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Abstract 

ZANDER is a state-of-the-art probabilistic planner 
that extends the probabilistic-planning-as-stochas­
tic-satisfiability paradigm to support contingent 
planning in domains where there is uncertainty 
in the effects of the agent's actions and where 
the scope and accuracy of the agent's observations 
may be insufficient to establish the agent's current 
state with certainty (Majercik & Littman 1999). 
We describe ZANDER and then discuss an approxi­
mation technique we,are developing that will help 
us to scale up our SSAT-based technique to large 
planning problems. We report results using this 
approximation algorithm on random SSAT prob­
lems and discuss issues that arise in the application 
of this algorithm to SSAT encodings of planning 
problems. 

Introduction 
Planning is a critical activity in space exploration 
efforts. Uncertainty in the various domains­
especially partial observability-makes it impossi­
ble to rely on a simple straight-line plan. One ap­
proach to dealing with this uncertainty is to con­
struct a plan as if the environment were determin­
istic, and then replan quickly if the plan fails. If 
the uncertainty in the environment is quantifiable, 
however, we can use that knowledge to construct a 
plan with contingencies so that there is less likeli­
hood of having to replan. 

Our work focuses on the latter approach. ZAN­
DER is a probabilistic planner that extends the 
probabilistic-planning-as-stochastic-satisfiability 
paradigm to support contingent planning in do­
mains where there is uncertainty in the effects 
of the agent's actions and where the scope and 
accuracy of the agent's observations may be insuf­
ficient to establish the agent's current state with 
certainty (rvIajercik & Littman 1999). ZANDER 
solves a planning problem by converting it into 
an instance of stochastic satisfiability (SSAT), a 
type of satisfiability problem in which some of the 
variables have probabilities attached to them. A 
solution to the SSAT problem yields a plan that 
has the highest probability of succeeding. Initial 

results have been very encouraging-zANDER 
operates at state-of-the-art speeds on planning 
problems drawn from the literature-and we are 
now developing techniques based on this paradigm 
that will allow us to scale up to large, real-world 
problems. A natural approach is an approximation 
technique and, in this paper, we describe efforts 
to develop such an algorithm for solving the SSAT 
encodings of planning problems generated by our 
planner. 

We envision two possible applications of our 
planning technique (Brooks 2000). First, our plan­
ner has the potential to accept a list of requests 
for use of a particular spacecraft, organize these re­
quests into a viable sequence of activities, and con­
vert these requests into input for other elements of 
the uplink data system. Second, our planner could 
be used as part of an on-board fault protection sys­
tem in a spacecraft. Given a fault condition, the 
planner would observe the condition of the space­
craft, plan more diagnostic tests if necessary, create 
a contingent plan to correct the fault and, finally, 
replan any interrupted or unexecuted activities and 
continue the sequence. 

In the remainder of this section, we describe our 
domain representation, the SSAT framework, and 
how contingent planning problems can be encoded 
as SSAT problems. After a brief description of ZAN­
DER, we describe our approximation algorithm, re­
port results on a large number of random SSAT 
problems, and discuss issues that arise in apply­
ing this algorithm to SSAT encodings of planning 
problems. We conclude with an assessment of the 
strengths and weaknesses of this approach. 

Probabilistic Planning Representation 
ZANDER uses a propositional representation for 
planning problems. A planning problem is de­
scribed using a finite set P of n distinct proposi­
tions, each of which may be True or False at any 
(discrete) time t. A state is an assignment of truth 
values to P. A probabilistic initial state is specified 
by a set of decision trees, one for each proposition. 
Goal states are specified by a partial assignment G 
to the set of propositions; any state that extends 
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G is considered to be a goal state. Each of a fi­
nite set A of actions probabilistically transforms a 
state at time t into a state at time t + 1 and so 
induces a probability distribution over the set of 
all states. In this work, the effect of each action 
on each proposition is represented as a separate de­
cision tree (Boutilier & Poole 1996). For a given 
action a, each of the decision trees for the differ­
ent propositions are ordered, so the decision tree 
for one proposition can refer to both the new and 
old values of previous propositions. The leaves of a 
decision tree describe how the associated proposi­
tion changes as a function of the state and action. A 
subset of the set of propositions is the set of observ­
able propositions, each of which has, as its basis, a 
proposition that represents the actual status of the 
thing being observed. The planning task is to find 
a plan that selects an action for each step t as a 
function of the value of observable propositions for 
steps before t. We want to find a plan that maxi­
mizes (or exceeds a user-specified threshold for) the 
probability of reaching a goal state. 

Stochastic Satisfiability 
In the deterministic satisfiability problem, or SAT, 
we are given a Boolean formula and wish to de­
termine whether there is some assignment to the 
variables in the formula that results in the formula 
evaluating to True. Papadimitriou (1985) explored 
an extension of SAT in which a random quantifier is 
introduced. The stochastic SAT (SSAT) problem is 
to evaluate a Boolean formula in which existential 
and random quantifiers alternate: 

:JXl, ~X2, :JX3, ... , :JXn-l, ~xn (E[¢>(x)] 2: B). 
In words, this formula asks whether there is a value 
for Xl such that, for random values of X2 (choose 0 
or 1 with equal probability), there exists a value of 
Xs ... such that the expected value, or probability of 
satisfaction, of the Boolean formula ¢>(x) is at least 
a threshold 0 :S B :S 1. In our SSAT problems, we 
will allow blocks of existential and random quanti­
fiers to alternate. Furthermore, we will allow anno­
tated random quantifiers such as ~O.2, which takes 
on value True with probability 0.2 and False with 
probability 0.8. The specification of an SSAT prob­
lem consists of the Boolean formula ¢>( x), the prob­
ability threshold B, and the ordering of the quanti­
fiers. In what follows, we will refer to existentially 
quantified variables in the SSAT formula as existen­
tial variables and randomly quantified variables as 
randomized variables. 

Encoding Planning Problems 
In an SSAT formula, the value of an existential vari­
able X can be selected on the basis of the values 
of all the variables to x's left in the quantifier se­
quence. This suggests a way of mapping contin­
gent planning problems to stochastic satisfiability: 

encode the contingent plan in the variable ordering 
associated with the SSAT formula. By alternating 
blocks of existential variables that encode actions 
and blocks of randomized variables that encode ob­
servations, we can condition the value chosen for 
any action variable on the possible values for all 
the observation variables that appear earlier in the 
ordering. A generic SSAT encoding for contingent 
plans appears in Figure 1. 

The quantifiers fall into three segments: a plan­
execution history, the domain uncertainty, and 
the result of the plan-execution history given the 
domain uncertainty. The plan-execution-history 
segment is an alternating sequence of existential­
variable blocks (one for each action choice) and 
randomized-variable blocks (one for each set of pos­
sible observations at a time step). 

The domain uncertainty segment is a single block 
containing all the randomized variables that mod­
ulate the impact of the actions on the observation 
and state variables. These variables are associ­
ated with random quantifiers; when we consider 
a variable that represents uncertainty in the envi­
ronment, we want to take the probability weighted 
average of the success probabilities associated with 
the two possible settings of the variable. 

The result segment is a single block containing 
all the non-observation state variables. These vari­
ables are associated with existential quantifiers, in­
dicating that we can choose the best truth setting 
for each variable. In reality, all such "choices" are 
forced by the settings of the action variables in the 
first segment and the chance variables in the sec­
ond segment. If these forced choices are compatible, 
then the preceding plan-execution history is possi­
ble and has a non-zero probability of achieving the 
goals. Otherwise, either the plan-execution history 
is impossible, given the effects of the actions, or it 
has a zero probability of achieving the goals. 

An attractive feature of this planning technique 
is that it is straightforward to add additional con­
straints to the SSAT encoding of the planning prob­
lem. This means, for example, that human judg­
ments about activities that must be performed can 
easily be enforced. 

ZANDER 
We briefly describe ZANDER, our SSAT-based 
probabilistic planner. Details are available else­
where (lVIajercik & Littman 1999). ZANDER must 
find an assignment tree that specifies the optimal 
existential-variable assignment given all possible 
settings of the observation variables. The most ba­
sic variant of the solver follows the variable ordering 
exactly, constructing a binary tree of all possible 
assignments. Each node in the tree contains a vari­
able under consideration, and each path through 
the tree describes a plan-execution history, an in-
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first action first observation last observation last action 
.--_--"" A A. A'-__ __ 

3Xl,1, ... ,3Xl,Cl'~Wl,1' ... , tlWl,C2'· .. ~Wn-l,l' ... , tlwn -l,c2'3xn ,1, ... ,3Xn ,Cl' 

random outcomes the state 
r A ,~ 

tl P1 Zl, ... , tl PC4 Zq 3Yl, ... ,:3YC 3 (E[¢>(x)] ~ e). 
Cl = number of variables it takes to specify a single action (the number of actions), 
C2 = number of variables it takes to specify a single observation, 
C3 = number of state variables (one for each proposition at each time step), and 
C4 = number of chance variables (one for each possible stochastic outcome at each time step). 

Figure 1: A contingent planning problem can be encoded as an instance of SSAT. 

stantiation of the domain uncertainty, and a pos­
sible setting of the state variables. An observation 
variable is a branch point; the optimal assignment 
to the remaining variables will, in general, be dif­
ferent for different values of this variable. 

The solver does a depth-first search of the tree, 
constructing a solution subtree by calculating, for 
each node, the probability of a satisfying assign­
ment given the partial assignment so far. For an 
existential variable, this is a maximum probability 
and produces no branch in the solution subtree; the 
solver notes which value of the variable yields this 
maximum. For a randomized variable, the proba­
bility will be the probability weighted average of the 
success probabilities for that node's subtrees and 
will produce a branch point in the solution subtree. 
The solver finds the optimal plan by determining 
the subtree with the highest success probability. 

,Ve use three pruning techniques to avoid check­
ing every possible truth assignment. Whenever an 
existential or randomized variable appears alone 
in an active clause, unit propagation assigns the 
forced value to that variable. Whenever an exis­
tential variable appears always negated or always 
not negated in all active clauses, variable purifi­
cation assigns the appropriate value to that vari­
able. Thresholding allows us to prune plans based 
on a prespecified threshold probability of success 
(i.e. find a plan whose probability of success meets 
or exceeds the threshold probability). 

An SSAT Approximation Algorithm 
ZANDER performs at state-of-the-art speeds on 
problems drawn from the literature (lVIajercik & 
Littman 1999). This is encouraging since there are 
a number of potential improvements to ZANDER 

that have shown promise for scaling up to larger 
problems (better data structures to optimize the 
application of heuristics, more compact and effi­
cient SSAT encodings, encoding domain knowledge, 
memoization for contingent planning, using learn­
ing to accelerate the solution process, and more so­
phisticated splitting heuristics). In order to scale 

up to even larger problems, however, it may be nec­
essary to develop approximation techniques. In this 
section we describe one possible approach. 

Our approximation algorithm randevalssat takes 
an SSAT formula and returns an approximation of 
its value, along with the policy that approximately 
produces this value. The algorithm uses a policy 
tree representation. Policy trees include multiple 
copies of each existential variable-one for each 
possible assignment to the randomized variables 
that precede it in the quantifier ordering-thus em­
phasizing the fact that the value of each existential 
variable can be a function of the values of the pre­
ceding randomized variables. Figure 2 shows the 
policy tree for the following SSAT instance: 

3Xl, 3X2, tlYl, tlY2, 3X3, 3X4, tlY3, tlY4, 
E[(XI V X3 V Y3)(X2 V X4 VY2)(X3 VYI V Y4)] ~ e. 

Existential variables, and their copies, are called 
dec-ision variables and are shown as rectangular de­
cision nodes in the policy tree. To indicate that the 
value of each instance of a copied variable can be 
set independently, these variables are renumbered 
in the policy tree (parenthesized subscripts). 

Each leaf of the policy tree represents a partial 
assignment consisting of an assignment to all ran­
domized variables in the SSAT formula. The proba­
bility of a leaf is the product of the probabilities of 
the outcomes along the path from the root to the 
leaf. A policy is an assignment of Boolean values 
to the decision variables in the policy tree. Given a 
policy, all the root-to-Ieaf paths in the policy tree 
represent complete assignments to the variables in 
the formula, each of which is either satisfying (value 
1) or unsatisfying (value 0). The value of a policy is 
the weighted sum of the probabilities of the satisfied 
leaves. The value of a policy tree is the maximum 
over all policies of the policy values. 

A systematic search for the policy with the high­
est value would solve the SSAT problem, but this is 
a doubly exponential process: the size of the pol­
icy tree is exponential in the number of random­
ized variables and systematically searching for the 
best policy is exponential in the number of decision 
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Simplified Fonnulae at Leaves Gi",n Random Variable Assignments 

Leaf 1: (xl V x3) Leaf 9: (Xl V x7)(x7) 

Leaf 2: (Xl V x3) Leaf 10: (xl VX7) 

Leaf3: Satisfied Leaf 11: (x7) 

Leaf 4: Satisfied Leaf 12: Satisfied 

LeafS: (Xl V xS)(x2 V x6) Leaf 13: (Xl V x9)(x2 V xlO)(x9) 

Leaf 6: (Xl V xS)(x2 V X6) Leaf 14: (x I V X9)(X2 V X 10) 

Leaf 7: (x2 V X6) Leaf 15: (x2 V X lO)(x9) 

Leaf 8: (x2 V x6) Leaf 16: (x2 V xlO) 

Figure 2: A policy tree (a) represents the set of 
contingent choices in an SSAT problem. 

nodes in the policy tree. Instead, the algorithm 
randevalssat uses stochastic sampling to limit the 
size of the policy tree constructed and randomized 
local search to find the best policy for that reduced 
tree. This approach is similar to that of Kearns, 
Mansour, & Ng (1999) for choosing approximately 
optimal actions with high probability in infinite­
horizon discounted lVIarkov decision processes. 

The algorithm constructs a partial policy tree by 
choosing a set TV of w assignments to the random­
ized variables proportional to their probability and 
independently of the policy. These sampled assign­
ments select out a set of leaves from the full policy 
tree, with the probability of an assignment given 
by its frequency of selection in the random sample. 
The top of Figure 3 gives a partial policy tree de­
rived from the sample in the bottom of Figure 3 
and the policy tree of Figure 2. The value of a 
policy is then estimated as the proportion of the 
w sampled leaves that are satisfied by the policy. 
A direct application of Chernoff bounds shows that 
w = O( ~ log(!-)) samples are sufficient to be sure 
with probability 1- J of having an estimate no fur­
ther than E away from the true value (Littman, Ma-

o 

o o 

o 

02 @ 8 
Original Fonnula: (XI V x3 V Y3)(x2 V x4 V Y2)(x3 V Yj v Y 4) 

Assignments Responsible for Leaves in Partial Decision Tree 

Leaf 1: Yl = 1 Y2 = 1 Y3 = 1 Y4 = 1 

Leaf2: Yl = 1 Y2 = 1 yp 1 Y4 = 0 

Leaf S: Yl = 1 Y2 = 0 Y3 = 1 Y4 = 1 

Leaf 8: Yl = 1 Y2 = 0 Y3 = 0 Y4 = 0 

Leaf 13: Yl = 0 Y2 = 0 Y3 = 1 Y4 = 1 

Leaf14: Yl = 0 Y2 = 0 Y3 = 1 Y4 = 0 

Leaf1S: Yl = 0 Y2 = 0 YP 0 Y4 = 1 

Figure 3: Randomized local search can be applied 
to a partial policy tree, obtained by sampling, to 
provide an approximate answer for an SSAT in­
stance. 

jercik, & Pitassi 2000). Note that this number does 
not depend on n, m, k, or how the SSAT formula 
or the policy was created. 

As illustrated in Figure 2, the effect of a policy 
on a leaf can be summarized by a Boolean formula, 
called a path formula, for that leaf. Each random 
sample can potentially produce a different path for­
mula, and the union of all the path formulas pro­
duces a treeSAT formula, which can be viewed as 
both a collection of clauses and a collection of path 
formulas. A satisfying assignment to the treeS AT 
formula corresponds to a setting of the decision 
variables that satisfies the original SSAT formula 
along all paths in the partial policy tree. In gen­
eral, this will not be possible; instead randevalssat 
use randomized local search to search for a treeSAT 
assignment that maximizes the number of path for­
mulas that are satisfied. In our experiments, this 
was done by hillclimbing on an objective function 
that counts both clauses satisfied and path formu­
las satisfied. A satisfied path formula is weighted 
as heavily as the number of clauses in the original 
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Figure 4: As the number of sampled assignments in­
creases, the accuracy of the randomized local search 
algorithm increases. Because of local optima in the 
search space, increasing the number of sampled as­
signments does not drive the error to zero. 

SSAT formula, so that satisfying all the clauses in 
a path formula contributes more to the treeS AT 
formula's value than satisfying the same number of 
clauses scattered over more than one path formula. 

Experiments 
The performance of randevalssat for computing the 
value of SSAT instances was tested on 27 sets of 
100 random formulas, generated under the fixed­
clause model using a modified version of makewff 
that guarantees a formula with exactly n variables. 
For each problem a SAT instance (all existential 
variables), a MAJSAT instance (all randomized vari­
abIes), and all possible instances that contain an 
equal number of existential and randomized vari­
ables in alternating blocks of the same size were 
constructed. For each of these problems, 10 differ­
ent partial policy trees were created by sampling 
randomized variable assignments and constructing 
the tree paths specified by the samples. The num­
ber of assignments sampled w ranged from 5 to 4086 
on an approximate logarithmic scale; the larger the 
number of samples, the greater the similarity of the 
partial tree to the full tree. Performance was mea­
sured by comparing the estimate of the value of 
the partial policy tree to the exact value of the full 
policy tree (and, hence, the formula). 

Figure 4 shows results for randevalssat on prob­
lems with 12 variables, 24 clauses, and 3 literals per 
clause (results for all 27 sets of problems were sim­
ilar). The graph shows mean squared error in the 
value estimate as a function of the number of sam­
pled assignments for all problem types. The mean 

and variance of the squared error decrease as the 
number of assignment samples increases. \Ve note 
that the nonzero error in the limiting case, where 
the number of assignments sampled is sufficient to 
construct the full policy tree with high probabil­
ity, is due to the use of randomized local se,:rch. 
If a more time-consuming systematic search of the 
partial policy tree is employed, the error is driven 
to zero as the number of sampled assignments in­
creases (Littman, Majercik, & Pitassi 2000). 

Application to Planning Problems 

Once we have translated a probabilistic planning 
problem into an SSAT instance, it would seem to 
be straightforward to apply the stochastic sampling 
algorithm to the SSAT problem to find an approx­
imation of the optimal contingent plan and an ap­
proximation of its probability of success. The situ­
ation is complicated, however, by the fact that we 
use randomized variables to describe observations. 
This means that a random sample of the random­
ized variables describes an observation sequence as 
well as an instantiation of the uncertainty in the do­
main, and the observation sequence thus produced 
may not be observationally consistent. Informally, 
an observation sequence is observationally consis­
tent if there exists a sequence of actions and an in­
stantiation of the environment that could possibly 
produce that observation sequence. For example, 
assuming perfect sensors, it would be observation­
ally inconsistent to observe at time step t that a 
valve driver is permanently failed and at time step 
t + 1 that it is operational. 

Applying the stochastic sampling algorithm di­
rectly to planning problems can result in the gen­
eration of observationally inconsistent paths in the 
partial policy tree. And these paths, which are un­
satisfied paths regardless of the setting of the ac­
tion variables chosen, need to be treated differently 
from observationally consistent paths, which have 
the potential to become satisfied paths, depending 
on the values chosen for the decision variables. If 
the algorithm includes observationally inconsistent 
paths in its estimate of the probability of success 
of a given policy, it will tend to underestimate this 
probability. The algorithm needs to either avoid 
generating observationally inconsistent paths in the 
first place, or ignore them in its calculations. 

Considerations of efficiency suggest that the first 
strategy is to be preferred whenever possible, and 
this suggests two alterations to the stochastic sam­
pling algorithm in order to make it applicable to 
SSAT encodings of planning problems: 

II Sample tree paths only from P, the set of paths 
that are observationally consistent for some ac­
tion sequence and instantiation of the environ­
ment. 
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• Adjust the evaluation of policy trees as follows: 
Instantiating the decision variables in the policy 
tree selects pI C;;;; P, the set of paths in P that 
are observationally consistent for that setting of 
decision variables and some instantiation of the 
environment. Let S C;;;; pI be those paths in pI 
that are satisfied paths. Then, the probability 
of success of the contingent plan represented by 
that policy tree is ~. 

There are various algorithmic issues that need to 
be addressed. First, we need to find an efficient 
way of constructing P and P'. One possibility is 
to use user-supplied information to prune at least 
some of the observationally inconsistent paths when 
constructing P. A second possibility is to construct 
encodings such that unit propagation can be used 
to efficiently detect observational inconsistencies. 

Second, the algorithm returns a partial assign­
ment strategy, or policy, that specifies how each 
decision variable should be set given the settings 
of the decision and observation variables that pre­
cede it in the quantifier ordering, but this is only 
specified for those situations represented by paths 
in the random sample used to construct the partial 
tree. The algorithm implicitly assumes that per­
formance on missing branches is the same as the 
average performance over all paths in the partial 
tree, but doesn't actually find a plan that achieves 
this performance. One possible strategy for ad­
dressing this issue would be an iterative approach 
that alternates planning and evaluation. In this 
approach, each iteration would perform an evalu­
ation of the current policy (perhaps by simulat­
ing executions of the policy) and use that evalu­
ation to guide the construction of a partial pol­
icy tree that would lead to a better policy. This 
is similar to approaches that identify the most se­
vere problems in an imperfect plan and then at­
tempt to correct them (Drummond & Bresina 1990; 
Onder & Pollack 1997). 

Summary 
The stochastic sampling algorithm randevalssat ap­
pears to be a promising approximation method for 
SSAT encodings of planning problems. Its primary 
strength is the use of sampling to convert the prob­
lem to a lower complexity problem and its use of 
randomized local search to solve that problem ef­
ficiently. A feature of this process is that it does 
not necessarily completely discard the probabilities 
of the original problem (as would, say, a conver­
sion that merely rounded off the probabilities of 
the randomized variables to 0 and 1 and set their 
truth values accordingly). It would, for example, 
be possible to modify the algorithm such that the 
probabilities of the randomized variables are used 
to direct the construction of the partial policy tree. 

A more substantial modification, discussed above, 
would be to iteratively build the partial policy tree 
by using the solution of the partial policy tree in a 
given iteration to construct a better partial policy 
tree (and solution) in the next iteration. 

This algorithm has some weaknesses. First, 
randevalssat does not return an answer whose cor­
rectness is "easy" to certify; this is to be expected, 
given the complexity of SSAT problems. Second, 
there are SSAT problems for which the algorithm 
needs provably large samples (Littman, Majercik, 
& Pitassi 2000). Third, randevalssat is subject to 
the same pitfalls as other randomized local search 
algorithms; in particular, it may become stuck in lo­
cal optima. Allowing the algorithm to restart after 
a period of no progress helps minimize, but does 
not erase, this problem. Finally, the memory re­
quirements of the algorithm can be prohibitively 
large. This weakness can be partially overcome by 
more memory-efficient implementations, but prob­
lems that require a large number of samples to pro­
duce an accurate answer will inherently generate 
large treeSAT formulas. 
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