
Planning in Interplanetary Space: Theory and Practice* 

Ari K. Jonsson Paul H. Morris 
Nicola Muscettola Kanna Rajan Ben Smith 

NASA Ames Research Center, MS 269-2 
Moffett Field, CA 94035-1000, 

{jonsson,pmorris,mus,kanna}@ptolemy.arc.nasa.gov 

Jet Propulsion Laboratory 
Pasadena, CA 91109-8099 
smith@aig.jpl.nasa.gov 

Abstract 

On May 17th 1999, NASA activated for the first time 
an AI-based planner/scheduler running on the flight 
processor of a spacecraft. This was part of the Remote 
Agent Experiment (RAX), a demonstration of closed­
loop planning and execution, and model-based state 
'inference and failure recovery. This paper describes 
the RAX Planner/Scheduler (RAX-PS), both in terms 
of the underlying planning framework and in terms of 
the fielded planner. 

Introduction 
During the week of May 17th 1999, the Remote Agent 
became the first autonomous closed-loop software to 
control a spacecraft during a mission. This was done 
as part of a unique technology validation experiment, 
during which the Remote Agent took control of NASA's 
New Millennium Deep Space One spacecraft (Muscet­
tola et al. 1998; Bernard et al. 1999). The experiment 
successfully demonstrated the applicability of closed­
loop planning and execution, and the use of model­
based state inference and failure recovery. 

As one of the components of the autonomous con­
trol system, the on-board Remote Agent Experiment 
Planner/Scheduler (RAX-PS) drove the high-level goal­
oriented commanding of the spacecraft. This involved 
generating plans that could safely be executed on board 
the spacecraft to achieve the specified high-level goals. 
Such plans had to account for on-board activities hav­
ing different durations, requiring resources, and giving 
rise to subgoal activities, all while satisfying complex 
flight safety rules about activity interactions. 

In this paper, we describe the Remote Agent Experi­
ment Planner/Scheduler from both the theoretical and 
the practical perspectives. The architecture of the plan­
ning system is as shown in Figure 1. The domain model 
describes the dynamics of the system to which the plan­
ner is being applied - in this case, the Deep Space One 
spacecraft. A plan request, consisting of an initial state 
and a set of goals, initializes the plan database. The 
search engine then modifies the plan database to gen­
erate a complete valid plan, which is then sent to the 
execution agent. The heuristics and planning experts 
are not part of the core framework, but they are an in­
tegral part of the planning system that flew on board 
Deep Space One. The heuristics provide guidance to 

• Authors in alphabetical order. 

Plan 

Figure 1: The Planner/Scheduler architecture 

the search engine while the planning experts provide a 
uniform interface to external systems, such as attitude 
control systems, whose inputs the planner has to take 
into account. 

Aadditional information about the theoretical and 
practical aspects of RAX-PS can be found in (Jonsson 
et al. 2000). 

Theory 
The RAX-PS system is based on a well-defined frame­
work for planning and scheduling that, in many ways, 
differs significantly from classical STRIPS planning. 
For instance: 

• Actions can occur concurrently and can have differ­
ent durations. 

• Goals can include time and maintenance conditions. 

In this section, we will describe the PS framework from 
a theoretical perspective. 

Tokens, Timelines and State Variables 

To reason about concurrency and temporal extent, ac­
tion instances and states are described in terms of tem­
poral intervals that are linked by constraints. This ap­
proach has been called constraint-based interval plan­
ning (Smith,Frank, & Jonsson 2000), and has been 
used by various planners, including IxTeT (Ghallab & 
Laruelle 1994). However, although our approach builds 
on constraint-based interval planning, there are signifi­
cant differences. Among those are: 

• The use of timelines to model and reason about con­
current activities 

It No distinction between actions and fluents 

• Greater expressiveness of domain constraints 

128 2nd NASA International Workshop on Planning and Scheduling for Space 



Engine 

~ 

" Idle Thrust(B) Idle ;::1 

" .§ Attitude f-< 

I Tum(A,B) Point(B) Tum(B,C) 

Time 

Figure 2: Plans as Parallel Timelines. 

Humans find it natural to view the world in terms 
of interacting objects and their attributes. In planning, 
we are concerned with attributes whose states change 
over time. Such attributes are called state variables. 
The history of states for a state variable over a period 
of time is called a timeline. Figure 2 shows Engine and 
Atti tude state variables, and portions of the associated 
timelines for a spacecraft application (the attitude of a 
spacecraft is its orientation in space). 

In classical planning (Fikes & Nilsson 1971; 
McAllester & Rosenblit 1991), and earlier interval plan­
ning, there is a dichotomy between fluents and actions. 
The former specify states, and the latter specify transi­
tions between them. In terms of interval planning, this 
has resulted in intervals describing only actions, and 
fluent values being implicit. However, this distinction 
is not always clear, or even useful. For example, in a 
spacecraft domain, thrusting in a direction P can either 
be regarded as a state that implies pointing towards P 
or an action with pointing towards P as a precondition. 
Moreover, during execution, the persistence of fluent 
values over temporal intervals may be actively enforced 
by maintaining and verifying the value. For these and 
other reasons, we make no distinction between fluents 
and actions in this planning approach, and use the same 
construct to describe both fluents and actions. 

From the point of view of execution, a state variable 
represents a single thread in the execution of a concur­
rent system. At any given time, each thread can be 
executing a single procedure P. A procedure P has np 
parameters (np ~ 0), each with a specified type. Each 
state variable is also typed, i.e., there is a mapping 
Procs : S ---+ 2IT

, where S is the set of state variables 
and II is the set of all possible procedures. Given a 
state variable u, Procs(u) specifies the procedures that 
can possibly be executed on u. 

Thus, a timeline consists of a sequence of intervals, 
each of which involves a single procedure. We may think 
of the interval and its procedure as a structural unit, 
called a token, that has been placed on the timeline. 
Although each token resides on a definite timeline in 
the final plan, the appropriate timeline for a token may 
be undetermined for a while during planning. We refer 
to a token that is not on a timeline as a floating token. 

A token describes a procedure invocation, the state 
variables on which it can occur, the parameter values of 
the procedure, and the time values defining the interval. 
To allow the specification of multiple values, e.g, to ex­
press a range of possible start times, variables are used 

to specify parameter, start and end time values for a 
token. As a result, a token T is a tuple (v, P(xp), s, e), 
where v is a variable denoting a state variable, P is the 
name of a procedure (satisfying P E Procs(v)), the el­
ements of XP are variables that denote the parameters 
ofthe procedure (restricted to their types), and sand e 
are numeric variables indicating the start and end times 
respectively (satisfying s :s: e). 

Each of the token variables, including the parameter 
variables, has a domain of values assigned to it. The 
variables may also participate in constraints that spec­
ify which value combinations are valid. 

Domain Constraints 
In a complex system, procedures cannot be invoked ar­
bitrarily. A procedure call might work only after an­
other procedure has completed, or it might need to 
be executed in parallel with a procedure on a different 
thread. 

To specify such constraints, each ground token, 
T = (v, P(xp), s, e), has a configuration constraint 
GT(v, xp, s, e), which we call a compatibility. It deter­
mines the necessary correlation with other procedure 
invocations in a legal plan, i.e., which procedures must 
precede, follow, be co-temporal, etc. Since a given pro­
cedure invocation may be supported by different config­
urations, a compatibility is a disjunction of constraints. 
Therefore, we define GT (v, X p, s, e) in terms of pairwise 
constraints between tokens, organized into a disjunctive 
normal form: I 

GT(v, xp, s, e) = rf v··· V r;: 
Each r[ is a conjunction of subgoals I\jrL with the 

following form: 

rT,j = 3Tj/T,j(v, xp, s, e, Vj, ZPj' Sj, ej) 

where Tj is a token (Vj, Pj(Zpj), Sj, ej) and ,T,j is a con­
straint on the values of the variables of the two tokens 
involved. 

In general,fj may take any form that appropriately 
specifies the relation between the two tokens. In prac­
tice, ,T,j is structured to limit its expressiveness and 
make planning and constraint propagation computa­
tionally efficient. In the RAX-PS framework, ,T,j is 
limited to conjunctions of: 

• Equality (codesignation) constraints between pa­
rameter variables of different tokens. 

• Simple temporal constraints on the start and end 
variables. These are specified in terms of metric 
versions of Allen's temporal algebra relations (Allen 
1984); before, after, meets, met-by, etc. Each 
relation gives rise to a bound on the distance be­
tween two temporal variables. This bound can be 
expressed as a function of the start and end vari­
ables of T and Tj . 

• Constraints on how the token T can be instan­
tiated. These are represented as procedural con­
straints, which are an effective way to specify and 
enforce arbitrary constraints. 

2nd NASA International Workshop on Planning and Scheduling for Space 129 



Subgoal constraints must guarantee that each state 
variable is always either executing a procedure or 
instantaneously switching between procedure invoca­
tions. This means that each rT contains a predecessor, 
i.e., a requirement for a Tj on the same state variable 
as T, such that T met_by T j . Similarly, each rT must 
specify a successor. 

The concept of subgoals generalizes the notion of pre­
conditions and effects in classical planning. For exam­
ple, ADD effects can be enforced by using meets sub­
goals while deleted preconditions correspond to met_by 
subgoals. Preconditions that are not affected by the 
action can be represented by contained_by subgoals. 

Plan Database 

Having laid out the representation of the planning do­
main, we can now turn our attention to what the plan­
ner represents and reasons about. In RAX-PS, this is 
a data structure called the plan database. At the most 
basic level, the plan database represents 1) a current 
candidate plan, which is essentially a set of timelines 
containing interrelated tokens, and 2) a current set of 
decisions that need to be made. 

Formally, a candidate plan consists ofthe following: 

It a horizon (hs, he), which is a pair of temporal values 
satisfying -00 ~ hs < he ~ 00 

It a timeline Tcr = (TU1 "'" TUk ), for each state vari­
able, with tokens Ti = (v, PUi (i), s, e), such that 
each PUi E Procs(u) 

• ordering constraints {01 ,"" OK}, enforcing hs ~ 
e(TU1) ~ S(TU2) ~ ... ~ e(TUk_J ~ S(TUk) ~ he for 
each timeline Tcr 

• a set of constraints {01, O2 , •.• ,ON}, each relating 
sets of variables from one or more tokens; includes 
temporal, equality and local procedural constraints 

The constraints in a candidate plan give rise to a 
constraint network, consisting of the variables in the 
tokens and the constraints that link token variables in 
different ways. This network determines the set of ail 
legal instantiations of the given tokens. As a result, any 
candidate plan that has an inconsistent underlying con­
straint network cannot be part of a valid plan. Limited 
plan consistency checking can therefore be done by con­
straint propagation (Mackworth & Freuder 1985), which 
is a method for eliminating values that can be proven 
not to appear in any solution to the constraint network. 

In addition to a candidate plan, the plan database 
may also contain a set of decisions that need to be made. 
A decision corresponds to a flaw in a candidate plan, 
an aspect of the candidate that may prevent it from 
being a complete and valid plan. In this framework, 
there are four types of flaws: uninstantiated variables, 
floating tokens, open disjunctions of compatibilities, and 
unsatisfied compatibility subgoals. Each flaw in the plan 
database gives rise to choices for how that flaw can be 
resolved. Resolving a flaw is a reasoning step that maps 
the given database to another database. Categorized by 

the types of flaws, the following is a list of the possible 
choices for resolving a flaw: 

• Variable restriction flaws are resolved by selecting 
a non-empty subset of the variable domain and re­
strict the variable to that domain. 

• Floating token flaws are resolved by selecting two 
adjacent tokens on a timeline and inserting the float­
ing token between them. 

• Open disjunction flaws are resolved by selecting one 
item in the disjunction and making it true. 

It Unsatisfied subgoal flaws are resolved by either find­
ing an existing token and using that to satisfy the 
subgoal, or by adding a new token to satisfy the 
subgoal. 

It is important to note that it is not necessary to re­
solve all flaws in order to have a plan. In most cases, 
however, we require that each token satisfy the appli­
cable compatibility specification, i.e, that the subgoals 
from at least one of the disjunctions are satisfied. In 
that case, we say that the token is fully supported. 

Executable Plans 

Based on the notions we have introduced here, we can 
now turn our attention to the semantics of a candidate 
plan, and the task of developing a formal definition of 
what a valid plan is. Traditionally, valid plans have 
been defined in abstract terms, based only on the can­
didate plan and the domain model. However, this ap­
proach is not realistic, as the validity of a plan in the 
real world is inherently tied to the mechanism that ex­
ecutes it. To address this, we start by discussing the 
basics of plan execution and then go on to derive a re­
alistic definition of what constitutes a valid plan. 

From the point of view of the executing agent (called 
the executive or EXEC) a plan is a concurrent program 
that is to be interpreted and executed in a dynamic 
system. Recall that the plan contains variables that 
specify how and under which circumstances procedures 
are to be instantiated. For variables that correspond 
to system values, such as the current time, the EXEC 
will sense actual system values, compare them with the 
values specified in the plan, and then determine which 
procedure should be executed next. If the EXEC fails 
to match sensed values with the values in the plan, the 
EXEC triggers a fault-protection response (e.g., put the 
system in a safe state and start taking recovery actions). 
The question of whether the EXEC succeeds in match­
ing values and selecting a procedure invocation depends 
in part on how much reasoning the EXEC can perform 
for this purpose. That, in turn, depends both on how 
much reasoning the EXEC is capable of and how much 
time it has before the next invocation must be acti­
vated. 

Consider a candidate plan; tokens may not be fully 
supported, and variables may be uninstantiated. In 
order to instantiate the candidate, each flaw must be 
resolved successfully. For an execution agent with suf-

130 2nd NASA International Workshop on Planning and Scheduling for Space 



ficient time and reasoning capabilities, such an under­
specified plan might be a viable plan. In fact, the lack of 
commitment would allow the execution agent to choose 
the flaw resolutions that best fit the actual conditions 
during execution. The Remote Agent system took ad­
vantage of this by letting the EXEC map high-level 
tasks into low-level procedures, during execution. This 
freed the planner from generating low-level procedure 
calls, and allowed the executive to choose the low-level 
procedures that best fit the actual execution. 

In general, executability depends on the execution 
agent in question. It depends primarily on two aspects; 
how flexible the candidate plan must be to cover possi­
ble system variations, and how restricted the candidate 
plan must be for the executive to identify whether it 
is executable. The latter is an important issue to con­
sider, as making this determinati~n can be as expensive 
as solving a planning problem. 

To represent the abilities of a particular executive 
agent, we use a plan identification function h that iden­
tifies executable candidate plans, by mapping each pos­
sible candidate plan to one of the values of {T, F, 7}. 
The intent is that if a candidate P can be recognized as 
being executable, then h(P) T; if a candidate is rec­
ognized as not being executable, then h(P) = F; and 
if executability cannot be determined, then h(P) =7. 

We permit a great deal of variation in how different 
executives respond to different candidate plans, but we 
do require that a plan identification function behaves 
consistently with respect to the two aspects mentioned 
above. For example, the function should not reject one 
candidate on the basis of being too restrictive and then 
accept a restriction of that candidate. This leads us to 
the following formalization of what constitutes a plan 
identification function: 

Definition 1 A plan identification function h for a 
given execution agent is a function that maps the set of 
candidate plans to the extended truth value set {T, F, 7}, 
such that for any candidate plan P and any candidate 
plan Q that extends the candidate P, we have: 

• if h(P) = F then h(Q) = F 
• if h(P) = T, then h(Q) E {T, F} 
• if a token in P is not supported, then h(P) =7 

The last condition is not strictly necessary, as some ex­
ecutives are capable of solving planning problems, but 
in the interest of clarity, we will limit the execution 
agents to solving constraint satisfaction problems. 

Using this notion of plan identification functions, we 
can now provide a realistic, formal definition of what 
constitutes a plan, namely: 

Definition 2 For a given executive, represented by a 
plan identification function h, a candidate plan P is a 
plan if and only if h(P) = T. 

Planning process 
We can now turn our attention to the plan generation 
process itself. The input to the planning process is an 

plan (P,D) { 
if f(P) = T 

return P 

} 

else if f(P) F 
return fail 

else 
given a flaw d from the flaw database D, 
choose a resolution res (d) for the flaw 
let (P' ,D') = apply res (d) to (P,D) 
return plan(P' ,D') 

Figure 3: The planning process. The plan database 
consists of the candidate plan P and the set of flaws D. 

initial candidate plan, which includes an initialization 
token for each timeline, a set of floating tokens, and a 
set of constraints on the tokens in question. Together, 
these elements give rise to an initial plan database. The 
goal of the planning process is then to extend the given 
initial candidate to a complete valid plan. From the 
point of view of traditional planning, the initial plan 
database specifies both the initial state and the goals. 
In fact, our approach permits a much more expressive 
specification of goals. For example, we can request a 
spacecraft to take a specified sequences of pictures in 
parallel with providing a certain level of thrust. 

The planning process we define is a framework that 
can be instantiated with different methods for control­
ling the search, selecting flaws, propagating constraints, 
etc. The planning process is a recursive function that 
non-deterministically selects a resolution for a flaw in 
the current plan database. An outline of the process is 
shown in Figure 3. 

This planning process is clearly sound, as any result­
ing plan satisfies the given plan identification function. 
The planning process is also complete in the sense that 
if there is a plan, then a plan can be found. Further­
more, if a given initial candidate plan can be extended 
to some valid plan P (satisfying h), then the planning 
process can find some other valid plan (satisfying h) 
that can be extended to P. A still stronger complete­
ness criterion, that any given plan can be found, does 
not hold in general. The reason is that a lenient iden­
tification function h may return T even though the 
planning process has not addressed all remaining flaws. 
This highlights the importance of identifying properties 
of soundness and completeness for new planning frame­
works such as this one. 

Theorem 1 Suppose a domain model, a plan identifi­
cation function h, and an initial plan Po are given. Let 
PT be a valid plan (i.e., h(PT) = T) that extends Po. 
Then, the planning process can generate a valid plan pi 
that extends Po, and can be extended to PT. 

Practice 
RAX PS extends the theoretical framework into a well­
engineered system. The system had to operate under 
stringent performance and resource requirements. For 

2nd NASA International Workshop on Planning and Scheduling for Space 131 



Model size: State variables 18 
Procedure types 42 

Plan size: Tokens 154 
Variables 288 
Constraints 232 

Performance: Search nodes 649 
Search efficiency 64% 

Table 1: Plan size and performance of RAX PS 

example, the Deep Space 1 flight processor was a 25 
MHz radiation-hardened RAD 6000 PowerPC processor 
with 32 MB memory available for the LISP image of 
the full Remote Agent. This performance is at least an 
order of magnitude worse than that of current desktop 
computing technology. Moreover, only 45% peak use 
of the CPU was available for RAX, the rest being used 
for the real-time flight software. The following sections 
describe the engineering aspects of the RAX PS system. 
First we describe the planning engine, the workhorse on 
which all development was founded. Then we describe 
the mechanism for search control used to fine-tune the 
planner. 

RAX PS planning engine 
As follows from the previously discussed theory, pro­
ducing a planner requires choosing a specific plan iden­
tification function II, a specific way to implement non­
determinism and a flaw resolution strategy. In RAX PS 
we designed the planner in two steps. First we defined 
a basic planning engine, i.e., a general search proce­
dure that would be theoretically complete. Then we 
designed a method to program the search engine and 
restrict the amount of search needed to find a solution. 
In this section we talk about the planning engine. 

The first thing we need to clarify is what constitutes 
a desirable plan for the flight experiment. RAX plans 
are flexible only in the temporal dimension. More pre­
cisely, in a temporally flexible plan, all variables must 
be bound to a single value, except the temporal vari­
ables (i.e., token start and end times, s and e). It is 
easy to see that under these assumptions the only un­
instantiated constraint sub-network in the plan is a sim­
ple temporal network (Dechter, Meiri, & Pearl 1991). 
This means that the planner can use arc consistency 
to determine whether the plan can be instantiated and 
that the executive can adjust the flexible plan to ac- . 
tual execution conditions by using very fast incremen­
tal propagation (Tsamardinos, Muscettola, & Morris 
1998). All of this is translated into a plan identifica-. 
tion function II defined as follows: When applied to 
a candidate plan, II checks its arc consistency. If the 
candidate is inconsistent, II returns F. If the candidate 
is arc consistent, II returns one of two values: T if the 
candidate is fully supported and all the non-temporal 
variables are grounded, and? in any other case. 

To keep a balance between guaranteeing complete­
ness and keeping the implementation as simple as pos­
sible, non-determinism was implemented as chronolog­
ical backtracking. Also, the planner always returned 

(:subgoal 
(:master-match (Camera = Ready)) 
(:slave-match (Camera = Turning_On)) 
(:method-priority ((:method : add) (:sort :asap)) 

(:priority 50)) 

((:method :connect)) 
((:method :deier))) 

Figure 4: Search control rules for unsatisfied subgoal 

the first plan found. Finally, the planning engine pro­
vided a default flaw selection strategy at any choice 
points of the backtrack search. This guaranteed that 
no under constrained temporal variable flaw would ever 
be selected, while all other flaw selection and resolutions 
were made randomly. 

Search control 

By itself, the basic planning engine could not generate 
the plans ne~ded for the flight experiment. However, 
RAX PS included additional search control mechanisms 
that allowed very localized backtracking. This is re­
flected in the the performance figures in Table 1, where 
search efficiency is measured as the ratio between the 
minimum number of search nodes needed and the total 
number explored. 

Achieving this kind of performance was not easy and 
required a significant engineering effort. We outline the 
principal aspects of this effort in the rest of the section. 

Flaw agenda management RAX PS made use of a 
programmable search controller. Ideally, the "optimal" 
search controller is an oracle that can select the correct 
solution choice without backtracking. In practice this 
is not possible and the control strategy can only make 
flaw resolution decisions on the basis of the partial plan 
developed so far. The search controller of RAX PS al­
lows programming an approximate oracle as a list of 
search control rules. This list provides a prioritization 
of the flaws in a database and sorting strategies for the 
non-deterministic choices for each flaw selection. Fig­
ure 4 gives an example of a search control rule. 

The rule applies to an unsatisfied subgoal flaw 
of a (Camera, Ready, s, e) token that requires a 
(Camera, Turning_on, Sk, ek) token. Note that in the 
DSI model the Camera can reach a Ready state only 
immediately after the procedure Turning_on has been 
executed. Therefore, in this case, matching the token 
types in the subgoal is sufficient to uniquely identify 
it. When the priority value associated with the flaw is 
the minimum in the plan database, the planner will at­
tempt to resolve the flaw by trying the resolution meth­
ods in order. In our case the planner will first try to 
: add a new token and try to insert it in the earliest 
possible timeline gap (using the standard sort method 
: asap). The last resolution method to try is to : def er 
the subgoal. When this happens, the plan database will 
automatically force start or end of the token to occur 
outside of the horizon hs . In our case, the deferment 
method will only succeed if the Ready token is the first 

132 2nd NASA International Workshop on Planning and Scheduling for Space 



token on the timeline. 

Search control engineering The rule language for 
the search controller is designed to be extremely flexi­
ble. It permits the introduction of new sorting methods, 
if the standard methods prove to be ineffective. Also, it 
is possible to prune both on solution methods (e.g., only 
: connect to satisfy a subgoal) and on resolution alter­
natives (e.g., schedule a token as early as possible and 
fail if you cannot) . Unfortunately, this meant that com­
pleteness could no longer be guaranteed. On the other 
hand it allowed for a finely tuned planner. Designing 
search control became a trade-off between scripting the 
planner's behavior and exploring the benefits of shallow 
backtracking when necessary. Here are some issues that 
needed to be addressed. 

INTERACTION BETWEEN MODEL AND HEURISTICS: Ide­
ally, it is desirable to keep domain model and search 
control methods completely separate. This is because 
constraints that describe the "physics" of the domain 
should only describe what is possible while search con­
trol should help in narrowing down what is desirable 
from what is possible. Moreover, declarative domain 
models are usually specified by domain experts (e.g., 
spacecraft systems engineers) not by problem solving 
experts (e.g., mission operators). Commingling struc­
tural domain information with problem solving meth­
ods can significantly complicate inspection and verifi­
cation of the different modules of a planning system. 

In our experience, however, such an ideal separation 
was difficult to achieve. Model specifications that were 
logically correct turned out to be very inefficient be­
cause they required the discovery of simple properties 
by extensive search (e.g., a token being the first of a se­
quence of tokens with the same procedure). The stan­
dard method used in RAX-PS was to define auxiliary 
token variables and use search control to enforce a spe­
cific value, which in turn would prune undesired alter­
natives through constraint propagation. Including the 
control information within the model caused a signif­
icant level of fragility in domain modeling, especially 
in the initial stages of the project when we still had a 
weak grasp on how to control the search. 

HIGH-LEVEL CONTROL LANGUAGES: The control rules 
described above can be thought of as an "assembly 
language" for search control; and the DS1 experience 
confirmed that programming in a low-level language is 
painful and error prone. However, this assembly lan­
guage provides us with a strong foundation on which 
to build higher level control languages which are well 
founded and better capture the control knowledge of 
mission operators. The declarative semantics of the do­
main model also opens up the possibility of automati­
cally understanding dependencies that point to effective 
search control. The synthesized strategies can then be 
compiled into the low-level control rules. Work is cur­
rently in progress to explore methods to alleviate the 
burden of control search programming. 

Conclusion 
In this paper, we have presented an overview of the Re­
mote Agent Experiment Planning/Scheduling system, 
both from theoretical and practical points of view. Re­
search and development of autonomous planning sys­
tems, capable of solving real problems, continues among 
the many scientists in the field. The work we have pre­
sented here is just another step in this development, 
but it is a step that has taken autonomous planning to 
interplanetary space. 

References 
Allen, J. 1984. Towards a general theory of action and 
time. Artificial Intelligence 23(2):123~154. 

Bernard, D.; Dorais, G.; Gamble, E.; Kanefsky, B.; 
Kurien, J.; Man, G. K; Millar, W.; Muscettola, N.; 
Nayak, P.; Raj an, K; Rouquette, N.; Smith, B.; Tay­
lor, W.; and Tung, Y.-W. 1999. Spacecraft autonomy 
flight experience: The DS1 Remote Agent experiment. 
In Proceedings of the AIAA Conference 1999. 
Dechter, R.; Meiri, 1.; and Pearl, J. 1991. Temporal 
constraint networks. Artificial Intelligence 49:61 ~95. 

Fikes, R., and Nilsson, N. 1971. STRIPS: A new ap­
proach to the application of theorem proving to prob­
lem solving. Artificial Intelligence 2:189~208. 

Ghallab, M., and Laruelle, H. 1994. Representation 
and control in IxTeT, a temporal planner. In Proceed­
ings of the Second International Conference on Artifi­
cial Intelligence Planning Systems. 

Jonsson, A. K; Morris, P. H.; Muscettola, N.; Ra­
jan, K; and Smith, B. 2000. Planning in interplan­
etary space: Theory and practice. In Proceedings of 
the Fifth International Conference on Artificial Intel­
ligence Planning and Scheduling. 

Mackworth, A. K, and Freuder, E. C. 1985. The com­
plexity of some polynomial network consistency algo­
rithms for constraint satisfaction problems. Artificial 
Intelligence 25:65~74. 
McAllester, D., and Rosenblit, D. 1991. Systematic 
nonlinear planning. In Proceedings of the Ninth Na­
tional Conference on Artificial Intelligence, 634~639. 

Muscettola, N.; Nayak, P. P.; Pell, B.; and William, B. 
1998. Remote Agent: To boldly go where no ai system 
has gone before. Artificial Intelligence 103(1-2):5~48. 

Muscettola, N. 1994. HSTS: Integrated planning and 
scheduling. In Zweben, M., and Fox, M., eds., Intelli­
gent Scheduling. Morgan Kaufman. 169~212. 
Smith, D. E.; Frank, J.; and Jonsson, A. K 2000. 
Bridging the gap between planning and scheduling. 
Knowledge Engineering Review 15(1). 
Tsamardinos, 1.; Muscettola, N.; and Morris, P. 1998. 
Fast transformation of temporal plans for efficient exe­
cution. In Proceedings of the 15th National Conference 
on Artificial Intelligence (AAAI-9S), 254~261. 

2nd NASA International Workshop on Planning and Scheduling for Space 133 


	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part148
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part149
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part150
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part151
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part152
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part153

