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Abstract 

Preference models det.ermine which one of several plans 
t.o prefer. It. is important that planners use the same 
preference models as rational human decision makers 
because planners should mal(e t.he same decisions as 
their human users (as long as they are rational), other­
wise t.he planners are not of much use. vVhile artificial 
intelligence planning has made lots of progress in the 
areas of representations of plarming tasks and planning 
methods, it has not yet. paid sufficient attention t.o the 
preference models of human decision makers. Ut.ility 
theory is a formal framework for modeling the prefer­
ences of human decision mal(ers and making rational 
decisions in high-stake decision situations. This paper 
reports on first st.eps in the direction of building plan­
ners t.hat fit the risk attitudes of human decision mak­
ers in high-st.ake planning domains better than current. 
plarmers, by combining descriptive methods from util­
ity theory wit.h constructive methods from artificial in­
telligence planning and operations research, thus com­
bining t.he st.rengths of the two decision-making disci­
plines and extending the applicabilit.y of planners from 
art.ificial intelligence. 

Introduction 
Artificial intelligence planning has developed 
knowledge-based planners. These planners can have 
advantages over methods from other decision-making 
disciplines because t.hey exploit more of t.he structure 
of large-scale planning tasks. Planning methods from 
artificial int.elligence, for example, represent. search 
spaces implicitly (for example, with STRIPS rules) 
and exploit the resulting decomposability. Artificial 
intelligence planning has made lots of progress over 
the past couple of year in the areas of representa­
tions of planning tasks as well as planning met.hods. 
However, artificial intelligence planning has not yet 
paid sufficient att.ent.ion to the planning objectives, 
which are still primitive. In deterministic domains, 
planners from artificial intelligence have tradit.ionally 
been used with the objective to find any plan t.hat. 
achieves the goal. To make their preference model 
richer, planners t.hen began to associate execution costs 
with plans and preferred plans that achieve the goal 
with minimal plan-execution cost, that. is, minimal 

consumption of one limited resource such as time, 
energy, or money. In probabilist.ic domains, planners 
from art.ificial intelligence usually either minimize the 
average plan-.execution cost 01', if the goal cannot 
be achieved for sure, maximize the probability of 
goal achievement. However, these preference models 
are often too simplistic to model the preferences of 
human decision makers adequately. How to plan with 
more realistic preference models, however, is a topic 
that has been neglected in the literature on artificial 
intelligence planning. It is an important topic because 
the recommendations of planners should reflect the 
opinions of their users correctly (as long as they are 
rational - we are not interest.ed in irrational decision 
making). After all, the planners make suggestions for 
how to act and should make the same suggestions that 
the users would have made themselves. Otherwise the 
planners would not be very helpful. 

Our research program therefore investigates how to 
build efficient planners that fit the preference models 
of rational human decision makers better than current 
planners, by combining descriptive methods from utility 
theory with constructive methods from artificial intelli­
gence planning and operations research, thus combining 
the strengths of the two decision-making disciplines and 
extending the applicability of planners from artificial in­
telligence. We are interested, for example, in planning 
with deadlines and other resource limits as well as plan­
ning with multiple attributes, such as energy, cost, time, 
probability of goal achievement, prestige, and so on. In 
this paper, we report on a very first step in the direc­
tion of building planners with more realistic preference 
models. We study hm" to plan in high-stake decision 
situations with one resource, taking the risk-attitude of 
decision makers into account. High-stake decision sit.­
uat.ionsoccur in domains in which huge wins or losses 
of money, equipment., 01' even human life are possible. 
.Many NASA domains are high-stake domains, including 
planning for autonomous space craft (Pell et aZ. 1997), 
and many human decision makers prefer to avoid the 
huge losses that. are possible in these domains. Vlfe are 
also interested in how the risk attitude changes the opti­
mal plan, for example, its influence on how long to plan 
before starting to act and how frequently to sense. Util-
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ity theory is a formal framework for modeling the pref­
erences of human decision makers and making rational 
decisions in high-stake decision situations. It. suggests 
that decision makers maximize their average utility in 
these domains, where the utility is a strictly monoton­
ically decreasing but. often nonlinear function of the 
plan-execu tion cost. However, it. specifies only what. 
optimal plans are but. not how they can be obtained 
efficiently. The difficulty we need t.o overcome is how to 
combine ideas from utility theory, artificial intelligence, 
and operations research, which is nontrivial but allows 
us t.o exploit the structure of planning tasks to make 
planning with nonlinear utility functions efficient. In 
the past decades, artificial intelligence researchers have 
acquired a large body of knowledge about how t.o plan 
efficiently with the current preference models, by uti­
lizing the structure of planning tasks. vVe will demon­
strate that., in some cases, these insights can be used 
to plan efficiently with nonlinear utility functions. This 
promises to make planning 'with some nonlinear utility 
functions as fast as planning with standard planners 
from artificial intelligence or operations research and 
enables one to participate in performance improvements 
achieved by other researchers in the currently very ac­
tive field of probabilistic planning, while extending the 
applicability of existing planners from artificial intelli­
gence or operations research. It. also promises to allow 
for an easy integration of risk attitudes into existing 
decision-support systems, automated planning systems, 
and agent architectures. 

High-Stake Decision Situations 
High-stake decision situations occur in domains in 
which huge wins or losses are possible. In high-stake de­
cision situations, rat.ional human decision makers usu­
ally do not minimize the average plan-execution cost or 
maximize the average reward because they take risk as­
pects into. account. This is why many human decision 
makers buy insurance even though the insurance pre­
mium is usually much larger than the average loss from 
the insurance cause. Another example is the following 
simple decision situation with two alternatives, one of 
which has the larger average pay-off and the other one 
of which has the smaller variance. Consider the decision 
situat.ion shown in Figure 1, where you can part.icipate 
in one and only one of the following t.wo lott.eries at no 
charge. vVhen human decision makers have to decide 
whether they would like to get 4,500,000 dollars for sure 
or get 10,000,000 dollars with fifty percent probability 
(and nothing otherwise), many human decision makers 
prefer the safe alternative although its average pay-off 
is clearly lower - t.hey are risk-averse. (Similarly, there 
are decision makers that are risk-seeking.) It. is impor­
t.ant to realize that. this is perfectly rational behavior. 
R.isk-averse human decision makers are willing t.o accept 
a smaller mean of the pay-off for a decrease in variance 
because t.hey fear for the worst. case. They are trying to 
avoid catast.rophes, and a small variance avoids pay-offs 
that. are much smaller than average. If a planner chose 

the lott.ery with the larger a~rerage pay-off, then many 
human decision makers would be extremely unhappy 
half of the time. It is therefore important. that planners 
reflect the opinions of rational human decision makers 
correctly. After all, planners make suggestions for how 
to act and should make the same suggestions that the 
human decision makers would have made themselves. 
(This is the reason why investment advisors ask for your 
risk attitude before making investment recommenda­
tions.) However, artificial intelligence planning has not 
studied how to determine plans that correctly reflect 
the risk attitudes of rational human decision makers in 
high-stake decision situations. 

Preference Models 

Bernoulli and Von Neumann/Morgerstern's utility the­
ory (von Neumann & :tvlorgenstern 1947; Bernoulli 
1738) has investigated how rational human decision 
makers malce decisions in high-stake decision situations. 
Utility theory can explain why they often do not mini­
mize the average plan-execution cost. It suggests that it 
is rational to choose plans with maximal average util­
ity, where the utility u(c) is a strictly monotonically 
decreasing function of the plan-execution cost c. Hu­
man decision makers sometimes deviate from utility 
theory because, different from other theories, such as 
Kahneman and Tversky's prospect theory (Kahneman 
& Tversky 1979), utility theory does not model human 
inadequacies in decision making and thus is not able 
to explain all empirical findings about human decision 
making. This is not a problem for planners since plan­
ners are supposed to follow a theory of rational (nor­
mative) rather than empirical decision making. :tvlax­
imizing average utility and minimizing average plan­
execution cost result in the same decisions if either the 
domains are deterministic or the utility functions are 
linear. These assumptions, however, are often not sat­
isfied. For example, nonlinear utility functions are nec­
essary to account for the risk-averse attitudes of many 
rational human decision makers for the lottery exam­
ple above. The lottery example can be explained as 
follows: Assume that a human decision maker is risk­
averse and has the concave exponential utility function 
shown in Figure 2 and no other assets. This human 
decision maker associates utility (here: pleasure) 0.00 
with a wealth of 0 dollars, utility 0.74 with a wealth 
of 4,500,000 dollars, and utility 0.95 with a wealth of 
10,000,000 dollars. Then, the (average) utility of get­
ting 4,500,000 dollars for sure is 0.74, 'whereas the aver­
age utility of getting 10,000,000 dollars with fifty per­
cent probability is only 0.475. In this case, the safe 
alternative maximizes the average utility for this llU­
man decision maker, which explains why this human 
decision maker chooses the safe alternative over the one 
with the larger average pay-off. Other human decision 
makers can have other utility functions and thus arrive 
at different conclusions. 
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Choices Probabilit.y Pay-Off A verage Pay-Off Ut.ilit.y Average Utilit.y 
Choice 1 50 percent 10,000,000 dollars ,5,000,000 dollars 0.9,5 0.475 

50 percent o dollars 0.00 
Choice 2 100 percent 4,500,000 dollars 4,500,000 dollars 0.74 0.740 

Figure 1: Decision Sit.uation 
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Figure 2: Risk -A verse U t.ili ty Function 

Exponential Utility Functions 
Ut.ility theory specifies only what. opt.imal plans are 
but not how they can be obtained efficiently, t.hat. is, 
ot.her than by enumerat.ing every trajectory of every 
possible plan. Operations research and control the­
ory use dynamic programming methods t.o find plans 
with maximal average utility (Marcus et al. 1997; 
Whittle 1990) but. t.hese met.hods often do not. exploit. 
t.he st.ructure of planning t.asks complet.ely. Art.ificial 
intelligence planning has developed knowledge-based 
planners t.hat. plan efficient.ly in large domains but. usu­
ally either minimize t.he average plan-execution cost. or, 
if t.he goal cannot. be achieved for sure, maximize t.he 
probabilit.y of goal achievement. It might. seem that 
one could simply replace t.he resource consumptions 
with their utilities and t.hen continue t.o use planners 
from artificial intelligence. This is cert.ainly t.rue for 
one-st.age decision situations, such as t.he lottery ex­
ample. However, different. from the lottery example, 
real-world planning tasks are usually much more com­
plex and consequently involve much more complex de­
cisions. For these multi-stage decision sit.uations, it. is 
impossible to simply replace the resource consumptions 
wit.h their utilities and t.hen continue t.o use planners 
from artificial intelligence. Assume, for example, that. 
one incurs cost Cl at the first time step and cost. C2 

at the second time st.ep, which is also the last. one. 
Then, one obtains 1I( cd + u( C2) if one replaces the 
cost.s with their utilities whereas t.he correct utility is 
U(Cl + C2). Instead, our multiplicat.ive planning-t.ask 
transformation (Koenig 1998) makes use of exist.ing 
planners from art.ificial int.elligence 01' operations re-

search by transforming planning tasks with exponential 
utilit.y functions to planning tasks that. planners from 
artificial intelligence or operat.ions research can solve. 
The transformed planning tasks can be solved by find­
ing plans with maximal probabilit.y of goal achievement. 
or minimal average plan-execution cost. The multi­
plicative planning-task transformation is such that op­
timal plans for the t.ransformed planning task are also 
opt.imal for the original one, and good ("satisficing") 
plans for t.he t.ransformed planning task are also satis­
ficing for t.he original one. The multiplicative planning­
task transformation works for convex and concave ex­
ponential utility functions. Convex exponent.ial ut.il­
ity functions are of t.he formll( c) = ,-c for param­
eter , > 1, and concave exponential utility functions 
are of the form 'll( c) = _,-c for parameter , with 
o < , < 1. These utility functions are expressive 
because the parameter , can be used to trade-off be­
tween minimizing the best-case, average, and worst­
case plan-execution cost (Watson & Buede 1987). As 
, approaches infinity, the human decision makers be­
come more risk-seeking and thus more interested in 
plans with small best-case plan-execution cost (under 
appropriate assumptions) (Koenig & Simmons 1994; 
Koenig 1998). As, approaches one, the human de­
cision makers become more interested in plans with 
small average plan-execution cost. Finally, as , ap­
proaches zero, the human decision makers become more 
risk-averse and thus more interested in plans with small 
worst-case plan-execution cost. Thus, exponeiltial util­
ity functions can express a continuum of risk attitudes, 
that includes the utility functions of the lottery example 
above. 

Crisis Management 

Our current application area is managing environmen­
tal crisis sit.uat.ions such as oil spills (Desimone & 
Agost.a 1994). The goal of planning in the oil-spill do­
main is to determine how t.o manage resources such as 
human t.eams, vessels, and equipment to contain and 
clean up oil spills, t.aking into account all costs incurred 
unt.il t.hey are cleaned up complet.ely (expressed in dol­
lars). Crisis management domains have several ad­
vantages: Efficient planning methods for them directly 
benefit the public. They are important high-stake plan­
ning domain for which many human decision makers 
are very risk averse since they prefer t.o avoid t.he huge 
losses that are possible in these domains. Thus, plan­
ners that minimize the average cost do not use the same 
preference model as many human decision makers and 

146 2nd NASA International Workshop on Planning and Scheduling for Space 



arrive at different courses of action. 

Sensor Planning 
An interesting observation in crisis management sit­
uations is that. human decision makers gather large 
amounts of information even if it. is costly and thus 
might not. be part of a plan t.hat minimizes the aver­
age plan-execution cost.. In t.he oil-spill domain, sens­
ing operations include, for example, sending out. heli­
copters to gather information about how oil spills drift. 
The knowledge that. an oil spill drifts towards a nature 
preserve can be used to concentrate resources in t.he 
surrounding sea sectors t.o prevent the oil from reach­
ing sensit.ive shores. Thus, sensing provides informa­
tion that can reduce the plan-execution cost. but. comes 
at a cost. itself. Sensor planning for risk-averse or risk­
seeking human decision makers involves the same trade­
off as the lottery example above (Koenig & Liu 1999). 
For example, adding more sensing operat.ions than is 
necessary to minimize the average plan-execut.ion cost 
increases the mean of the plan-execution cost (because 
sensing is expensive) but also reduces its variance (be­
cause the information obt.ained can be used to avoid 
catast.rophes). Consequently, we speculat.e that risk­
averse human decision makers add more sensing oper­
ations t.han is necessary to minimize the average plan­
execution cost. 

Case Study 
In t.he following, we provide a case study of how t.he 
risk attitude influences t.he sensing frequency to t.est 
our hypothesis that. risk-averse human decision makers 
add more sensing operations t.han is necessary to mini­
mize the average plan-execution cost. At the same time 
we demonstrate that. our multiplicative planning-task 
t.ransformation can be combined with exist.ing planners 
that minimize the average plan-execution cost. to yield 
planners t.hat maximize average utility for exponential 
utility functions. vVe apply t.he multiplicative planning­
task t.ransformation t.o the sensor planner by Hansen 
(Hansen 1997) that combines methods from operations 
research (namely, policy iteration (Howard 1964)) and 
art.ificial intelligence (namely, the A * search method 
(Nilsson 1971)) t.o find plans with minimalaverage plan­
execution cost. In (Koenig & Liu 1999), we present 
t.he result.ing sensor planner and a proof of it.s correct­
ness. Here, we present. the results of a case st.udy where 
we apply t.he resulting sensor planner. t.o simple artifi­
cial robot-navigat.ion tasks with act.uator uncertaint.y. 
Not.ice that. t.hese robot.-navigation t.asks are not. high­
stake planning domains and 'We do not suggest to apply 
aliI' planning methods to planetaTY roveT navigation in 
the way 'We do it here. \Ve use robot-navigat.ion t.asks 
merely as a t.est bed because they are much simpler t.o 
solve than the oil-spill domain (and we can t.hus run 
a much larger number of experiment.s in a reasonable 
amount of time), they allow us to visualize the planning 
results much more easily, and they have been studied 

before in t.he context of sensor planning (Hansen 1997) 
and can therefore be considered good test problems 
for new sensor planners. vVe consider robot.-navigation 
tasks wit.h the following propert.ies. The robot has t.o 
navigat.e from a given start location to a given goal 10-
cation in a known environment.. Since motion is noisy, 
the robot. can deviat.e from the nominal path but it can 
always opt. to sense its current. locat.ion. Sensing pro­
vides certaint.y about its current. location but. is costly 
(for exam pIe, consumes energy). Vlfe assume that. t.here 
is a finit.e set of locat.ions L. The robot knows that 
it starts at location Istart ELand its task is to navi­
gate to location Igoal ELand be sure that. it stops at 
exactly that. location. There is a finit.e set 111 of move­
ment actions, all of which can be executed at all loca­
tions. :Motion uncertainty is modeled with conditional 
probability distributions. Executing movement action 
m E M results with cost c(l, m) > a and probability 
p( l'll, m) in location I'. The robot receives no feedback 
as to what it.s new location is (which makes the simpli­
fying assumption that. the cost. of t.he executed actions 
cannot be observed directly) but. there is one sensing 
action a t.hat can be executed at all locations. Execut.­
ing it. incurs cost c(l, 0) > a and report.s the current 
locat.ion of the robot with certainty. We assume that it 
is possible t.o reach every location from every other lo­
cation. Figure 3 (left) shows the gridworld that we use 
in our experiments, where the locations are squares. 
The start. location is C1 and the goal locat.ion is J1. 
The robot. can always sense its current location (0) 01' 

move north (N), east (E), south (S), or west. (W) to 
an adjacent square. If the robot attempts to move in 
a certain direction (say, move east in square C1), then 
it eit.her moves as intended (C2, with probabilit.y 0.6) 
01' strays off by one square to the left. (B2, with prob­
ability 0.2) or right. (D2, with probability 0.2) due to 
actuator noise and not facing precisely in the right di­
rection. The robot. does not move when it bumps into 
the border of the gridworld. The movement cost ranges 
from 1.0 to 10.0. It is low for roads (white) and high for 
muddy terrain (darker colors). The sensing cost is al­
ways 0.2. Notice that even very risk-averse robots have 
to trade off between minimizing the worst-case and av­
erage plan-execution cost in our example domain even 
if they want to approximate plans with minimal worst.­
case plan-execution cost., a planning object.ive popular 
in robotics (Lozano-Perez, :Mason, & Taylor 1984). It is 
not possible t.o minimize the worst.-case plan-execution 
cost. directly in our example domain because all plans 
cycle wit.h some probabilit.y and thus have a worst-case 
plan-execut.ion cost. that. is infinit.e. So, even very risk­
averse robots need less risk-averse planning objectives 
t.han minimizing the worst.-case plan-execution cost but. 
more risk-averse planning objectives t.han minimizing 
t.he average plan-execution cost.. rVlaximizing the av­
erage ut.ility for an exponent.ial ut.ilit.y function with ")' 
sufficiently dose to zero provides such a planning ob­
jective. 

Figure 4 shows that. the sensing frequency (that. is, 
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Figure 3: Gridworld and Execution Traces 
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Figure 4: Sensing Frequency 

the percentage of sensing actions among all executed ac­
tions) increases as the robots become more risk-averse 
and, decreases. This is also illustrated in Figure 7, 
that shows optimal sensor plans for two different values 
of ,.1 The sensor plans are depicted as grid worlds, each 
location of which is annotated with an action sequence. 
These action sequences are used as follows: After the 

IThere are some exceptions to this trend, for example, 
in the vicinity of the goal. This can be explained as follows: 
Risk-seeking robots assume that short action sequences that 
have a chance of reaching the goal location will indeed reach 
it. Thus, t.hey execut.e t.hese action sequences followed by a 
sensing action to confirm t.hat. they have reached t.he goal 
locat.ion. For example, for I = 1.40, the action sequence 
of location 12 is SO. The robot. hopes t.hat. it. will drift t.o 
t.he goal location .J1 as it moves south, although t.his is less 
likely than moving t.o locat.ion J2. :tvlore risk-averse robots 
are more cautious and execut.e longer action sequences. For 
example, for I = 1.86, t.he action sequence of locat.ion 12 is 
SVVO, which reaches t.he goal locat.ion wit.h higher proba­
bilit.y than t.he action sequence SO. This phenomenon and 
similar phenomena cont.ribut.e t.o the small local minima in 
the graph of Figure 4. 
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Figure 5: Mean of Plan-Execution Cost 

robots have executed a sensing action, they look up 
the action sequence that corresponds to the sensed lo­
cation, execute it, and repeat the process, until they 
sense that they are at the goal location. For exam­
ple, for, = 0.86, the action sequence of location B2 is 
SEO. Consequently, after the robot has sensed that it 
is at location B2, it first moves south (S), then moves 
east (E), and finally senses again (0). Locations whose 
action sequences are not used for getting from the start 
location (Cl) to the goal location (Jl) are left blank. 
Figure 3 (right) shows how often the robots visit each 
grid square during two million runs for three different 
values of ,. Darker colors indicate a larger number of 
visits. Thus, more risk-averse robots are more likely to 
stay on the road and close to the nomilial path, which 
is possible due to the increased sensing frequency. That 
more risk-averse robots are more likely to stay on the 
road can be explained as follows: By staying on the 
road, the robots are likely able to avoid the large cost 
necessary for getting out of the mud, which risk-averse 
robots consider to be important. On the other hand, 
smaller sensing frequencies and attempts to cut the cor-
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Figure 6: .Mean with Confidence Interval 

ners decrease the probability that the robots stay on 
the road but also decrease the plan-execution cost in 
the best case, which risk-seeking robots consider to be 
important. (In fact, the action sequences of the start 
location get longer and longer as the robots become 
more risk-seeking until the action sequences are able to 
move the robots to the goal 10catiOli in the best case.) 
This explanation suggests that there is a mean-variance 
trade-off in our example domain. As pointed out ear­
lieI', mean-variance trade-offs are 'often used as crude 
but easy-to-understand explanations for trade-oft·s be­
tween minimizing the worst-case, average, and best-case 
plan-execution cost. For example, the graph in Fig­
ure 5 shows the mean of the plan-execution cost, and 
the difference of the upper and lower graphs in Figure 6 
corresponds to four times the standard deviation of the 
plan-execution cost. The mean of the plan-execution 
cost increases but the variance dec'reases as the robots 
become more risk-averse and "I decreases from one to 
zero. The variance decreases because more risk-averse 
robots stay on the road and close to the nominal path. 
The mean-variance trade-off can be explained as fol­
lows: More risk-averse robots are willing to accept a 
larger mean of the plan-execution cost for a decrease 
in variance because they fear for the worst case. A 
small variance avoids a plan-execution cost that is much 
larger than average. Figure 6 illustrates this using the 
upper bound of a 95-percent-confidence interval (that 
is, mean plus t'wice the standard deviation) as an ap­
proximation of the worst-case plan-execution cost. The 
upper bound indeed decreases as the robots become 
more risk-averse since the decrease of the variance out­
weighs the increase of the mean. On the other hand, 
more risk-seeking robots are willing to accept a larger 
mean for an increase in variance since a larger vari­
ance promises a chance to realize a plan-execution cost 
that is much smaller than the average plan-execution 
cost. Figure 5 illustrates this using the lower bound of 

a 95-percent-confidence interval (that is, mean minus 
twice the standard deviation) as an approximation of 
the best-case plan-execution cost. The lower bound in­
deed decreases as the robots become more risk-seeking 
since the increase of the variance outweighs the increase 
of the mean. Our sensor planner is not only as easy to 
implement as the sensor planner that it. extends but 
also almost as efficient. For "I = 0.86, our sensor plan­
ner expands 2,071 nodes and needs an average of 4.6 
milliseconds per node expansion on a Sun Ultra 1 run­
ning Solaris 7. The original sensor planner by Hansen, 
that our sensor planner extends, corresponds to t.he case 
where "I approaches one. It needs 2,815 node expansions 
and 2.0 milliseconds per node expansion. For "I = 1.40, 
our sensor planner needs 5,808 node expansions and 
5.2 milliseconds per node expansion. The number of 
node expansions depends on the sensing frequency. It. 
increases as the sensing frequency of t.he optimal plans 
decreases. Our sensor planner has a slight run-time dis­
advantage per node expansion compared to the original 
sensor planner by Hansen because it has to calculate 
exponentials and logarithms, and its heuristic search 
method cannot. calculate the heuristic values quite as 
efficiently as the original sensor planner. 

Conclusions 
We described a method for creating planners that find 
plans with maximal average utility for a given exponen­
tialutility function and thus reflect the risk attitude of 
rational human decision makers in high-stake decision 
situations better than plans with minimal average plan­
execution cost. Our method generalizes the planning 
objectives of traditional planners from artificial intel­
ligence that often either minimize the average or the 
worst-case plan-execution cost or, if the goal cannot 
be achieved for sure, maximize the probability of goal 
achievement. Our multiplicative planning-task trans­
formation is a fast simple context.-insensitive represen­
tation change that can be performed locally on various 
representations of planning tasks, including rule-based 
(STRIPS) representations (Fikes & Nilsson 1971) and 
(t.otally and partially observable) :Markov decision pro­
cess models. vVe applied the multiplicative planning­
task transformation to an existing sensor planner. The 
resultiug sensor planner is not only as easy to imple­
ment as the sensor planner that it. extends but also 
almost as efficient. Our case study showed that the 
frequency of sensing depends on the trade-off between 
minimizing the best.-case, average, and worst-case plan­
execution cost. JvIore risk-averse human decision mak­
ers tend to sense more frequently, and planners should 
reflect this behavior accurately. This research is ben­
eficial for NASA since many NASA domains are high­
stake planning domains. Human decisions makers often 
want to make high-level decisions themselves, for ex­
ample, because they have background knowledge that 
planners do not have (or because of political consid­
erations). However, there are disadvantages to having 
humans in the loop for every decision on-board of un-
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, = 0.86 (risk-averse robots) 

10 11 
SSSO 

SED SED SED SEO SED SO SSO 
EO EO EO EO EO EO SED SO SO NSO 

NEO NEO NED EEEO EEO EO ESO SO NSO NNSO 
E EESO ESO SO NSO 

SSSO SO NSO 
SSO SO NSO 

SSNO SSWO SO NSO NO 
SO SNO SNO SNO SNO SNO SNO SNO NO WHO NNNO 
goal NO NO WO WO NO NO NO 
NO NWO NWO NNO NNO NNO NNO NNO NWNO 

NNNO NNNO 

, = 1.40 (risk-seeking robots) 

10 11 
SSEEEO SSEO SSEO SSSO SSSO 
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EEEEEEESO EEEESO EEESO EESO SO SO SSSSSSWO 
EEEEEEESO EEEESO EEESO EESO ESO SSSSSNO SSSSSNO WSSO NNSSO 
NNEEEBO NEEEEEO NEEEEO NEEEO NEEO EESSSO ESSSO SSSSNO SSSSNO WSSO WWSSO 
SSSSO SSSSO sssso SSSSNO SSSSNNO EESSO ESSSO SSSWO SSSWO WSSO NWSO 
ssso ssso SSSO SSSWO SSSWWO SSSNNNO SSSNNNNO SSNO SSNO NSO WNSO 
sso sso SSNO SSNWO SSNNO SSWWWO SSNWWHO SSWWWNNO SNO NNO NNNO 
SO SO SNO SNNO SNNNO SNNNNO SNNNNNO SNNNNNNO NO NNO NNNO 
goal WO NNO NNNO NNHNO NNNNNO NNNNNNO WNWHNNNO NNWNNNWNO NNHWNNNWHO NHNO 
NO NO UNO NNNO NNWNO NNNHNO WNNHHNO HNHHNHNO HNWNNNHHO HNHNNUNNHO NHHNNNHHHNO 
NNO NNO NUNO NNNO NHNHO HNHNNO NNHNHNNO 

Figure 7: Optimal Sehsor Plans 

manned spacecraft, including decisions in CrISIS situa­
tions, due to the resulting time delay. In these cases, it 
is important that artificial intelligence planners make 
similar decisions as rational human decision makers. 
The research that we reported here is only a first step in 
the direction of planning with more realistic preference 
models by combining descriptive methods from utility 
theory with constructive methods from artificial intelli­
gence planning. Future work includes how to plan with 
multiple attributes (such as time, energy, and money) 
and resource limits. 
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