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Abstract

Preference models determine which one of several plans
to prefer. It is important that planners use the same
preference models as rational human decision makers
because planners should make the same decisions as
their human users (as long as they are rational), other-
wise the planners are not of much use. While artificial
intelligence planning has made lots of progress in the
areas of representations of planning tasks and planning
methods, it has not yet paid sufficient attention to the
preference models of human decision makers. Utility
theory is a formal framework for modeling the prefer-
ences of human decision makers and making rational
decisions in high-stake decision situations. This paper
reports on first steps in the direction of building plan-
ners that fit the risk attitudes of human decision malk-
ers in high-stake planning domains better than current
planners, by combining descriptive methods from util-
ity theory with constructive methods from artificial in-
telligence planning and operations research, thus com-
bining the strengths of the two decision-making disci-
plines and extending the applicability of planners from
artificial intelligence.

Introduction

Artificial  intelligence  planning has  developed
knowledge-based planners. These planners can have
advantages over methods from other decision-making
disciplines because they exploit more of the structure
of large-scale planning tasks. Planning methods from
artificial intelligence, for example, represent search
spaces implicitly (for example, with STRIPS rules)
and exploit the resulting decomposability. Artificial
intelligence planning has made lots of progress over
the past couple of year in the areas of representa-
tions of planning tasks as well as planning methods.
However, artificial intelligence planning has not yet
paid sufficient attention to the planning objectives,
which are still primitive. In deterministic domains,
planners from artificial intelligence have traditionally
been used with the objective to find any plan that
achieves the goal. To make their preference model
richer, planners then began to associate execution costs
with plans and preferred plans that achieve the goal
with minimal plan-execution cost, that is, minimal

consumption of one limited resource such as time,
energy, or money. In probabilistic domains, planners
from artificial intelligence usually either minimize the
average plan-execution cost or, if the goal cannot
be achieved for sure, maximize the probability of
goal achievement. However, these preference models
are often too simplistic to model the preferences of
human decision makers adequately. How to plan with
more realistic preference models, however, is a topic
that has been neglected in the literature on artificial
intelligence planning. It is an important topic because
the recommendations of planners should reflect the
opinions of their users correctly (as long as they are
rational — we are not interested in irrational decision
making). After all, the planners make suggestions for
how to act and should make the same suggestions that
the users would have made themselves. Otherwise the
planners would not be very helpful.

Our research program therefore investigates how to
build efficient planners that fit the preference models
of rational human decision makers better than current
planners, by combining descriptive methods from utility
theory with constructive methods from artificial intelli-
gence planning and operations research, thus combining
the strengths of the two decision-making disciplines and
extending the applicability of planners from artificial in-
telligence. We are interested, for example, in planning
with deadlines and other resource limits as well as plan-
ning with multiple attributes, such as energy, cost, time,
probability of goal achievement, prestige, and so on. In
this paper, we report on a very first step in the direc-
tion of building planners with more realistic preference
models. We study how to plan in high-stake decision
situations with one resource, taking the risk-attitude of
decision makers into account. High-stake decision sit-
uations.occur in domains in which huge wins or losses
of money, equipment, or even human life are possible.
Many NASA domains are high-stake domains, including
planning for autonomous space craft (Pell et al. 1997),
and many human decision makers prefer to avoid the
huge losses that are possible in these domains. We are
also interested in how the risk attitude changes the opti-
mal plan, for example, its influence on how long to plan
before starting to act and how frequently to sense. Util-
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ity theory is a formal framework for modeling the pref-
erences of human decision malkers and making rational
decisions in high-stake decision situations. It suggests
that decision makers maximize their average utility in
these domains, where the utility is a strictly monoton-
ically decreasing but often nonlinear function of the
plan-execution cost. However, it specifies only what
optimal plans are but not how they can be obtained
efficiently. The difficulty we need to overcome is how to
combine ideas from utility theory, artificial intelligence,
and operations research, which is nontrivial but allows
us to exploit the structure of planning tasks to make
planning with nonlinear utility functions efficient. In
the past decades, artificial intelligence researchers have
acquired a large body of knowledge about how to plan
efficiently -with the current preference models, by uti-
lizing the structure of planning tasks. We will demon-
strate that, in some cases, these insights can be used
to plan efficiently with nonlinear utility functions. This
promises to make planning with some nonlinear utility
functions as fast as planmning with standard planners
from artificial intelligence or operations research and
enables one to participate in performance improvements
achieved by other researchers in the currently very ac-
tive field of probabilistic planning, while extending the
applicability of existing planners from artificial intelli-
gence or operations research. It also promises to allow
for an easy integration of risk attitudes into existing
decision-support systems, automated planuing systems,
and agent architectures,

High-Stake Decision Situations

High-stake decision situations occur in domains in
which huge wins or losses are possible. In high-stake de-
cision situations, rational human decision makers usu-
ally do not minimize the average plan-execution cost or
maximize the average reward because they take risk as-
pects into account. This is why many human decision
malkers buy insurance even though the insurance pre-
mium is usually much larger than the average loss from
the insurance cause. Another example is the following
simple decision situation with two alternatives, one of
which has the larger average pay-off and the other one
of which has the smaller variance. Consider the decision
situation shown in Figure 1, where you can participate
in one and only one of the following two lotteries at no
charge. When human decision makers have to decide
whether they would like to get 4,500,000 dollars for sure
or get 10,000,000 dollars with fifty percent probability
(and nothing otherwise), many human decision malkers
prefer the safe alternative although its average pay-off
is clearly lower — they are risk-averse. (Similarly, there
are decision makers that are risk-seeking.) It is impor-
tant to realize that this is perfectly rational behavior.
Risk-averse human decision makers are willing to accept
a smaller mean of the pay-off for a decrease in variance
because they fear for the worst case. They are trying to
avoid catastrophes, and a small variance avoids pay-offs
that are much smaller than average. If a planner chose

the lottery with the larger average pay-off, then many
human decision makers would be extremely unhappy
half of the time. It is therefore important that planners
reflect the opinions of rational human decision malkers
correctly. After all, planners malke suggestions for how
to act and should make the same suggestions that the
human decision makers would have made themselves.
(This is the reason why investment advisors ask for your
risk attitude before making investment recommenda-
tions.) However, artificial intelligence planning has not
studied how to determine plans that correctly reflect
the risk attitudes of rational human decision makers in
high-stake decision situations.

Preference Models

Bernoulli and Von Neumann/Morgerstern’s utility the-
ory (von Neumann & Morgenstern 1947; Bernoulli
1738) has investigated how rational human decision
makers make decisions in high-stake decision situations.
Utility theory can explain why they often do not mini-
mize the average plan-execution cost. It suggests that it
is rational to choose plans with maximal average util-
ity, where the utility w(c) is a strictly monotonically
decreasing function of the plan-execution cost c¢. Hu-
man decision makers sometimes deviate from utility
theory because, different from other theories, such as
Kahneman and Tversky’s prospect theory (IKahneman
& Tversky 1979), utility theory does not model human
inadequacies in decision making and thus is not able
to explain all empirical findings about human decision
making. This is not a problem for planners since plan-
ners are supposed to follow a theory of rational (nor-
mative) rather than empirical decision making. Max-
imizing average utility and minimizing average plan-
execution cost result in the same decisions if either the
domains are deterministic or the utility functions are
linear. These assumptions, however, are often not sat-
isfied. For example, nonlinear utility functions are nec-
essary to account for the risk-averse attitudes of many
rational human decision malkers for the lottery exam-
ple above. The lottery example can be explained as
follows: Assume that a human decision maker is risk-
averse and has the concave exponential utility function
shown in Figure 2 and no other assets. This human
decision maker associates utility (here: pleasure) 0.00
with a wealth of 0 dollars, utility 0.74 with a wealth
of 4,500,000 dollars, and utility 0.95 with a wealth of
10,000,000 dollars. Then, the (average) utility of get-
ting 4,500,000 dollars for sure is 0.74, whereas the aver-
age utility of getting 10,000,000 dollars with fifty per-
cent probability is only 0.475. In this case, the safe ,
alternative maximizes the average utility for this hu-
man decision maker, which explains why this human
decision maker chooses the safe alternative over the one
with the larger average pay-off. Other human decision
makers can have other utility functions and thus arrive
at different conclusions.
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Choices Probability Pay-Off Average Pay-Off | Utility | Average Utility

Choice 1 50 percent | 10,000,000 dollars | 5,000,000 dollars 0.95 0.475
50 percent 0 dollars 0.00

Choice 2 || 100 percent 4,500,000 dollars | 4,500,000 dollars 0.74 0.740

Figure 1: Decision Situation
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Figure 2: Risk-Averse Utility Function

Exponential Utility Functions

Utility theory specifies only what optimal plans are
but not how they can be obtained efficiently, that is,
other than by enmumerating every trajectory of every
possible plan. Operations research and control the-
ory use dynamic programming methods to find plans
with maximal average utility (Marcus et al. 1997
Whittle 1990) but these methods often do not exploit
the structure of planning tasks completely. Artificial
intelligence planning has developed knowledge-hased
planners that plan efficiently in large domains but usu-
ally either minimize the average plan-execution cost or,
if the goal cannot be achieved for sure, maximize the
probability of goal achievement. It might seem that
one could simply replace the resource consumptions
with their utilities and then continue to use planners
from artificial intelligence. This is certainly true for
one-stage decision situations, such as the lottery ex-
ample. However, different from the lottery example,
real-world planning tasks are usually much more com-
plex and consequently involve much more complex de-
cisions. For these multi-stage decision situations, it is
impossible to simply replace the resource consumptions
with their utilities and then continue to use planners
from artificial intelligence. Assume, for example, that
one incurs cost ¢; at the first time step and cost ¢
at the second time step, which is also the last one,
Then, one obtains u(cq) + u(cz) if one replaces the
costs with their utilities whereas the correct utility is
u{cy + ea2). Instead, our multiplicative planning-task
transformation (Koenig 1998) makes use of existing
planners from artificial intelligence or operations re-
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search by transforming planning tasks with exponential
utility functions to planning tasks that planners from
artificial intelligence or operations research can solve.
The transformed planning tasks can be solved by find-
ing plans with maximal probability of goal achievement
or minimal average plan-execution cost. The multi-
plicative planning-task transformation is such that op-
timal plans for the transformed planning task are also
optimal for the original one, and good (“satisficing”)
plans for the transformed planning task are also satis-
ficing for the original one. The multiplicative planning-
task transformation works for convex and concave ex-
ponential utility functions, Convex exponential util-
ity functions are of the form u(c) = y~¢ for param-
eter v > 1, and concave exponential utility functions
are of the form u(e) = —y~¢ for parameter v with
0 < v < 1. These utility functions are expressive
because the parameter 4 can be used to trade-off be-
tween minimizing the best-case, average, and worst-
case plan-execution cost (Watson & Buede 1987). As
~ approaches infinity, the human decision makers be-
come more risk-seeking and thus more interested in
plans with small best-case plan-execution cost (under
appropriate assumptions) (Koenig & Simmons 1994;
Koenig 1998). As v approaches one, the human de-
cision makers become more interested in plans with
small average plan-execution cost. Finally, as v ap-
proaches zero, the human decision makers become more
risk-averse and thus more interested in plans with small
worst-case plan-execution cost. Thus, exponential util-
ity functions can express a continuum of risk attitudes,
that includes the utility functions of the lottery example
above.

Crisis Management

Our current application area is managing environmen-
tal crisis situations such as oil spills (Desimone &
Agosta 1994). The goal of planning in the oil-spill do-
main is to determine how to manage resources such as
human teams, vessels, and equipment to contain and
clean up oil spills, taking into account all costs incurred
until they are cleaned up completely (expressed in dol-
lars). Crisis management domains have several ad-
vantages: Efficient planning methods for them directly
benefit the public. They are important high-stake plan-
ning domain for which many human decision makers
are very risk averse since they prefer to avoid the huge
losses that are possible in these domains. Thus, plan-
ners that minimize the average cost do not use the same
preference model as many human decision makers and
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arrive at different courses of action.

Sensor Planning

An interesting observation in crisis management sit-
uations is that human decision makers gather large
amounts of information even if it is costly and thus
might not be part of a plan that minimizes the aver-
age plan-execution cost. In the oil-spill domain, sens-
ing operations include, for example, sending out heli-
copters to gather information about how oil spills drift.
The knowledge that an oil spill drifts towards a nature
preserve can be used to concentrate resources in the
surrounding sea sectors to prevent the oil from reach-
ing sensitive shores. Thus, sensing provides informa-
tion that can reduce the plan-execution cost but comes
at a cost itself. Sensor planning for risk-averse or risk-
seeking human decision makers involves the same trade-
off as the lottery example above (Koenig & Liu-1999).
For example, adding more sensing operations than is
necessary to minimize the average plan-execution cost

increases the mean of the plan-execution cost (because

sensing is expensive) but also reduces its variance (be-
cause the information obtained can be used to avoid
catastrophes). Consequently, we speculate that risk-
averse human decision makers add more sensing oper-
ations than is necessary to minimize the average plan-
execution cost,.

Case Study

In the following, we provide a case study of how the
risk attitude influences the sensing frequency to test
our hypothesis that risk-averse human decision makers
add more sensing operations than is necessary to mini-
mize the average plan-execution cost. At the same time
we demonstrate that our multiplicative planning-task
transformation can be combined with existing planners
that minimize the average plan-execution cost to yield
planners that maximize average utility for exponential
utility functions. We apply the multiplicative planning-
task transformation to the sensor planner by Hansen
(Hansen 1997) that combines methods from operations
research (namely, policy iteration (Howard 1964)) and
artificial intelligence (namely, the A* search method
(Nilsson 1971)) to find plans with minimal average plan-
execution cost. In (Koenig & Liu 1999), we present
the resulting sensor planner and a proof of its correct-
ness. Here, we present the results of a case study where
we apply the resulting sensor planner to simple artifi-
cial robot-navigation tasks with actuator uncertainty.
Notice that these robot-navigation tasks are not high-
stake planning domains and we do not suggest to apply
our planning methods to planetary rover navigation in
the way we do it here. We use robot-navigation tasks
merely as a test bed because they are much simpler to
solve than the oil-spill domain (and we can thus run
a much larger number of experiments in a reasonable
amount of time), they allow us to visualize the planning
results much more easily, and they have been studied

before in the context of sensor planuning (Hansen 1997)
and can therefore be considered good test problems
for new sensor planners. We consider robot-navigation
tasks with the following properties. The robot has to
navigate from a given start location to a given goal lo-
cation in a known environment. Since motion is noisy,
the robot can deviate from the nominal path but it can
always opt to sense its current location. Sensing pro-
vides certainty about its current location but is costly
(for example, consumes energy). We assume that there
is a finite set of locations L. The robot knows that
it starts at location lgq,¢ € L and its task is to navi-
gate to location [y € L and be sure that it stops at
exactly that location. There is a finite set M of move-
ment actions, all of which can be executed at all loca-
tions. Motion uncertainty is modeled with conditional
probability distributions. Executing movement action
m € M results with cost ¢(/,m) > 0 and probability
p(U’|l,m) in location . The robot receives no feedback
as to what its new location is (which malkes the simpli-
fying assumption that the cost of the executed actions
cannot be observed directly) but there is one sensing
action o that can be executed at all locations. Execut-
ing it incurs cost ¢(l,0) > 0 and reports the current
location of the robot with certainty. We assume that it
is possible to reach every location from every other lo-
cation. Figure 3 (left) shows the gridworld that we use
in our experiments, where the locations are squares.
The start location is C1 and the goal location is J1.
The robot can always sense its current location (O) or
move north (N), east (E), south (S), or west (W) to
an adjacent square, If the robot attempts to move in
a certain direction (say, move east in square C1), then
it either moves as intended (C2, with probability 0.6)
or strays off by one square to the left (B2, with prob-
ability 0.2) or right (D2, with probability 0.2) due to
actuator noise and not facing precisely in the right di-
rection. The robot does not move when it bumps into
the border of the gridworld. The movement cost ranges
from 1.0 to 10.0. It is low for roads (white) and high for
muddy terrain (darker colors). The sensing cost is al-
ways 0.2, Notice that even very risk-averse robots have
to trade off between minimizing the worst-case and av-
erage plan-execution cost in our example domain even
if they want to approximate plans with minimal worst-
case plan-execution cost, a planning objective popular
in robotics (Lozano-Perez, Mason, & Taylor 1984). It is
not possible to minimize the worst-case plan-execution
cost directly in our example domain because all plans
cycle with some probability and thus have a worst-case
plan-execution cost that is infinite. So, even very risk-
averse robots need less risk-averse planning objectives
than minimizing the worst-case plan-execution cost but
more risk-averse planning objectives than minimizing
the average plan-execution cost. Maximizing the av-
erage utility for an exponential utility function with
sufficiently close to zero provides such a planning ob-
jective,

Figure 4 shows that the sensing frequency (that is,
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Gridworld Execution Traces
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Figure 3: Gridworld and Execution Traces
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Figure 4: Sensing Frequency

the percentage of sensing actions among all executed ac-
tions) increases as the robots become more risk-averse
and v decreases. This is also illustrated in Figure 7,
that shows optimal sensor plans for two different values
of 4.} The sensor plans are depicted as gridworlds, each
location of which is annotated with an action sequence.
These action sequences are used as follows: After the

!There are some exceptions to this trend, for example,
in the vicinity of the goal. This can be explained as follows:
Risk-seeking robots assume that short action sequences that
have a chance of reaching the goal location will indeed reach
it. Thus, they execute these action sequences followed by a
sensing action to confirm that they have reached the goal
location. For example, for 4 == 1.40, the action sequence
of location 12 is SO. The robot hopes that it will drift to
the goal location J1 as it moves south, although this is less
likely than moving to location J2. More risk-averse robots
are more cautious and execute longer action sequences. For
example, for v = 1.86, the action sequence of location 12 is
SWO, which reaches the goal location with higher proba-
bility than the action sequence SO. This phenomenon and
similar phenomena contribute to the small local minima in
the graph of Figure 4.
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Figure 5: Mean of Plan-Execution Cost

robots have executed "a sensing action, they look up
the action sequence that corresponds to the sensed lo-
catlon, execute it, and repeat the process, until they
sense that they are at the goal location. For exam-
ple, for v = 0.86, the action sequence of location B2 is
SEO. Consequently, after the robot has sensed that it
is at location B2, it first moves south (S), then moves
east (E), and finally senses again (O). Locations whose
action sequences are not used for getting from the start
location (C1) to the goal location (J1) are left blank.
Figure 3 (right) shows how often the robots visit each
grid square during two million runs for three different
values of . Darker colors indicate a larger number of
visits. Thus, more risk-averse robots are more likely to
stay on the road and close to the nominal path, which
is possible due to the increased sensing frequency. That
more risk-averse robots are more likely to stay on the
road can be explained as follows: By staying on the
road, the robots are likely able to avoid the large cost
necessary for getting out of the mud, which risk-averse
robots consider to be important. On the other hand,
smaller sensing frequencies and attempts to cut the cor-
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Figure 6: Mean with Confidence Interval

ners decrease the probability that the robots stay on
the road but also decrease the plan-execution cost in
the best case, which risk-seeking robots consider to be
important. (In fact, the action sequences of the start
location get longer and longer as the robots become
more risk-seeking until the action sequences are able to
move the robots to the goal location in the best case.)
This explanation suggests that there is a mean-variance
trade-off in our example domain. As pointed out ear-
lier, mean-variance trade-offs are 'often used as crude
but easy-to-understand explanations for trade-offs be-
tween minimizing the worst-case, average, and best-case
plan-execution cost. For example, the graph in Fig-
ure b shows the mean of the plan-execution cost, and
the difference of the upper and lower graphs in Figure 6
corresponds to four times the standard deviation of the
plan-execution cost. The mean of the plan-execution
cost increases but the variance decreases as the robots
become more risk-averse and v decreases from one to
zero. The variance decreases because more risk-averse
robots stay on the road and close to the nominal path.
The mean-variance trade-off can be explained as fol-
lows: More risk-averse robots are willing to accept a
larger mean of the plan-execution cost for a decrease
in variance because they fear for the worst case. A
small variance avoids a plan-execution cost that is much
larger than average. Figure 6 illustrates this using the
upper. bound of a 95-percent-confidence interval (that
is, mean plus twice the standard deviation) as an ap-
proximation of the worst-case plan-execution cost. The
upper bound indeed decreases as the robots become
more risk-averse since the decrease of the variance out-
weighs the increase of the mean. On the other hand,
more risk-seeking robots are willing to accept a larger
mean for an increase in variance since a larger vari-
ance promises a chance to realize a plan-execution cost
that is much smaller than the average plan-execution
cost. Figure 5 illustrates this using the lower bound of

a 95-percent-confidence interval (that is, mean minus
twice the standard deviation) as an approximation of
the best-case plan-execution cost. The lower bound in-
deed decreases as the robots become more risk-seeking
since the mcrease of the variance outweighs the increase
of the mean. Qur sensor planner is not only as easy to
implement as the sensor planner that it extends but
also almost as efficient. For v = 0.86, our sensor plan-
ner expands 2,071 nodes and needs an average of 4.6
milliseconds per node expansion on a Sun Ultra 1 run-
ning Solaris 7. The original sensor planner by Hansen,
that our sensor planner extends, corresponds to the case
where v approaches one. It needs 2,815 node expansions
and 2.0 milliseconds per node expansion. For v = 1.40,
our sensor planner needs 5,808 node expansions and
5.2 milliseconds per node expansion. The number of
node expansions depends on the sensing frequency. It
increases as the sensing frequency of the optimal plans
decreases. Our sensor planner has a slight run-time dis-
advantage per node expansion compared to the original
sensor planner by Hansen because it has to calculate
exponentials and logarithms, and its heuristic search
method cannot calculate the heuristic values quite as
efficiently as the original sensor planner.

Conclusions

We described a method for creating planners that find
plans with maximal average utility for a given exponen-
tial utility function and thus reflect the risk attitude of
rational human decision makers in high-stake decision
situations better than plans with minimal average plan-
execution cost. Our method generalizes the planning
objectives of traditional planners from artificial intel-
ligence that often either minimize the average or the
worst-case plan-execution cost or, if the goal cannot
be achieved for sure, maximize the probability of goal
achievement. Our multiplicative planning-task trans-
formation is a fast simple context-insensitive represen-
tation change that can be performed locally on various
representations of planning tasks, including rule-based
(STRIPS) representations (Fikes & Nilsson 1971) and
(totally and partially observable) Markov decision pro-
cess models. We applied the multiplicative planning-
task transformation to an existing sensor planner. The
resulting sensor planner is not only as easy to imple-
ment as the sensor planner that it extends but also
almost as efficient. Our case study showed that the
frequency of sensing depends on the trade-off between
minimizing the best-case, average, and worst-case plan-
execution cost. More risk-averse human decision mak-
ers tend to sense more frequently, and planners should
reflect this behavior accurately. This research is ben-
eficial for NASA since many NASA domains are high-
stake planning domains. Human decisions makers often
want to make high-level decisions themselves, for ex-
ample, because they have background knowledge that
planners do not have (or because of political consid-
erations). However, there are disadvantages to having
humans in the loop for every decision on-board of un-
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= 0.86 (risk-averse robots)

1 2 3 4 5 € 7 8 9 10 11
A SSS0
B SEO SEQ SEO SEQ SEO S0 SS0
C EQ EQ EO EQ EO EgQ SEO SO 50 LED
D HEO HEQ HEO EEEQ EEO EO ESO S0 w30 HYS0
E EESO ESO S0 LB
F SSS0 SO LEY
¢ 550 50 W50
H SSHO SSHO ElY Hso Wo
1 El SHO SHO SHO SHO SWO SH0 SYo Ho WO LLED)
J goal HO HO HO WO HO D] Ho
K HO HHO HHO HHO HHO RO HHO HWO HAHO
L HHYHO HHKHO

v = 1.40 (risk-seeking robots)

1 2 3 4 5 € 7 8 9 10 11
A SSEEEQ SSEQ SSEQ 53S0 5850
B SEEEEQ SEEQ SEED SEQ EE) SS0 S5SSSSSHO
Y EEEEEEESQ EEEESO EEESD EESO £l 50 SSSSSSWO
D EEEEEEESQ EEEESO EEESO EESO ESO SSSSSHO SSSSSHO #1550 WHSSO
E HYEEEEQ HEEEEEQ HEEEEQ HEEEO HEEQ EESSS0O ESSS0 SSSSHO SSSSHO CEE WHSSO
F 55850 SSS50 EEERY SSSsHO SSSSHHO EESS0 ESSSO SSSHO SSSHO 4550 LLED]
G $580 SSS0 353850 SSSHO SSSHHO SSSHRHO SSSHHHHO SSHO SSHO S0 WHSO
H S50 S50 SSKHO SSHHO SSHHO SSRRHO SSHHHKO SSHRERHAHO SHO HY0 LELL
1 S0 30 SHO SHHO SHRRO SHRRRO SHRHHRO ELLELLTD) HO HHO HEHO
] goal Ho HWO HHHO HHWHO HHRRRO CRELLLLY LLEELLED) HARWAWHHO HHWHRHHRERO | WHEO
K HO 1o (LT HHHO HHWHO HHEWRO HARRAERO HARHWHAO ELLLLEELD HARARAARRAEO | HHHRRERRWER,
L HHO HHO HHYO HWHO HARHO HUHRNHO HRRHEHEO

Figure 7: Optimal Sensor Plans

manned spacecraft, including decisions in crisis situa-
tions, due to the resulting time delay. In these cases, it
is important that artificial intelligence planners make
similar decisions as rational human decision makers.
The research that we reported here is only a first step in
the direction of planning with more realistic preference
models by combining descriptive methods from utility
theory with constructive methods from artificial intelli-
gence planning, Future work includes how to plan with
multiple attributes (such as time, energy, and money)
and resource limits.
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