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Abstract 

The high demand for satellite imagery and the rela­
tive scarcity of commercial imaging satellites combine 
to produce scheduling problems in which one or more 
of the resources is over constrained. Over-constrained 
scheduling problems can be problematic for constraint 
programming methods because of the overhead associ­
ated with propagating constraints and the time spent 
backtracking over a large number of tasks that can­
not be scheduled. We present a hybrid approach called 
priority segmentation that breaks the scheduling prob­
lem up into sub-problems based on the priority of the 
tasks, finds an optimal solution to each sub-problem, 
and then combines the sub-problem solutions. Our 
preliminary results indicate that priority segmentation 
produces solutions that are an improvement over a 
greedy solution when the problems are highly over con­
strained. When the problems are only slightly over 
constrained, the percent improvement over greedy is 
very small. Our results also indicate that greedy solu­
tions are competitive with more computation intensive 
approaches under certain problem conditions. 

Introduction 
Satellite scheduling is the problem of mapping tasks 
(observations, communications, downlinks, control ma­
neuvers, etc.) to resources (sensor satellites, relay satel­
lites, ground stations, etc.). Although the term satellite 
scheduling has been applied to many different aspects 
of a satellite's operation (e.g., design planning, launch 
control, lifecycle, etc.), our work has largely focused on 
scheduling mission operations, namely the day-to-day 
activities of an operational satellite. Mission operation 
activities include: payload operations (e.g., using a sen­
sor to collect data), bus operations (e.g., maintaining 
the health and status of the vehicle), and communica­
tions operations (e.g., transmitting data between satel­
lites or from satellites to the ground and receiving infor­
mation or commands from a ground station). The rest 
of this paper will focus on scheduling of payload oper­
ations for remote-sensing satellites - namely deciding 
which observations to perform. 

Satellite mlSSIOn operation schedules are typically 
over constrained because the commercial demand for 
satellite imagery to date has far exceeded the capabili­
ties of commercial satellite systems. For this paper, the 
term "over constrained" refers to scheduling problems 
in which the capacity required by the tasks exceeds the 
total available capacity for at least one resource in the 
problem. 

To further quantify this property, we have adopted 
the following definitions: The average constrainedness 
of a scheduling resource is the ratio of the sum of the re­
source capacity required by all tasks to the total capac­
ity available. The average constrainedness of a schedul­
ing problem is the maximum average constrainedness 
over all resources in the problem. 

When the average constrainedness of a resource is 
greater than one, we say that the resource is over con­
strained. Note that a resource can be over constrained 
in one part of the scheduling problem and then under 
constrained in another part. In cases where the level of 
resource constrainedness differs greatly from one part of 
a problem to another, it may be necessary to evaluate 
the constrainedness of the different parts of the prob­
lem independently. For this paper, we have focused 
on problems where the average constrainedness of a re­
source does not vary significantly from one part of the 
scheduling problem to another. 

The paper is organized as follows. Section 2 describes 
the remote sensing scheduling problem and presents a 
simplified satellite imagery scheduling problem. Section 
3 describes a constraint programming approach to solv­
ing this class of scheduling problems and discusses why 
this approach can be problematic when the schedul­
ing problem is over constrained. Section 4 describes a 
hybrid method that we have used to address over con­
strained scheduling problems. Sections 5 and 6 describe 
our preliminary experiments and initial results. Section 
7 discusses the results and related work. Finally, Sec­
tion 8 contains some conclusions and plans for future 
work. 

Remote Sensing Scheduling 
The term remote sensing refers to the class of satellite 
missions in which a satellite is used to make observa~' 
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tions. The observations can be of either earth-bound or 
interstellar objects. Due to the high cost of building, 
launching and maintaining remote sensing satellites, it 
is typically the case that more than one user will share 
the use of a satellite's sensing capability. It is also typ­
ically the case that the demand for use of the satellite 
will exceed its capacity. This means that the scheduler 
must choose which subset of the tasks to execute. A 
good schedule is a tradeoff between the constraints of 
the problem and the needs of the users. 

As an example, a group of farmers in Kansas has 
banded together to perform a land use analysis of their 
farmland and the surrounding; communities to better 
assess the impact of the current drought. They have 
contacted a remote sensing satellite operator and agreed 
to purchase a set of satellite images that will be taken 
over the next three days. The farmers set a maximum 
three-day spacing between images to ensure that any 
unexpected storm would not have time to affect the 
crop growth assessment. 

The satellite system's ability to perform the farm­
ers' tasks is constrained by several factors. First, the 
ground location must be visible to the satellite. Sec­
ond, the quality of the image typically depends on the 
angle between the satellite and ground (the aspect an­
gle). Typically, the best quality (highest resolution) 
picture is taken when the satellite is directly over the 
position to be imaged. For our example, the farmers 
might have specified a minimum quality for their im­
ages. The farmers could have also asked for stereo im­
ages, which are created by taking two separate images 
of the same ground location from slightly different view­
ing angles. To satisfy the constraints of a stereo image, 
the satellite must take two images within a few minutes 
of each other, and it must take both pictures in order 
to satisfy the stereo requirement. 

The physical characteristics of the satellite compo­
nents can also constrain the execution of tasks. The 
most common examples are power, momentum, slew, 
heat and memory. Slew refers to the movement of a 
satellite sensor that is necessary to set it up before a 
task is executed. In most cases satellite operators pre­
fer to minimize the amount of slew because the time and 
power spent slewing the satellite is time and power that 
could be spent performing revenue-generating tasks. A 
satellite scheduling system must consider all of these 
factors at some level in order to produce a schedule 
that satisfies the problem constraints and also addresses 
the objective functions (e.g., minimize slew, maximize 
profit, etc.). 

Another important source of constraints is users' re­
quirements. Since we have already assumed that the 
satellite will not be able to perform all tasks in the time 
available, the scheduling problem becomes an optimiza­
tion problem. Operators of commercial remote sensing 
satellites want to maximize their profits; therefore, they 
are interested in generating schedules that maximize 
the amount of money that they can collect from their 
customers. For our example, the farmers might decide 

to pay only if all of the images are taken because any­
thing less would make their analysis incomplete. Alter­
natively, they might create a priority ordering for the 
imaging tasks and agree to a cost scale based on the 
priority (i. e., to pay more for higher priority tasks). 

The remote sensing scheduling problem can be sum­
marized as follows. The tasks are observations to be 
performed by the satellite(s). Each task has a start 
time and duration. Tasks require resources (e.g., the 
satellites camera, power, etc.). Resources have finite 
capacity (i.e., a camera can only take one picture at a 
time). When it is not possible to schedule every task, 
the quality of the schedule can be measured by an objec­
tive function (e.g., maximize the number of tasks sched­
uled, maximize total revenue, minimize slew, etc.). 

A Constraint Programming Approach 
We have adopted a constraint programming approach 
to satellite scheduling problems. We model the satellite­
scheduling problem using four basic objects: tasks, re­
sources, events and constraints. Tasks are the activ­
ities and operations to be performed. Resources are 
the people, satellites, sensors, communication channels, 
etc., that are required to accomplish tasks. Events 
are used to capture domain-specific occurrences that 
restrict when tasks can be scheduled (e.g., satellite vis­
ibility windows). Constraints are further restrictions on 
when tasks can be scheduled due to interactions with 
other tasks and to resource capacity and availability. 
When the problem is over constrained, we assign a pri­
ority value to each task. The priority values can then 
be used by the scheduler as part of an objective func­
tions (e.g., optimize the priority sum of the scheduled 
tasks). For commercial imaging tasks, the task priority 
could be directly related to the revenue of the task. 

A task is scheduled by assigning it a resource, start 
time and duration, which satisfy all of the relevant con­
straints. Tasks that require more than one resource 
(e.g., a downlink task requires a satellite and a ground 
station) will need to have more than one resource as­
signed to it. More formally, a scheduled task is a tuple: 

(task, {resource set}, start time, duration) 

In cases where the specific set of resources needed to 
perform a task are known a priori, then the scheduling 
problem is reduced to finding an execution time and 
duration for each task. When each task has a fixed du­
ration, then the scheduling problem is further reduced 
to finding an execution time for each task. If the task 
start times are also fixed, then scheduling becomes a 
problem of deciding which tasks to perform. We will 
discuss the last problem class further in later sections. 

We map satellite scheduling problems into constraint 
programming problems by associating a variable with 
each task. The values correspond to the start time, 
end time and resources assigned to the task. In gen­
eral, our constraint-based scheduler explores the space 
of possible schedules by choosing a task to schedule and 
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Priority Segmentation: 

1. Sort the set of tasks by their priority value. 

2. Select the n highest priority tasks not yet scheduled. 

3. Find an optimal schedule for the n tasks given the 
resource constraints and previously scheduled tasks. 

4. Lock the tasks that were successfully scheduled and 
remove the tasks that could not be scheduled. 

5. Loop to 3. 

Figure 1: Priority segmentation algorithm. 

then selecting values for the start time, end time and 
resource assignments. Our general purpose constraint­
based scheduler is built on top of ILOG Solver and 
Scheduler, which performs the constraint propagation 
and directs the search based on the heuristics that we 
have designed (e.g., the value and variable selection 
heuristics) . 

This general approach to scheduling works well for a 
range of problem parameters. However, we have found 
that when the number of tasks requested by users ex­
ceeds the number of tasks that can be reasonably per­
formed, the performance of the constraint engine suf­
fers. This is due to the fact that it must propagate 
constraints over a large set of tasks, most of which can­
not be scheduled. In addition, the scheduler can spend 
a lot oftime backtracking over a relatively large number 
of tasks that have very little chance of being scheduled. 
Thus the runtime of a constraint-based approach can 
depend more on the number of tasks requested than on 
the number of tasks that can ultimately be executed. 
We have found this overhead cost to be intolerable for 
the time demands of scheduling operational satellites. 
For this reason, we have developed a hybrid algorithm 
as a first step toward addressing this problem. 

A Hybrid Approach 
In this section, we present a hybrid approach for gener­
ating solutions to over-constrained satellite scheduling 
problems. 

Priority segmentation reduces the constraint propa­
gation overhead by breaking up the problem into a sub­
set of problems. The idea is to sort the tasks by their 
priority value, divide them into groups of n tasks (where 
n is a small integer), and then schedule one group at a 
time. The algorithm details are shown in Figure 1. 

Priority segmentation can be viewed as an applica­
tion of staged search (Ibaraki 1978) to a constraint­
based formulation of scheduling problems. Because the 
algorithm commits to scheduling decisions before all 
tasks are considered, it is necessarily a suboptimal al­
gorithm. For large scheduling problems (i.e., greater 
than 1000 tasks), the computation cost of finding op­
timal solutions is prohibitive so we must consider sub­
optimal scheduling algorithms. Suboptimal algorithms 
must also be considered for problems with real-time 

constraints on the scheduling. Obviously, we could ap­
ply additional optimization methods (e.g., local search) 
to the output of priority segmentation. These issues are 
not addressed in this paper and are the subject offuture 
work. 

Experimental Design 

We implemented priority segmentation using branch­
and-bound search to generate the optimal schedules for 
task subsets. We also implemented a random prob­
lem generator to provide us with a set of test prob­
lems. For our initial investigation, we made some sim­
plifying assumptions about the remote sensing schedul­
ing problem. For example, we assumed fixed duration 
tasks with fixed start times. This reduces the over­
constrained scheduling problem to deciding which of 
the tasks to schedule (since the start time and dura­
tion cannot change). The objective is to choose a set of 
tasks to schedule such that the sum of the task priorities 
is maximized. 

There are two justifications for simplifying the prob­
lem in this manner. One is to better focus our attention 
on the over-constrained resource problem. The other is 
that one of our customers is interested in solving a re­
mote sensing problem where a large number of tasks 
(e.g., greater than WOO) need to be scheduled in less 
than 30 minutes. The problem description includes a 
model to calculate the slew required by the satellite to 
reposition its camera between tasks. The slew model 
provides the slew time between a given pair of tasks, 
which depends on the imaging locations and the start 
times of the two tasks. The time constraint on the 
scheduler means that the slew must calculated ahead 
of time and stored in a table. The size of the slew table 
is (cn}2 where c is the number of possible start times 
for individual tasks and n is the number of tasks. We 
chose to require fixed start times for tasks so that the 
slew table could fit in the computer's memory. 

We generated a set of random remote-sensing 
scheduling problems with the following characteristics. 
The satellite system resources were simplified to a sin­
gle resource (e.g., the camera) which has a capacity 
of one (i.e., only one picture can be taken at a time). 
Tasks were generated to simulate different levels of de­
mand for the satellite resource that directly correspond 
to different levels of average constrainedness. The task 
duration was fixed at 10 seconds for all tasks. Each 
fixed start time was randomly selected from a uniform 
distribution over the schedule period. The test sets did 
not include any stereo tasks, precedence or logical con­
straints between tasks. The tasks priorities were ran­
domly selected integers from the range [1,50) (where 
1 is the lowest priority value). We generated problem 
sets by varying the number of tasks and the schedul­
ing period to control the average constrainedness of the 
problem (Cave). 

86 2nd NASA International Workshop on Planning and Scheduling for Space 



100 Task Problems 1000 Task Problems 

II I 1 I I I I 
12 _-0 0 -- 0.351- ,I -/,,-

/ I 

10 Cave = 2?/ 0.30 l- I -
/ 

/ I 
0' 
I 0.251- I -

,.,8 
I f 

Cave = 20/ 

~ I 
0 / 0 I " 

., 0.20 I- -> .8 ~ 6 I 0 ..: 
~ I ~ 

0.15 l- I .-x-
I I / 

.fo Cave = 10/ 
,0 I / 

Cave=~,/ 0.10 I-
/ 

/ -
I ,/ I / 

,/ _X' 
I ---" i----

? --- Cave = 2 0.05 l-
X, Ca~~ __ 0 _ 

--- _fr ---- -- ---- -" 
",:-0 .0'- -----/" .--e Cav".,:1_--t> 

Cave =.!...tJ 
.... -/ ---..... ,,0- // -'m-=~<---- ---~--- Cave = 10_ 

0.00 aa 19- 4l/ ~. 

II I I r r r I 

\0 15 20 25 30 0 10 15 20 25 30 

Subsel Size SubselSize 

Figure 2: Percent average priority sum improvement relative to greedy (lOO-task and 1000-task problems). 

Initial Experimental Results 
We ran priority segmentation on a set of randomly gen­
erated scheduling problems that were built using the 
simplifying assumptions described above. The priority 
segmentation subset size was varied as well as the size 
of the problem (i.e., number of tasks) and the aver­
age constrainedness (Cave). For a given problem size, 
we varied the average constrainedness by choosing the 
length of the scheduling period so that the average num­
ber of tasks per unit time was equal to the desired con­
strainedness. We performed experiments on lOO-task 
and 1000-task problems. 

To provide a baseline for comparison, we imple­
mented a simple greedy algorithm (i. e., consider tasks 
for scheduling one at a time from highest to lowest pri­
ority). Priority segmentation with a subset size of 1 
is equivalent to this greedy algorithm. It is also inter­
esting to note that priority segmentation with a subset 
size of 2 also produces the same solutions as this greedy 
algorithm. This is because the order in which two tasks 
are considered for scheduling doesn't affect which one 
is scheduled. 

Figure 2 shows the average solution quality as a per­
centage above the greedy solution for both the lOO-task 
and 1000-task problems. Each point is the averaged 
over 100 problem instances. The results show that the 
average solution quality (i. e., average schedule priority) 
increases with the size of the priority segmentation sub­
set. For the 1000-task problems, the average solution 
quality only increases very slightly for smaller Cave val­
ues and sometimes the average solution quality is lower 
than greedy (e.g., when Cave = 10 and the subset size 

is 8). In general, the results shown in the graphs il­
lustrate the trend that we expected, namely a gradual 
increase in average solution quality as the subset size 
is increased. The 100-task graph also shows a gradual 
approach to optimal (l2-percent above greedy) for the 
Cave = 20 case as the subset size is increased. 

As expected, the time required to perform priority 
segmentation increases with the size of the problem and 
the size of the subset. An example of the CPU time 
for the case where Cave = 20 is shown in Figure 3. 
Notice that the CPU time levels off for the 100-task 
case when the subset size is 32, in part because priority 
segmentation is finding optimal solutions. 

At first we didn't expect to see the slight decrease 
in average solution quality that occurred in some of 
the results. This result can be explained by the fact 
that priority segmentation with different subset sizes 
will search different parts of the scheduling space, thus 
it is possible for a larger subset to result in a lower aver­
age solution quality for any given problem instance. We 
expect that larger priority subsets will generate better 
solutions on average, although better solutions are not 
guaranteed. 

The results also show that the percent improvement 
in solution quality over greedy increases with Cave for 
a given priority subset size. This is because as Cave be­
comes larger, the set of tasks to choose from for a given 
resource availability time slot increases. This also in­
creases the expected value of the maximum priority of 
these tasks. In the limit as Cave approaches infinity, 
the probability that there is a task with maximum pri­
ority for every time slot approaches one. Thus as Cave 
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Figure 3: Average CPU time versus priority segmentation subset size (Cave = 20, 100-task and 1000-task problems). 

increases, we expect the optimal schedule score and the 
average priority segmentation score to increase. 

Discussion and Related Work 
Admittedly, the results presented here are just a first 
step toward understanding both this class of problems 
and the priority segmentation algorithm. Although 
we have used priority segmentation to address over­
constrained scheduling problems for at least two of our 
customers, we are just beginning to evaluate its perfor­
mance on more general problems. Our initial results 
indicate that priority segmentation can produce bet­
ter quality solutions that greedy under certain condi­
tions (e.g., when the average constrainedness is large). 
Our result also suggest that, for this class of problems, 
greedy solutions are often very competitive with more 
sophisticated algorithms. Additional experiments and 
analysis are necessary to clearly determine the condi­
tions under which priority segmentation is worth the 
computational effort. 

We are aware of other work on over constrained 
scheduling problems. For example, the work by 
Bressina et al. (e.g., (Bresina, Morris, & Edging­
ton 1997; Drummond, Bressina, & Swanson 1994)) on 
ground-based telescope scheduling used a dynamic pri­
ority weighting scheme that depends on both the value 
and age of the tasks (i. e., older tasks are given a higher 
priority). Sobiesk et al. (e.g., (Olawsky, Kregsbach, & 
Gini 1995; Sobiesk, Kregsbach, & Gini 1996)) have in­
vestigated a stochastic dynamic programming approach 
to solving over-constrained product-quality planning 
problems. We have not yet evaluated either of these ap-

proaches on our over-constrained remote-sensing prob­
lems. As mentioned above, priority segmentation can 
be viewed as a variation on 1baraki's work on hybrid 
search (1baraki 1978) and thus is related to other hy­
brid search algorithms (Pear11984). 

Lemaitre et al. (Lemaitre & Verfaillie 1997; Ben­
sana, Lemaitre, & Verfaillie 1999) have looked at a sim­
ilar problem of scheduling imaging tasks for the Spot5 
satellite. For their problem, tasks have fixed duration 
and fixed start times. They present results that com­
pare a variant of depth-first branch-and-bound called 
Russian Doll Search to branch-and-bound and an im­
plementation using 1LOG Solver. Their results show 
that Russian Doll Search takes significantly less time 
on average than the other algorithms to generate good 
quality solutions. Although the 1LOG-based approach 
requires more computation time, they argue that it may 
still be the better choice because it is a more general 
approach. Their work helps to justify our simplification 
of the more general satellite scheduling problem. In ad­
dition, their results support our belief that algorithms 
tailored to exploit the structure of a class of problems 
can often outperform general purpose approaches. 

Conclusions and Future Work 
We have presented a hybrid scheduling algorithm called 
priority segmentation. Our initial results indicate that 
it can produce better results than a simple greedy algo­
rithm when the average number of tasks competing for 
a resource at any given time is high (i.e., greater than 
10). Our results also suggest that greedy solutions can 
be competitive for this general class of problems. . 
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We intend to extend the work presented in this 
paper in several ways. First, we are planning to 
create a more sophisticated random problem gener­
ator that will allow us to evaluate scheduling algo­
rithms on a wider range of problems (and more re­
alistic problems). Second, we are planning to con­
sider other suboptimal scheduling techniques such as 
real-time search (Korf 1990). Finally, we intend to 
implement and evaluate other approaches (e.g., local 
search, Russian Doll Search (Lemaitre & Verfaillie 1997; 
Verfaillie, Lemaitre, & Schiex 1996), dynamic program­
ming, etc.} to scheduling satellite resources. 
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