructing
the tree paths specified by the samples. The num­
ber of assignments sampled w ranged from 5 to 4086
on an approximate logarithmic scale; the larger the
number of samples, the greater the similarity of the
partial tree to the full tree. Performance was mea­
sured by comparing the estimate of the value of
the partial policy tree to the exact value of the full
policy tree (and, hence, the formula).

Figure 4 shows results for randevalssat on prob­
lems with 12 variables, 24 clauses, and 3 literals per
clause (results for all 27 sets of problems were sim­
ilar). The graph shows mean squared error in the
value estimate as a function of the number of sam­
pled assignments for all problem types. The mean

and variance of the squared error decrease as the
number of assignment samples increases. \Ve note
that the nonzero error in the limiting case, where
the number of assignments sampled is sufficient to
construct the full policy tree with high probabil­
ity, is due to the use of randomized local se,:rch.
If a more time-consuming systematic search of the
partial policy tree is employed, the error is driven
to zero as the number of sampled assignments in­
creases (Littman, Majercik, & Pitassi 2000).

Application to Planning Problems

Once we have translated a probabilistic planning
problem into an SSAT instance, it would seem to
be straightforward to apply the stochastic sampling
algorithm to the SSAT problem to find an approx­
imation of the optimal contingent plan and an ap­
proximation of its probability of success. The situ­
ation is complicated, however, by the fact that we
use randomized variables to describe observations.
This means that a random sample of the random­
ized variables describes an observation sequence as
well as an instantiation of the uncertainty in the do­
main, and the observation sequence thus produced
may not be observationally consistent. Informally,
an observation sequence is observationally consis­
tent if there exists a sequence of actions and an in­
stantiation of the environment that could possibly
produce that observation sequence. For example,
assuming perfect sensors, it would be observation­
ally inconsistent to observe at time step t that a
valve driver is permanently failed and at time step
t + 1 that it is operational.

Applying the stochastic sampling algorithm di­
rectly to planning problems can result in the gen­
eration of observationally inconsistent paths in the
partial policy tree. And these paths, which are un­
satisfied paths regardless of the setting of the ac­
tion variables chosen, need to be treated differently
from observationally consistent paths, which have
the potential to become satisfied paths, depending
on the values chosen for the decision variables. If
the algorithm includes observationally inconsistent
paths in its estimate of the probability of success
of a given policy, it will tend to underestimate this
probability. The algorithm needs to either avoid
generating observationally inconsistent paths in the
first place, or ignore them in its calculations.

Considerations of efficiency suggest that the first
strategy is to be preferred whenever possible, and
this suggests two alterations to the stochastic sam­
pling algorithm in order to make it applicable to
SSAT encodings of planning problems:

II Sample tree paths only from P, the set of paths
that are observationally consistent for some ac­
tion sequence and instantiation of the environ­
ment.

64 2nd NASA International Workshop on Planning and Scheduling for Space

• Adjust the evaluation of policy trees as follows:
Instantiating the decision variables in the policy
tree selects pI C;;;; P, the set of paths in P that
are observationally consistent for that setting of
decision variables and some instantiation of the
environment. Let S C;;;; pI be those paths in pI
that are satisfied paths. Then, the probability
of success of the contingent plan represented by
that policy tree is ~.

There are various algorithmic issues that need to
be addressed. First, we need to find an efficient
way of constructing P and P'. One possibility is
to use user-supplied information to prune at least
some of the observationally inconsistent paths when
constructing P. A second possibility is to construct
encodings such that unit propagation can be used
to efficiently detect observational inconsistencies.

Second, the algorithm returns a partial assign­
ment strategy, or policy, that specifies how each
decision variable should be set given the settings
of the decision and observation variables that pre­
cede it in the quantifier ordering, but this is only
specified for those situations represented by paths
in the random sample used to construct the partial
tree. The algorithm implicitly assumes that per­
formance on missing branches is the same as the
average performance over all paths in the partial
tree, but doesn't actually find a plan that achieves
this performance. One possible strategy for ad­
dressing this issue would be an iterative approach
that alternates planning and evaluation. In this
approach, each iteration would perform an evalu­
ation of the current policy (perhaps by simulat­
ing executions of the policy) and use that evalu­
ation to guide the construction of a partial pol­
icy tree that would lead to a better policy. This
is similar to approaches that identify the most se­
vere problems in an imperfect plan and then at­
tempt to correct them (Drummond & Bresina 1990;
Onder & Pollack 1997).

Summary
The stochastic sampling algorithm randevalssat ap­
pears to be a promising approximation method for
SSAT encodings of planning problems. Its primary
strength is the use of sampling to convert the prob­
lem to a lower complexity problem and its use of
randomized local search to solve that problem ef­
ficiently. A feature of this process is that it does
not necessarily completely discard the probabilities
of the original problem (as would, say, a conver­
sion that merely rounded off the probabilities of
the randomized variables to 0 and 1 and set their
truth values accordingly). It would, for example,
be possible to modify the algorithm such that the
probabilities of the randomized variables are used
to direct the construction of the partial policy tree.

A more substantial modification, discussed above,
would be to iteratively build the partial policy tree
by using the solution of the partial policy tree in a
given iteration to construct a better partial policy
tree (and solution) in the next iteration.

This algorithm has some weaknesses. First,
randevalssat does not return an answer whose cor­
rectness is "easy" to certify; this is to be expected,
given the complexity of SSAT problems. Second,
there are SSAT problems for which the algorithm
needs provably large samples (Littman, Majercik,
& Pitassi 2000). Third, randevalssat is subject to
the same pitfalls as other randomized local search
algorithms; in particular, it may become stuck in lo­
cal optima. Allowing the algorithm to restart after
a period of no progress helps minimize, but does
not erase, this problem. Finally, the memory re­
quirements of the algorithm can be prohibitively
large. This weakness can be partially overcome by
more memory-efficient implementations, but prob­
lems that require a large number of samples to pro­
duce an accurate answer will inherently generate
large treeSAT formulas.

Acknowledgments: The first author acknowl­
edges the support of a NASA GSRP Fellowship.

References
Boutilier, C., and Poole, D. 1996. Computing op­
timal policies for partially observable decision pro­
cesses using compact representations. In Proceed­
ings of the Thirteenth National Conference on Ar­
tificial Intelligence, 1168-1175. AAAI Press/The
:MIT Press.
Brooks, R. 2000. Personal communication.
Drummond, M., and Bresina, J. 1990. Any­
time synthetic projection: Maximizing the prob­
ability of goal satisfaction. In Proceedings of the
Eighth National Conference on Artificial Intelli-
gence, 138-144. lVlorgan Kaufmann. .

Kearns, M.; Mansour, Y.; and Ng, A. Y. 1999. A
sparse sampling algorithm for near~optimal plan­
ning large markov decision processes. Submitted.
Littman, M. L.; Majercik, S. M.; and Pitassi, T.
2000. Stochastic Boolean satisfiability. Journal of
A utomated Reasoning. To appear in a special issue
on Satisfiability in the Year 2000.
lVlajercik, S. r-,Il., and Littman, M. L. 1999. Con­
tingent planning under uncertainty via stochastic
satisfiability. In Proceedings of the Sixteenth N a­
tional Conference on Artificial Intelligence, 549-
556. The AAAI Press/The MIT Press.
Onder, N., and Pollack, M. E. 1997. Contingency
selection in plan generation. In Proceedings of the
Fourth European Conference on Planning.

Papadimitriou, C. H. 1985. Games against nature.
Journal of Computer Systems Science 31:288-301.

2nd NASA International Workshop on Planning and Scheduling for Space 65

	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part80
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part81
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part82
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part83
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part84
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part85

