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Abstract 

In the Deep Space One project, temporal uncertainty 
in a plan is taken into account through Temporal Con
straint Networks in which one further distinguishes 
between controllable and uncontrollable events. Two 
properties have been introduced to check the validity 
of such a plan, namely the Dynamic and the Waypoint 
Controllabilities. This paper presents a possible way 
to combine both of them for verifying such a plan be
fore execution, using a game-based strategy based on 
an automaton formalism, and shows how this tool may 
model as well more complex reactive behaviours and 
be used as an execution control tool. 

Background and overview 
Temporal Constraint Networks (TCN) (Schwalb & 
Dechter 1997) rely on numerical constraint algebras and 
are well-suited for modelling a temporal plan (lVlorris, 
Muscettola, & Tsamardinos 1998) and check its tem
poral consistency. In realistic applications the inherent 
uncertain nature of durations of some tasks must be 
accounted for, distinguishing between contingent con
straints (whose effective duration is only observed at ex
ecution time) and controllable ones (which instanciation 
is controlled by the agent): consistency must then be 
redefined in terms of the Dynamic controllability (Vidal 
& FaTgier 1999) which encompasses the reactive nature 
of the solution building process in dynamic domains, 
checking that a solution can be built in the process of 
time, each assignment depending only on the previous 
observations, and still needing to account for all the 
possible remaining ones. Then Waypoint controllabil
ity (lVlorris & Muscettola 1999) means there are some 
points which can be assigned the same time of occur
rence in all solutions, which allows to add wait periods 
in a plan and hence partition it in more tractable sub
parts. All that is recalled in next section. 

Using a Dynamic controllability checking method 
through a Timed Game Automaton (third section), the 
paper shows how in planning this space costly process 
can be confined in subparts using waypoints, and used 
as a control execution tool (fourth section). Then some 
hints are given about using the TGA for modelling more 
complex reactive behaviours (last section). 

Contingent TCN and Controllability 
Temporal plans can be represented through Temporal 
Constraint Networks (Schwalb & Dechter 1997) consist
ing of time-points (graph nodes) related by constraints 
(graph edges) that might be mere precedence (~) rela
tions, or continuous binary numerical constraints defin
ing the possible durations between two time-points x 
and y by means of temporal intervals: lxy ::::; (y - x) ::::; 
u xy or cxy = [lxv, UXyjI. A TCN is said to be consistent 
if one can CHOOSE for each time point a value such that 
all the constraints are satisfied, the resulting instancia
tion being a solution of the TCN. That can be checked 
in polynomial time through propagation algorithms. 

But one may wish to extend the expressiveness dis
tinguishing between two kinds of time-points: the time 
of occurrence of an activated time-point can be freely 
assigned by the agent, while received time-points are 
those which effective time of occurrence is out of con
trol and can only be observed. This raises a correspond
ing distinction between controllable and contingent con
straints (Clb and Ctg for short): the former can be re
stricted or instanciated by the agent while values for the 
latter will be provided (within allowed bounds) by the 
external world (see (Vidal & Fargier 1999) for details). 
For instance, in planning, a task which duration is un
certain and will only be known at execution time will 
be modelled by a Ctg between the beginning time-point 
which is an activated one and the ending one which is 
a received one. The introduction of such uncertainty in 
the STP results in the following definition of the corre
sponding Contingent TCN. 

Definition 1 (CTCN) N = (%,l1e ,Rg ,Rc ) is a 
Contingent TCN with 

Vi, = {bl , ... ,b B}: set of the B activated time-points, 
V;, = {el' ... ,eE}: set of the E received time-points, 
Rc = {CI' ... ,co}: set of the C Clbs, 
Rg = {gl, ... ,gc}: set of the G Ctgs. 

In the following, a decision J(bi ) will refer to the ef
fective time .of occurrence of an activated time-point bi, 
and an observation Wi will refer to the effective duration 
of the Ctg between Xi and ei. 

IThis is actually the restricted STP (Simple Temporal 
Problem) where disjunctions of intervals are not permitted. 

2nd NASA International Workshop on Planning and Scheduling for Space 107 



In a CTCN, the classical consistency property is of no 
use, since it would mean values for Ctgs can be CHO

SEN. The decision variables of our problem are only 
the activated time-points. And hence a solution should 
be here, intuitively, an assignment of these activated 
time-points such that all the Clbs are satisfied, what
ever values are taken by the Ctgs. This suggests the 
definition of some controllability property. In (Vidal 
& Fargier 1999), three different levels of controllabil
ity have been exhibited (we will barely focus here on 
the Dynamic one), completed in (Morris & Muscettola 
1999) by the Waypoint Controllability. 

Definition 2 (Situations and Schedules) Given 
that \fi = 1 ... G, gi = [li, Ui], 

• 0 = (h, UI] x ... X (la, ua] is called the space of 
situations, and 

W = {WI E (h,UI],'" ,Wa E [la,ual) E 0 is called a 
situation of the GTGN. 

Then, for each time t, one can define the current
situation W--;t ~ W which is the set of observations prior 
to t, i. e. such that only Gtgs with ending points e i ::S t 
are considered. 

.6= {6(bd, ... ,6(bB )} E ~ is called a schedule, ~ 
being the space of schedules (i. e. the cartesian product 
of interval constraints (b i - bo)) 

Then, for each time t, one can define the current
schedule 6--;t ~ 6 which is the sub-schedule assigned so 
far, s.t. \fbi E 1fb with bi ::S t, 6(b i ) E 6-jt 

In other words, a situation is one possible assign
ment of the whole set of Ctgs, and a current-situation 
with respect to t is a possible set of observations up to 
time t. And a schedule is then one possible sequence 
of decisions (that might be "controllable" or not), and 
a current-schedule encompasses the notion of reactive 
chronological building of a solution in plan execution. 

Definition 3 (Projection and Mapping) 
Nw is the projection of N in the sit11ation W, built by 

replacing each Gtg gi by the corresponding value {Wi} E 
w. In (Vidal f3 Fargier 1999) a projection is proved to 
be a simple TGN corresponding to a STP. 

f-l is a mapping from 0 to ~ such that f-l(w) = 6 is a 
schedule applied in situation w. 

Intuitively, a CTCN will be "controllable" if and only 
if there exists a mapping f-l such that every schedule 
f-l(w) is a solution of the projection Nw . In fact this is 
only the "weakest" view of the problem (called \Veak 
controllability in (Vidal & Fargier 1999)), that assumes 
that one knows the complete situation before choosing 
one schedule that will fit. But when a plan is executed, 
decisions are taken in a chronological way, and for each 
atomic decision the agent knows the past observations, 
but the observations to come are still unknuwn. The 
Dynamic controllability property defined below takes 
that into account. 

The Waypoint controllability has been further intro
duced in (Morris & Muscettola 1999), stating that there 
are some points for which all the schedules share the 

same time of occurrence, whatever the situation is2
• 

Those waypoints serve as "meeting" time-points in a 
plan, when the agent waits for all the components of a 
subpart of the plan to be over before starting the next 
stage. \Vaypoints can be created during the planning 
process through the addition of "wait periods" (Morris 
& Muscettola 1999). 

Definition 4 (Dynamic/Waypoint controllability) 

• N is Dynamically controllable iff . 
(1) 3f-l : 0 ----+ ~ s.t. f-l(w) =6 is a solution of Nw 
(2) \f(w,w') E 0 2

, with 6=f-l(W) and 6'=f-l(W'), 
\ft, if W--<t = W~t then 6--<t = 6~t 

• N is Waypoint controllable with respect to We 1fb iff 
(1) 3f-l: 0 ----+ ~ s.t. f-l(W)=6 is a solution of Nw -

(2) \f(w,w') E 0 2 , with 6=f-l(W) and 6'=f-l(W'), 
\fx E W, 6(x) = 6'(x) 

Dynamic and Waypoint controllability are proven 
to be exponential in the number of time-points. But 
the complexity of Waypoint controllability is actually 
exponential in the maximum number of time-points 
between two waypoints (lVIorris & Muscettola 1999), 
which means the more waypoints one considers in the 
CTCN, the less complex is Waypoint controllability. 

h\2 gl=[ 30, ~I 

~2 
g2=[1O,20] 

(a) 

hI gl=[10,30V I 

\[0,10] 

\h~2 
g2=[1O,20] 

(h) 

hI gl=[20,30] t>el=e2 

~h2~0'20] 
(c) 

Figure 1: Illustrating controllability 

Figure 1 exhibits a threefold example. In the first 
case (a), one task is constrained to occur during the 
other3 . For instance that might be a data sending task 
to an orbiter for a planetary robot that needs to be 
achieved during a visbility orbiter temporal window, 
both durations being uncertain. The second exam
ple (b) shows two successive contingent tasks, with a 
maximum (controllable) delay of 10 time units between 
them. For instance a planetary rover might have to 
send data within 10 seconds after having correctly di
rected its antenna towards the orbiter. The third exam
ple (c) shows two tasks, one activated after the other, 
that should finish exactly at the same time, though th~y 

2vVe have chosen to restrict in some sense the original 
vVaypoint controllability definition that allowed the set Hi 
to contain received events, since in general those would not 
satisfy the vVaypoint controllability property. 

3Unlabelled arrows stand for simple precedence, that 
should simply be [0, +oo[ intervals in the TeN framework. 
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both have uncertain durations. Obviously this last ex
ample cannot be accepted as a valid plan, since no ex
ecution can guarantee that the constraint will be met. 
Interestingly enough, the three examples are all control
lable in the weak sense (i.e. condition 1 holds), but only 
examples (a) and (b) meet condition 2 of Dynamic con
trollability, which fits what one should expect in realis
tic planning. Moreover, in example (a), one should get 
that b2 must be activated at most 10 time units after b1 

to ensure the satisfaction of the relation whatever values 
are taken by w. Last, about Waypoint controllability, in 
example (b), b2 shouldn't be set as a waypoint since the 
time at which one can release the second task depends 
upon the effective duration of the first one, and hence 
cannot be set in advance. In (Morris & lVluscettola 
1999), Waypoint controllability is proven to be equiv
alent to Dynamic controllability under some restrictive 
conditions (see page 5), that unfortunately do not hold 
in case (c) (W={bI} satisfies Waypoint controllability: 
actually it lets b2 depend on the outcome of WI and W2), 

hence Dynamic controllability still has to be checked. 

Using Timed Game Automata 
The method we present here relies on the timed au
tomata model used for describing the dynamical be
haviour of a system (Alur & Dill 1994). It consists in 
equiping a finite-state automaton with time, allowing 
to consider cases in which the system can remain in a 
state during a time T before making the next transition. 
This is made possible by augmenting states and tran
sitions with "continuous variables called clocks which 
grow uniformly when the automaton is in some state. 
The clocks interact with the transitions by participat
ing in pre-conditions (guar'ds) for certain transitions 
and they are possibly reset when some transitions are 
taken." Guards may be converted in staying conditions 
(Asarin, Maler, & Pnueli 1995) in states. 

Such tools are well-suited (Asarin, Maler, & Pnueli 
1995) to real-time games for controlling reactive sys
tems, where transitions are divided in two groups (such 
as constraints in CTCN) depending on which of the two 
players control it: the controller or the environment 
( "N ature") and some states are designated as winning 
for the controller. This extension of the classical dis
crete game approach, with has the following features: 
(1) there are no "turns" and the adversary need not 
wait for the player's next move, and (2) each player not 
only choose between alternative transitions, but also 
between waiting or not before taking it". Finding a tra
jectory (i.e. a path in the automaton) reaching a win
ning state defines a so-called safety game policy. We 
propose hereafter our own definition of a Timed Game 
Automaton that follows those lines and will perfectly 
fit our purpose. 

Definition 5 (Timed Game Automaton) 
A = (Q,I:,r,S, T) is a timed game automaton (TGA) 
where 

• Q is the discrete and finite set of states q;, with 

three special cases: 
- qo is the initial state, 
- qok is the unique winning state, 
- qt is the unique losing state; 

• I: = I:b X I:e is the input alphabet such that any 
label in I:b is of the form bi and any label in I:e is of 
the form ei; 

• r = r sw u ret is the discrete and finite set of clocks 
and may be of any cardinality (i. e. one can define as 
many clocks as one needs), where r sw is the set of 
clocks, on which are defined two sets of conditions and 
actions: 

- Re = {(SWif-O) s.t. SWiErsw} is the finite set 
of all possible clock reset functions, 

- Gu = {(li::; SWi::; Ui) s.t. SWi E r, (li' Ui) E712
} is 

the infinite set of all possible clock conditions that will 
be used as guards or staying conditions. 

• S : Q -+ Gu assigns staying conditions to states; 
• T = Tb UTe ~ Q2 X I: x Gu x Re is the set of tran

sitions of the form 
T = < q, q', (J, g, r' > with a distinction between 

- T E Tb is an activated transition iff (J E I:b , 

- T E T e is a received transition iff (J E I:e. 

For an activated transition, the controller decides the 
time of activation by "striking" the clock at any time 
within the two bounds of the guard, while a received 
transition will be taken at some unpredictable time 
within the bounds. 

(Vidal 2000) provides a translation algorithm from a 
CTCN to a corresponding TGA: an event in N will ap
pear as a translation labelled with this event in A. Sim
ilarly, temporal intervals in N will appear as guards in 
A. The example of Figure l(a) gives the corresponding 
TGA in Figure 2, where on each transition one can view 
the guard condition and the label above and the clock 
reset below. Two clocks gl and g2 are used by anal
ogy with the corresponding contingent durations. One 
can notice that the system is not a priori prevented to 
receive el before e2, which would violate a constraint, 
hence receiving el before e2 appears as a transition to 
the losing state in the automaton. 

Then (Vidal 2000) provides a synthesis algorithm 
that checks Dynamic controllability, using controllable 
predecessors operator that recomputes from a state q 
the previous ones, revising the staying conditions so as 
ensure the losing state cannot be reached any longer. 
The operator is recursively applied from the initial set 
of winning states until it reaches a fixed point. If qo is 
in the final set, then the controller can always win the 
game. This is illustrated in Figure 2: in q2, gl ::; 30 is 
added (and hence the transition to qt can be removed) 
and propagated backward to ql: considering that one 
may stay up to 20 time units in q2 because of the un
controlled clock g2, then gl shouldn't get to more than 
30-20 = 10 time units in Ql. This condition corresponds 
to a restriction of the Clb (b2 -b1 ) in the original CTCN. 

Modifying the example by replacing the second Ctg 
by g2 = [25,35] would as one should expect it lead the 
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30';; gl ,;; 40 

activated transitions 

received transitions 

Figure 2: TGA interpretation of a CTCN 

synthesis algorithm to fail, since adding the staying con
dition g2 :S 30 in q2 would not propagate back to ql con
sidering that one may stay in q2 up to 35 time units. 
Hence one would get as a result that the CTCN is not 
Dynamically controllable. 

On the application of TG A in planning 
Relevance and conditional nature of the 
approach 
Expressing and reasoning upon temporal uncertainty is 
needed in most of planning and scheduling applications 
such as the NASA project Deep Space One (Morris, 
Muscettola, & Tsamardinos 1998; Morris & Muscettola 
1999), where having to deal with contingent durations 
means basing activation decisions on previous observa
tions, as in Figure l(b). 

A more interesting example is the following. Let us 
suppose the on-board computation system predicted 
that a meteorit (that has been detected by a radar) 
will pass at a minimal distance from the spatial vehicle 
between 10 and 30 seconds from now. "Now" is the 
time-point bl , and the radar will issue event el when 
the meteorit is at minimal distance (i.e. when the dis
tance starts increasing again). The automatic planning 
system is given the goal to take a picture of the me
teorit close enough to this ideal position, i.e. within 
5 seconds before or after el. This decision is mod
elled by time-point b2 . Besides one may easily suppose 
that the picture should be taken the sooner the bet
ter, after what the spatial vehicle is planned to change 
direction to escape the area in which other meteorits 
are expected ... Figure 3 shows the resulting synthe
sized TGA: one shouldn't decide to activate b2 less than 
25 seconds after bl , but if el is received before, then 
just activate b2 within 5 seconds. This is Dynamically 
controllable, but here one gets two completely differ
ent schedules depending on WI being lower or greater 
than 25, which corresponds to some kind of conditional 

planning. Moreover, the TGA models a reactive oppor
tunistic behaviour, since the activation of b2 , initially 
scheduled at 25, might be opportunistically made be
fore on early reception of el. 

bl gl=[lO,30] FI 
~2(-5'5] 

sw( 5 

b2 

Figure 3: An example of reactive behaviour 

Hence the TGA implicit ely models reactive be
haviours and conditional plans, since two transitions 
from the same state correspond to a branching (OR 

node), while in a CTCN time-points are AND nodes. 
Therefore, the CTCN formalism is a very powerfull tool 
for describing the specifications of a dynamic system (as 
e.g. a contingent plan), through the constraints it has 
to meet, expressing rich temporal information in a com
pact way. Whereas the TGA is a simulation model that 
captures all the possible execution scenarii of the plan: 
it has the advantage of providing efficient and robust 
techniques to check its "safety", but runs the risk of 
combinatorial explosion in the number of states. 

The TG A as a plan execution control tool 
Another strength of the TGA is that it can be directly 
used as an execution supervisor tool, since the synthesis 
not only checks Dynamic controllability but also gives 
schedules of starting times for the planned tasks. More-

. over, in constraint networks only a deterministic se
quence of decisions is issued, whereas with a TGA one 
can get a reactive execution supervisor, with disjunc
tive possible trajectories, which makes it well adapted 
to stochastic environments. 

Complexity and practical efficiency issues 
As far as complexity is concerned, the algorithms for 
building and synthesizing the automaton are respec
tively linear and in logarithmic time in the number of 
states, which is in the worst case pB, where B is the 
number of activated time-points and p the degree of par
allelism (i.e. the maximum number of time-points pos
sibly occurring at the same time) (Vidal 2000). Hence 
the complexity of the approach lies in the possibly ex
ponential number of states developped, which depends 
upon the network feature p. 

This potential combinatorial explosion can be re
stricted when the plan is mostly a sequence and there 
are not so many events in parallel, which is often 
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the case in space mlSSlOn planning. Moreover, one 
could use dispatchable networks (Morris, lVluscettola, & 
Tsamardinos 1998), that are TCNs in which redundant 
constraints are removed and only minimal paths are ex
hibited, so as to optimize propagation during execution. 
This could restrict as well the number of states pro
duced in the TGA. Besides, automata-based techniques 
might be improved to reduce the number of states pro
duced, considering that two subsequences containing 
the same set of events, though in distinct orders, might 
converge on the same state, or using more complex ab
straction views (see (Asarin, "Maler, & Pnueli 1995)). 

One may also accept an incomplete checking algo
rithm in the long term (based on incomplete propaga
tions in the CTCN), using the TGA only in the short 
term, as far as execution runs: the algorithm anticipates 
the possible losing state deadends and can activate any 
necessary recovery action in advance. 

But the most promising idea seems to be the one that 
follows ... 

An extended framework using TG As and 
waypoints 

It is argued in (Morris & lVluscettola 1999) that choos
ing cleverly the set of waypoints through addition of 
"wait" periods in the plan might lead to Dynamic con
trollability being equivalent to Waypoint controllabil
ity. Anyway, trying to design a plan in this way might 
lead to a high number of waypoints lowering the plan 
optimality: an opportunistic scenario like the one in 
Figure 3 would not be possible. In other words, one 
may compel the executed plan to "play for time" at 
some points when it is not really needed. 

But waypoints might be used merely to restrict Dy
namic controllability checking in all subparts of the net
works between any pair of waypoints: we need to prove 
the following property, where N(x, Xl) stands for the re
striction of N to the time-points temporally constrained 
to be after x and before Xl. 

Property 1 (Partitioned controllability) N is 
Dynamically controllable iff 

(1) N is Waypoint controllable wrt W C Vb, and 
(2) \f(x, Xl) E W 2 s.t. x ~ Xl and 1Jx"/x ~ x" ~ Xl, 

N(x, Xl) is Dynamically controllable 

Sketch of proof. The proof is rather straightfor
ward. Dynamic controllability means that a current
schedule will only depend on the corresponding current
situation. For any time t between two waypoints x and 
Xl, J(x) is set in all schedules, which means it does not 
even depend on Wjc5(x) , and any forthcoming decision 
will not depend on it either. Consequently, J--<.t does 
only depend on the part of the situation between J(x) 
and t, which is equivalent to the formulation above. 0 

Then, a possible global algorithmic framework to 
check Dynamic controllability could be to (1) use some 
heuristic (to be defined at the planning engine level) 

to decide to introduce wait periods or not while plan
ning, and (2) check Dynamic controllability by build
ing a TGA between any pair of successive waypoints4 . 

The idea is to introduce "not so many" waypoints in 
the plan, so as to still meet in one hand high optimal
ity requirements for the plan, while on the other hand 
drastically reducing time and space complexity of the 
TGA approach by only synthesizing automata corre
sponding to subparts of the whole plan. This decom
position technique hence offers a nice trade-off between 
expressiveness, optimality and efficiency. 

The full expressiveness of TG As in 
planning 

The expressive power of TGAs is obviously larger than 
what is used here, and might be of interest for other 
planning problems. 

Generalized conditional planning 
A first obvious remark is about the relation between 
the TGA model and conditional or reactive planning: 
if the TGA allows to represent the inherent conditional 
nature of a CTCN, then why not using it for different 
kinds of branching in planning? For instance, consider 
information gathering problems, in which a perception 
action is included in a plan, and the next steps of the 
plan depend on the outcome of this action. Or more 
generally speaking, all cases in which non-determism of 
actions has to be dealt with. If one wishes to represent 
distinct evolutions of a plan, then this corresponds to 
some disjunctions (OR nodes) that are naturally repre
sented in a TGA and may be smoothly merged with 
temporal contingency branching. Hence TGA might be 
used in such cases as well. The only difference is that 
this kind of non-determinism cannot be represented in a 
compact way in a CTCN, and one can hardly avoid the 
use of OR nodes in addition to partial order (i.e. AND 
nodes) in a temporal constraint-based planning graph. 

Preprocessed plans and reactive planning 
Sometimes a unique plan with branching nodes is not 
enough to solve a problem. One may need to use a li
brary of subplans to run in reaction to typical events. 
For instance a planning system may produce a nominal 
plan together with a number of alternative "recovery" 
sequences to be runned in replacement when a mod
eled disturbance occurs, as in (,Washington, Golden, & 
Bresina 1999). Instead of having those subsequences 
connected to a node of the nominal plan, they may be 
stored in a library and connected to a type of received 
and unpredictable event, which defines a more general 
kind of uncertainty than the one addressed in this pa
per (not only the time of occurrence of the event is 
unknown, but the occurrence of the event itself). Re
ceiving this event will force the execution supervisor to 

4vVait periods will by construction introduce waypoints 
such that the network is necessarily Vlaypoint controllable, 
which hence does not need to be checked. 
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temporally abandon the current plan to run the corre
sponding recovery sequence. 

Then a more general reactive framework needs to be 
designed, as in (Vidal & Coradeschi 1999): one can 
define temporal chronicles corresponding to each "ab
normal" scenario, with the possibility of having several 
"faulty" events in elaborated and rather complete sce
narios. A purely reactive TGA framework can be de
signed, where on-line automaton building is processed, 
in reaction to received events: the system dynamically 
matches the received event with the chronicles that con
tain it, and synthesizes the possible next steps in those 
chronicles in one unique incremental automaton. 

By mixing the general off-line planning framework 
presented in this paper with this purely reactive be
haviour, one get a real-time planning system that might 
be very robust in stochastic environments. 

Synchronization constraints 
Last, sometimes so-called synchronization constraints 
that are outside the scope of classical temporal algebras 
may be useful. Three of them have been defined in 
(Fargier et al. 1998): 

Parmin Two "tasks" A and B are related by a pm'min 
if both starts at the same time and the first that 
is finished terminates the other as well (e.g. task of 
recording a given sequence of signals from a meteorit 
and a task waiting for the radar to notify that the 
meteorit has got out of sight); 

Parmaster This is the same as parmin, except that 
only the first "task" in the relation forces the second 
one to finish at the same time (e.g. the previous ex
ample with the length of the recording sequence not 
predetermined) ; 

Parmax Two "tasks" A and B are related by a parmax 
if both starts at the same time and the first that· is 
finished has to wait for the second one to finish as 
well before next steps in the plan are processed. 

The two first ones are interruption-like behaviours, 
while the third one is an "appointment" constraint. The 
CTCN model cannot model these constraints: a pm'min 
for instance implies a ternary constraint (Fargier et al. 
1998) between (1) the expected end of the first task, (2) 
the expected end of the second task, and (3) the "effec
tive end" of both, that will actually be one of the two 
previous ones (we recall that in CTCNs only binary con
straints are allowed). But interestingly enough, those 
behaviours are implicitely conditional behaviours, and 
are very easy to model through a TGA. 

Conclusion 
This paper has brought to light the advantage of us
ing Timed Game Automata for checking dynamic tem
poral properties of a plan in the presence of temporal 
uncertainties. Discussing efficiency and usefullness in 
practice, it suggests the addition of heuristically and 
sparingly selected wait periods in the plan to partition 

it so as to be able to check the Dynamic controllability 
property locally. The applicability of Timed Game Au
tomata to more general conditional and reactive plan
ning features may as well allow to address more real
istic real-time planning problems in stochastic environ
ments. 
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