
Challenges and Methods in Testing the Remote Agent Planner

Ben Smith Martin S. Feather Nicola Muscettola
NASA Ames Research Center

MS 269-2
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

benjamin.smith@jpl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

martin.s.feather@jpl.nasa.gov

Moffet Field, CA 94035
mus@ptolemy.arc.nasa.gov

Abstract

The Remote Agent Experiment (RAX) on the Deep
Space 1 (DSl) mission was the first time that an arti
ficially intelligent agent controlled a NASA spacecraft.
One of the key components of the remote agent is an
on-board planner. Since there was no opportunity for
human intervention between plan generation and ex
ecution, extensive testing was required to ensure that
the planner would not endanger the spacecraft by pro
ducing an incorrect plan, or by not producing any plan.

The testing process raised many challenging issues, sev
eral of which remain open. The planner and domain
model are complex, with billions of possible inputs and
outputs. How does one obtain adequate coverage with
a reasonable number of test cases? How does one even
measure coverage for a planner? How does one deter
mine plan correctness?

As planning systems are fielded in mission-critical ap
plications, it becomes increasingly important to ad
dress these issues. We describe the major issues en
countered while testing the Remote Agent planner, how
we addressed them, and what issues remain open.

Introduction
As planning systems are fielded in operational environ
ments, especially mission-critical ones such as space
craft commanding, validation of those systems becomes
increasingly important. Verification and validation of
mission-critical systems is an area of much research and
practice, but little of that is applicable to planning sys
tems.

Our experience in validating the Remote Agent plan
ner for operations on board DS1 raised a number of key
issues, some of which we have addressed and many of
which remain open. The purpose of this paper is to
share those experiences and methods with the planning
community at large, and to highlight important areas
for future research.

At the highest level there are two ways that a plan
ner can fail. It can fail to generate a plan (converge)
within stated time bounds, or it can generate an incor
rect plan. We used empirical testing to detect these
kinds of failures. \Ve ran the planner on several in
puts and used an automated test oracle to determine

whether they satisfied the requirements as expressed
in first order predicate logic. A second (trivial) oracle
checked for convergence.

The key issue in empirical testing is obtaining ade
quate coverage (confidence) within the available testing
resources. This requires a combination of strong test se
lection methods that maximize the coverage for a given
number of cases, and strong automation methods that
reduce the per-test cost.

The RAX test selection strategy required 289 cases
to adequately exercise a narrow space of inputs simi
lar to those we expected to see in operation. This was
sufficient for the ItA experiment, but broader cover
age-----with correspondingly more test cases- would be
needed for operational profiles outside of the experi
ment scope. We developed a number of test automation
tools, but it still required six work-weeks to run and an
alyze 289 cases. This high per-test cost was largely due
to human bottlenecks. Better test selection strategies
and more powerful automation methods are needed to
permit broader coverage for a reasonable cost. This
paper identifies several open issues in these areas, and
suggests ways to address them.

The rest of this paper is organized as follows. \Ve
first describe the RAX planner and domain model. \Ve
then discuss the test case selection strategy and the
open test selection issues. \Ve th~n discuss the test au
tomations employed for RAX, the demands for human
involvement that limited their effectiveness, and sug
gest automations and process improvements that could
mitigate these factors. vVe conclude with an evaluation
of the overall effectiveness of the Remote Agent planner
testing, and summarize the most important open issues
for planner testing in general.

RAX Planner
The Remote Agent planner CMuscettola et al. 1997) is
one of four components of the Remote Agent (N ayak
et al. 1999). The other components are the Executive
(EXEC), Mission Manager (lVIlVI), and Mode Identifi
cation and Reconfiguration (MIR).

\Vhen the Remote Agent is given a "start" command
the EXEC puts the spacecraft in a special idle state, in
which it can remain indefinitely without harming the

136 2nd NASA International Workshop on Planning and Scheduling for Space

spacecraft, and requests a plan. The request consists of
the desired plan start time and the current state of the
spacecraft. The desired start time is the current time
plus the amount of time allocated for generating a plan
(as determined by a parameter, and typically between
one and four hours).

The "Mission Manager extracts goals from the mission
profile, which contains all the goals for the experiment
and spans several plan horizons. A special waypoint
goal marks the end of each horizon. The MM extracts
goals between the required start time and the next way
point goal in the profile. These are combined with the
initial state. The M1VI invokes the planner with this
combined initial state and the requested plan start time.

The planner expands the initial state into a conflict
free plan using a heuristic chronological backtracking
search. During the search the planner obtains addi
tional inputs from two on-board software modules, the
navigator (NAV) and the attitude control subsystem
(ACS). These are also referred to as "plan experts."
When the planner decides to decompose certain nav
igation goal into subgoals, it invokes a NAV function
that returns the sub goals as a function of the goal pa
rameters. The planner queries ACS for the duration
and legality of turn activities as a function of the turn
start time and end-points.

The fundamental plan unit is a token. These can rep
resent goals, activities, spacecraft states, and resources.
Each token has a start and end timepoint "and zero or
more arguments. The tokens exist on parallel timelines,
which describe the temporal evolution of some state or
resource, or the activities and goals related to a partic
ular state. Some RAX timelines are attitude, camera
mode, and power. The domain model defines the token
types and the temporal and parameter constraints that
must hold among them.

If the planner generates a plan the EXEC executes
it. Under nominal conditions the plan is executed suc
cessfully and the EXEC requests a new plan. This
plan starts at the end of the current plan, which is
also the start of the next waypoint in the profile. If
a fault occurs during execution, and the EXEC cannot
recover from it, it terminates the plan and achieves an
idle state. This removes the immediate threat of the
fault. Depending on the failure, it may only be able to
achieve a degraded idle state (e.g., the camera switch is
stuck in the off position). It then requests a new plan
that achieves the remaining goals from the achieved idle
state. As with other requests, the required start time
is the current time plus the time allowed for planning.

Domain Model. The domain model encodes the
knowledge for commanding a subset of the DS1mission
known as "active cruise" that consists of firing the ion
propulsion (IPS) engine continuously for long periods,
punctuated every few days by optical navigation (op
nav) images and communication activities.

The goals defined by the domain model are shown
in Table 1. The initial state consists of an initial to
ken for each of the time lines in the model. The legal

Goal Type
waypoint
navigate

Comm
poweLestimate
exec-activity
sep...segment
max_thrust
image_goal

Arguments
HZN ,EXPT -.START ,EXPT _END

frequency (int), duration (int).
slack (int)
none
amount (0-2500)
type, file, int, int, bool
vector (int), level (0-15)
duration (O-inf)
target (int), exposures (0-20),
expo duration (0-15)

Table 1: Goals

start tokens for most timelines are fixed. Table 2 shows
the non-fixed timelines and the set of legal start to
kens for each one. Finally, the domain model defines 11
executable activities for commanding the IPS engine
and MICAS camera, slewing (turning) the spacecraft,
and injecting simulated faults. The latter allow RAX
to demonstrate fault recovery capabilities, since actual
faults were unlikely to occur during the experiment.

Test Selection Strategy
The key test selection issue is achieving adequate cover
age with a manageable number of cases. One selection
strategy is to analyze the domain model to identify in
put values that would fully exercise the model according
to some coverage metric. Although the validation and
verification literature is full of coverage metrics for con
ventional systems, to our knowledge no such metrics
exist for planner domain models.

Having neither a metric nor the time to devise one,
we instead used a black-box selection approach that has
been successful in several conventional systems. The
idea is to characterize the inputs as an n-dimensional
parameter space and use orthogonal arrays to select a
manageable number of cases that exercises all pair-wise
combinations of parameter values. These tests can be
augmented as needed with selected higher-order com
binations. Large input spaces can be tested tractably
since the number of pair-wise cases grows only logarith
mically in the number of parameters~proportional to
(v/2) log2 k for k~ parameters with v values each (Cohen
et al. 1997).

One disadvantage of this all-pairs selection strategy
is that each test case differs from the others and from
the nominal baseline input in several parameter values.
That often made it difficult to determine why a test case

state timeline initial values
EXEC-ACTIVITY 0,1,2
ATTITUDE Earth, image, thrust vector
I"IICAS_SWITCH ready, off
MICAS_HEALTHY true, false

Table 2: Variable Initial State Timelines

2nd NASA International Workshop on Planning and Scheduling for Space 137

failed, especially when the planner failed to converge.
To address this problem we created a second test set

in which each case differed in only one parameter value
from the nominal baseline, which was known to pro
duce a valid plan. This "all-values" test set exercised
each parameter value at least once. If one of these cases
failed, it was obviously due to the single changed pa
rameter, and its similarity to the baseline case made
it easier to identify the causal defect. The reduction
in analysis cost comes at the expense of additional test
cases. The all-values test set grows linearly in the num
ber of parameter values: 1 + n(v - 1) for n parameters
with v values each.

RAX Test Selection
Vve now discuss how the all-pairs and all-values test
selection strategies were employed for RAX. The plan
ner has the following inputs: a set of goals, which are
specified in a mission profile and by the on-board navi
gator; an initial state; a plan start time; slew durations
as provided by the ACS plan expert; and two plan
ner parameters-a seed for the pseudo-random number
generator that selects among non-deterministic choices
in the search, and "exec latency" which controls the
minimum duration of executable activities.

Each of these inputs is specified as a vector of one or
more parameter values. The goals and initial states are
specified by several parameters, and the other inputs
are specified by a single parameter each. Several of the
parameters, such as plan start time, have infinite or
very large domains. It is clearly infeasible to test all
of these values, so we selected a small subset that we
expected to lie at key boundary points. This selection
was ad hoc based on the intuition of a test engineer
familiar with the domain model, or simply high, middle,
and low values in the absence of any strong intuition.
Table 3 shows the full list of parameters, the range of
values each can take, and the values tested.

Parameters 6-11 specify the initial state, Parameters
14-18 specify the IPS thrusting and MICAS imaging
goals requested by the onboard Navigator, and Param
eter 20 specifies the duration of spacecraft slew (turns)
activities in the plan as computed by the attitude con
trol planning expert (APE). This Paramet.ers 12, 13,
and 19 specify t.he mission profile input. These gener
at.e mut.ations of t.he t.wo baseline mission profiles that
we expected to use in operations: a 12 hour confidence
building profile t.hat cont.ained a single optical naviga
tion goal and no IPS thrusting goals, and a six day
primary profile that contained aU of the goal types in
Table 1. The mutations were designed to cover possi
ble changes to the least stable elements of the profiles.
Since the profiles are finalized prior to operations, and
we had control over their contents, focusing on muta
tions of these profiles seemed a reasonable strategy. As
it turned out, the profile had to be changed radically
at the last minute for operational reasons. Vve reduced
the horizon from six days to two, deleted five goals and
changed the parameters and absolute (but not relative)

I id Parameter Values Tested Range I
1 experiment start 3 integer
2 plan start 10 integer
3 profile 12h, 6day, 2day same
4 random seed 3 seeds integer
5 exec latency 1,4, 10 0-10
6 micas switch off, ready same
7 micas healthy true, false same
8 micas healthy true, false, n/ a same

(prior plan)
9 attitude SEP, Image, SaIne

Earth
10 end last thrust -2d, -ld, -6h integer
11 end last window -2d, -ld, 0 integer
12 window duration 1,2,3,4,6 hours integer
13 window start 0,1,2,4 integer
14 targets / window 2,20 0-20
15 images/target 3, 4, 5 3-5
16 image duration 1,8, 16 1-16
17 SEP goals 6 configurations infinite
18 SEP thrust level 6, 12, 14 15
19 SPE 1500,2400,2500 2500
20 slew duration 30, 120, 300, 30-

400, 600, 1200 1200

Table 3: Tested Parameters

placement of others. The goal types and overall profile
structure remained the same. Fortunately, no new bugs
were exposed by the new profiles since there would have
been little time to fix them. Testing a broader range
of profiles would have mitigated that risk. Broader test
strategies are discussed in the next section.

RAX operational requirements imposed three con
straints among the parameter values as shown in Ta
ble 4. The test generator considered these constraints
to avoid generating impossible cases. Constraint set. one
enforces the operational requirement that plans gener
ated from the 12 hour profile will never have SEP goals,
will start at. the horizon start, and will have one of
the four RAX idle states as the initial stat.e. The sec
ond and third constraints enforce the following require
ment. The plan start time is always one of the horizon
boundaries (horizon waypoint. goals) except when the
exec requests a replan after a plan failure. In that case
the exec first. achieves one of the four RAX idle states,
which becomes the initial state for the replan. So if
the plan start is not. a horizon boundary, constraint set.
two rest.ricts t.he initial state paramet.ers to the four idle
states. \Vhen the plan start is at the horizon boundary
for t.he six-day plan, all initial states are possible. This
sit.uation is reflected by the third constraint set..

The all-pairs and all-values t.est cases were generated
automat.ically from t.he parameters and constraints de
scribed above. The constraints were satisfied by gener
ating one t.est. set. for each constraint set.. The sizes of
t.he resulting test sets are shown in Table 5. An addi
tional 22 cases exercised t.he planner interfaces.

138 2nd NASA International Workshop on Planning and Scheduling for Space

Constraint Sets (req'd values)
id Parameter 1 2 3
2 plan start 0 =f. 3 days 3 days
3 profile 12-hr 6-day 6-day
8 micas healthy none none *

(prior plan)
9 attitude Earth Earth *
10 end prior thrust 0 0 *
11 end prior window 0 0 *
17 SEP goals null goal * *
18 SEP thrust level 0 * *

Table 4: Constraint Sets

Table 5: Test Set Sizes

Test Selection Challenges

The selected tests were ultimately successful in that
the on-board planner exhibited no faults during the ex
periment, and the tests provided the DS1 flight man
agers with enough confidence to approve RAX for ex
ecution on DSl. However we still have no objective
measure of the delivered reliability. Objective metrics
are needed to evaluate new and existing test strategies.
It seems likely that there were a number of coverage
gaps, though again we have no way to measure that
objectively. This section makes some informed guesses
as to where those gaps might be and suggests some ways
of addressing them.

Value selection was ad hoc. Many parameters
had large or infinite domains, and so only a few of those
could be tested. That selection was ad hoc, based pri
marily on the tester's intuition. This undoubtedly left
coverage gaps. One way to close the gap is to select
values more intelligently based on a coverage metric.
The metric would partition the values into equivalence
classes that would exercise the domain model in qual
itatively different ways. This would ensure adequate
coverage while minimizing the number of values per pa
rameter, and therefore minimizing the number of test
cases.

Broader goal coverage needed. RAX planner
testing focused on mutations of the baseline profile.
Bugs exercised only by other goal sets would not have
been detected. For example, transitioning from the
6 day scenario to the 2 day scenario compressed the
schedule and eliminated the slack time between activ
ities. This led to increased backtracking which caused
new convergence failures. Exercising the full goal space
would eliminate this coverage gap. It is also necessary
for future missions, which must. be confident that any
goal set (profile) they provide will produce a valid plan.
The challenge is how to provide this coverage with a
manageable number of test cases.

One possibility is to create parameters that could
specify any mission profile and perform all-pairs testing
on this space. This would require at least one parame
ter for the start time, end time, and arguments for up
to k instances of each goal t.ype. For k = 3 the RAX
model would require 140 parameters. These would re
place parameters 12-19 of Table 3. Testing 3 values for
each parameter would require 175 cases, and 5 values
would require 337. All-values testing would require 884
and 1700 cases respectively.

This indicates that all-pairs testing of the full goal
space is feasible, and that all-values testing might be
feasible with sufficient test resources. Mission profiles
would need to be generated automatically from the pa
rameter values since manual generation is infeasible.
One issue is that parameter vectors specify unachiev
able or impossible goal sets that would never occur in
practice. These cases have to be automatically identi
fied and eliminated to avoid the high analysis cost of
discriminating test cases that failed due to impossible
goals from those that failed due to a defect. Determin
ing whether an arbitrary goal set is illegal is at least as
difficult as planning, but it should be possible to detect
many classes of illegal goals with simpler algorithms
(e.g., eliminate goals that are mutually exclusive with
anyone or two domain constraints).

Although all-pairs testing of this parameter space is
feasible, it is subject to the same effectiveness issues as
the narrower all-pairs testing. That is, there could be
coverage gaps from ad hoc value selection, and from not
testing higher-order parameter combinations. Coverage
metrics would help answer that question.

Formal Coverage Metrics Needed. Formal cov
erage metrics are sorely needed for planner validation.
IVletrics based on analyses of the domain model can in
dicate which parameter values and goal combinations
are likely to exercise the domain model in qualitatively
different ways. Formal metrics can identify coverage
gaps and inform cost-risk assessments (number of cases
vs. coverage).

Formal coverage metrics, such as code coverage, have
been developed for critical systems but to our Imowl
edge no metrics have been developed for measuring
coverage of a planner domain model. The most. rele
vant metrics are those for verifying expert system rule
bases. The idea is to backward chain through the rule
base to identify inputs that would result in qualitatively
different diagnoses (e.g., (O'Keefe & O'Leary 1993)).
Planners have more complex search engines with cor
respondingly complex mappings, and a much richer in
put/output space. It is not immediately obvious how
to invert that mapping in a way that produces a rea
sonable number of cases.

One possible metric would be to measure the num
ber and strength of goal interactions exercised by the
test cases. The idea is to analyze the domain model
to determine how the goals interact, and only test goal
combinations that yield qualitatively different conflicts.
For example, if goals A and B used power, we would

2nd NASA International Workshop on Planning and Scheduling for Space 139

I Task I Effort I
Update/debug cases, tools 3.0
Run cases and analyzers 0.1
Review analyzer output 1.5
File bug reports 0.5
Close bugs 0.5
Total 5.6

Table 6: Test Effort in Work Weeks by Task

test cases where power is oversubscribed by several A
goals, by several B goals, and by a combination of both
goals. The coverage could be adjusted to balance risk
against number of cases. One could limit the coverage
to interactions above a given strength threshold.

This metric would extend on prior work on detect
ing goal interactions in planners to improve up the
planning search, such as STATIC (Etzioni 1993) and
Alpine (Knoblock 1994). These methods are designed
for STRIPS-like planning systems and would have to
be extended to deal with metric time and aggregate re
sources, both of which are crucial for spacecraft applica
tions. One of the authors (Smith) is currently pursuing
research in this area.

Test Automation
Automation played a key role in testing the Remote
Agent planner. It was used for generating tests, run
ning tests, and checking test results for convergence and
plan correctness. Even so, the demand for human in
volvement was high enough to limit the number of test
cases to just under three hundred per six week test pe
riod, or an average of ten cases per work-day.

The biggest demand for human involvement was
updating the test cases and infrastructure following
changes to the planner inputs, such as the domain
model and mission profile. The next largest effort was
in analyzing the test results. The test effort by task is
shown in Table 6. This section discusses the automa
tions that we found effective, the human bottlenecks,
and opportunities for further automation.

Test Automation Tools
'Ve employed two test automation tools: a test harness,
a plan correctness oracle, and a trivial plan convergence
oracle (the case succeeds if and only if the planner cre
ates a plan within the time limit). The test harness
converted the parameters in each test case into planner
inputs, ran the planner on them, and saved the out
put. The full test suite could be run automatically in
about 16 hours. The plan correctness oracle (Feather &
Smith. 1999) reads a plan into an assertions database
and then verifies that the assertions satisfy require
ments expressed in first order predicate logic (FOPL).
This tool was critical since inspecting plans manually
for correctness would have been prohibitively time con
suming and error prone.

Analysis Costs

The two analysis tasks are determining whether a test
case has failed, and why. The first task was performed
by the automated test oracles. Once the oracles have
identified the failed test cases, the next analysis task
is to determine why they failed. For each failed test
case, the analyst determines the apparent cause of the
failure. Cases with similar causes are filed as a single
bug report.

Analyzing the test cases took eight to ten work-days
for a typical test cycle and were largely unautomated.
To determine why a plan failed to converge the analyst
looked for excessive backtracking in the search trace or
compared it to traces from similar cases that converged.
Plan correctness failures also required review, although
it was somewhat simpler (2-3 days vs. 8-10) since the
incorrect plan provided context and the oracle identified
the offending plan elements.

Automated diagnosis could reduce these effort of de
termining why the planner failed to generate a plan.
There has been some work in this area that could be
applied or extended. Howe (Howe & Cohen 1995) per
formed statistical analyses of the planner trace to iden
tify applications of repair operators to states that were
strongly correlated with failures. Chien (Chien 1998)
allowed the planner to generate a plan, when it was oth
erwise unable to, by ignoring problematic constraints.
Analysts were able to diagnose the underlying problem
more quickly in the context of the resulting plan.

Analysis costs could also be reduced by only running
and analyzing tests that exercise those parts of the do
main model that have changed since the last release.
One would need to know which parts of the domain
model each test was intended to exercise. This infor
mation is not currently provided by the all-pairs strat
egy, but could be provided by a coverage metric: a test
is intended to exercise whatever parts of the model it
covers. A differencing algorithm could then determine
what parts ofthe model had changed, where the "parts"
are defined by the coverage metric.

Impact of Model and Interface Changes
About half of the test effort in each cycle were the re
sult of changes to the planner inputs and interfaces.
The test harness and test cases then had to be updated
to support the new inputs. Making these changes only
required a day or two. The bulk of the effort was caused
by undocumented interface changes which managed to
creep into most of the software releases. Planner in
puts that were correct before the change could be ~n
correct after it, resulting in cases that fail when tl~ey
should have succeeded or vice versa. Some of these er
rors were obvious, and detected by dry runs with a few
test cases. Others were more subtle and not detected
until the analysis phase, at. which point the cases had
to be re-run and re-analyzed after fixing the harness.

Appropriate software engineering practices can help
minimize interface changes. Automation can also help

140 2nd NASA International Workshop on Planning and Scheduling for Space

reduce the impact of changes when they do occur. We
present a few possibilities below. The first two were
used successfully for RAX.

Private Parameters. To minimize the impact from
token parameter changes, we created the notion of a
private parameter in the domain specification language.
These were used when parameters were added to propa
gate values needed by new domain constraints or heuris
tics, the most common reason for adding new parame
ters to the model. Private parameters do not appear in
the initial state or profile. Their values are set automat
ically by propagation from other parameters. This re
duced the number of impactful parameter changes from
30 to 10.

Special Test Interfaces. To reduce the impact of
changes to the initial state tokens and the format. of the
initial state file, both of which changed frequently, we
negotiated an alternative testing interface to the initial
state generating function in the EXEC code. The test
harness constructed an initial state by sending appro
priate inputs to those functions, which then created
the initial state in the correct format. with the correct
t.okens. The idea of negotiating stable testing inter
faces applies t.o testing complex systems in general, and
should ideally be considered during the design phase.

Automated Input Legality Checks. The effort. of
identifying unintended mission profile and initial state
inputs could have been greatly reduced by automat
ically checking their legality. One could imagine au
tomating these checks by using an abstraction of the
domain model to determine whether a set of goals are
achievable from the specified initial stat.e.

Conclusions
The main requirements for the Remote Agent planner
were to generate a plan within the time limit, and that
the plan be correct. These requirements were verified
by running the planner on several input cases and auto
matically checking the results for convergence and plaIi
correctness. Correctness was measured against a set of
requirements reviewed by system and subsystem engi
neers. The cases were selected according to an "all
pairs" selection strategy that exercised all pairs of in
put parameter values. The selected values were at key
boundary points and extrema. They were selected in
formally, based on the tester's knowledge of the domain
model.

The tests focused on mutations of the two baseline
mission profiles (goal sets) we expected t.o use in op
erations. This was sufficient. for the experiment, but
may not. scale to broader operational contexts. Formal
planner coverage metrics are sorely needed to make the
best use of available cases and objectively balance risk
(coverage) against cost.

The number of manageable cases could be increased
by reducing the demand for human involvement. Anal
ysis costs were high because of the need t.o provide ini
tial diagnoses for cases where the planner failed to gen
erate a plan, and the need to review the plan checker's

output. Changes to the planner int.erfaces, including
changes to the model, also created an overhead for up
dating and debugging the test harness. We suggested a
number of ways to mitigate these factors.

The Remote Agent was a real-world, mission-critical
planning application. Our experience in validating the
Remote Agent planner raised a number of key issues.
We addressed several of these, but many issues remain
open. As planning systems are increasingly fielded in
critical applications the importance of resolving these
issues grows as well. Hopefully the Remote Agent ex
perience will spark new research in this important area.

Acknowledgments
This paper describes work performed at the Jet Propul
sion Laboratory, California Institute of Technology, un
der contract from the National Aeronautics and Space
Administration, and by the NASA Ames Research Cen
ter. This work would not have been possible without
the efforts of the rest of the Remote Agent Experiment
team and the other two members of the test team, Todd
Turco and Anita Govindjee.

References
Chien, S. 1998. Static and completion analysis for
knowledge acquisition, validation and maintenance of plan
ning knowledge bases. International Journal of Numan
Computer Studies 48:499-519.

Cohen, D.; Dalal, S.; Fredman, M.; and Patton, G. 1997.
The AETG system: An approach to testing based on com
binatorial design. IEEE Transactions on Software Engi
neering 23(7):437-444.

Etzioni, O. 1993. Acquiring search control knowledge via
static analysis. Artificial Intell'igence 62:255-302.

Feather, M., and Smith., B. 1999. Automatic genera
tion of test oracles: From pilot studies to applications. In
Proceedings of the Fourteenth International Conference on
Automated Software Engineering (ASE-99), 63-72. Cocoa
Beach, FL: IEEE Computer Society. Best Paper.

Howe, A. E., and Cohen, P. R. 1995. Understanding plan
ner behavior. Al'tificial Intelligence 76(2):125-166.

Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2).

Muscettola, N.; Smith, B.; Chien, C.; Fry, C.; Rajan, K.;
Mohan, S.; Rabideau, G.; and Yan, D. 1997. On-board
planning for the new millennium deep space one spacecraft.
In Proceedings of the 1997 IEEE Aerospace Conference,
volume 1, 303-318.
Nayak, P.; Bernard, D.; Dorais, G.; Gamble, E.; Kanef
sky, B.; Kurien, J.; Millar, 'V.; Muscettola, N.; Rajan, K;
Rouquette, N.; Smith, B.; Taylor, VV.; and Tung, Y. 1999.
Validating the ds1 remote agent. In International Sympo
simn on ATiificial Intelligence Robotics and Automation in
Space (ISAIRAS-99).

O'Keefe, R., and O'Leary, D. 1993. Expert system veri
fication and validation: a survey and tutorial. AI Review
7:3-42.

2nd NASA International Workshop on Planning and Scheduling for Space 141

	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part156
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part157
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part158
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part159
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part160
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part161

