
Optimizing Resource Utilization in Planetary Rovers 

Shlomo Zilberstein 
Computer Science Department 

University of Massachusetts 
Amherst, MA 01003 U.S.A. 

zil berstein@cs. umass. ed u 

Abstract 

Autonomous planetary rovers must operate under tight 
constraints over such resources as operation time, 
power, storage capacity, and communication band
width. To maximize scientific return, the rover is given 
multiple methods in which to accomplish each step of 
a plan. The different alternatives offer a tradeoff be
tween resource consumption and the quality of the out
come. We show how to choose the best way to execute a 
task based on the availability of resources, the progress 
made with the task so far, and the remaining work
load. Each task is controlled by a precompiled policy 
that factors the effect of the remaining plan using the 
notion of an opportunity cost. 

Introduction 
This paper is concerned with the design of a reactive 
meta-level controller that can optimize the operation 
of autonomous planetary rovers. Such rovers operate 
under tight resource constraints such as power, storage 
capacity, and communication bandwidth (Bresina et al. 
1999; Washington et al. 1999). The time available to 
carry out experiments is limited as is the overall lifespan 
of the rover. The amount of power that is available 
(between recharges) is limited and must be carefully 
managed. Storage capacity to be used for raw data and 
processed data before transmission to a control center 
is also limited. Some of the resources are renewable: 
batteries could be recharged and storage space could 
be freed once the data is transmitted. Our focus in this 
paper is on optimal management of multiple resources 
between periods in which they can be renewed. The 
solution takes into account the high level of uncertainty 
regarding the consumption of resources by the rover's 
activities. For example, there is uncertainty about the 
amount of power and time required to bring the rover 
to a certain location, and there is uncertainty about the 
amount of storage that will be needed for a sequence of 
compressed images. 

The combination of scarce resources and a high level 
of uncertainty present a complex meta-level control 
problem. The question is how to decide quickly during 
execution time which tasks should be executed and how 
to revise these decisions based on the actual progress be
ing made, the availability of resources, and the remain-

Abdel-Illah Mouaddib 
CRIL-IUT de Lens-Universite d'Artois 

Rue de l'universite, S. P. 16 
62307 Lens Cedex France 

mouaddib@cril.univ-artois.fr 

ing workload. Our approach to this problem is based 
on mapping each primitive activity (such as navigation, 
taking pictures, conducting experiments, or on-board 
data analysis) into a progressive processing task struc
ture that specifies alternative ways to accomplish each 
aspect of the activity. For example, Figure 1 illustrates 
a possible task structure for taking a picture of a cer
tain object. First the object must be located. Then, the 
rover may approach the object (either getting within an 
acceptable distance or an optimal distance for picture 
taking) and aim the camera. The picture can be taken 
at anyone of several resolutions and then compressed at 
different levels of compression. The choices made along 
the execution of the task will affect the level of resource 
consumption as well as the quality of the outcome. 

Progressive processing task structures make it possi
ble for a system to trade off between resource consump
tion and quality of result (Mouaddib 1993; Mouad
dib and Zilberstein 1997; 1998). The framework de
scribed in this paper is based on a similar approach we 
have developed for dynamic composition of information 
retrieval techniques (Zilberstein and Mouaddib 1999). 
The control of autonomous planetary rovers, however, 
has several different characteristics. First, we have mul
tiple resources to monitor rather than one (time is the 
only resource monitored in previous work). Second, the 
reward structure depends on the ability to maximize 
scientific return with limited resources, but minimizing 
resource consumption in itself is not an explicit goal 
(minimizing response time is an e~plicit goal in the in
formation retrieval application). Finally, unlike the in
formation retrieval application, the set of tasks to be 
performed over a given time period is relatively sta
ble (in previous work we considered a dynamic set of 
tasks with frequent updates). The specific character
istics of the rover control problem raise several funda
mental challenges. 

1. Handling multiple resources rather than execution 
time only. 

2. Handling the dependency of quality and resource con
sumption on the intermediate quality or state. 

3. Handling a flexible task structure in which some levels 
include several alternatives or optional steps. 

4. Selecting the "best" set of methods in a dynamic en-

2nd NASA International Workshop on Planning and Scheduling for Space 163 



Figure 1: Illustration of a progressive processing task 
for taking a picture of an object 

vironment taking into account the progress already 
made, the availability of resources, and the entire 
plan. 

There are a number of complementary research ef
forts designed to develop planning and execution archi
tectures for spacecraft systems (Blackmon et al. 1999; 
Bresina et al. 1999; Estlin et al. 1999; Muscettola et 
al. 1998) and, more generally, for real-time autonomous 
systems (Bonasso et al. 1996; Musliner et al. 1993). 
The work described in this paper is designed to com
plement these efforts by developing a reactive approach 
to managing multiple resources under a high level of 
uncertainty. 

The ability to dynamically adjust computational ef
fort based on the availability of computational resources 
has been studied extensively by the AI community 
since the mid 1980's. These efforts have led to the 
development of a variety of techniques such as any
time algorithms (Dean and Boddy 1988; Zilberstein 
and Russell 1996), design-to-time (Gravey and Lesser 
1993), flexible computation (Horvitz 1988), imprecise 
computation (Liu et al. 1991), and progressive reason
ing (Mouaddib 1993; Mouaddib and Zilberstein 1997). 
This work extends this flexibility to task structures that 
include both computational actions and physical ac
tions. Section 2 gives a formal definition of the problem. 
We then solve the problem in two steps. In Section 3, we 
develop an optimal solution for a single task, ignoring 
the fact that additional tasks are waiting for execution. 
Section 4 shows how to handle multiple tasks by factor
ing the effect of the remaining plan using the notion of 
an opportunity cost. In section 5 we address some open 
problems and current work that examines the effective
ness this approach. We conclude with a summary and 
brief discussion of related work. 

The control problem 
This section defines an enhanced form of progressive 
processing task structures and the corresponding meta
level control problem. Each plan assigned to a rover is 
mapped into a set of task structures defined as follows. 

Definition 1 A plan, P, is composed of a set of ac
tivities, a set of ordering constraints among activities, 
and an initial resource allocation ro. 

The overall plan is generated off-line at the control 
center by a mixed-initiative planning process that is be
yond the scope of this paper. We focus on the reactive, 
on-board scheduling process only. Resources are repre
sented as vectors of discrete units measuring the avail
ability of each resource. We assume initially that the 
plan is totally ordered and discuss the generalization of 
the technique to partially-ordered plans in Section 5. 

The rover can perform a certain number of (param
eterized) activities each of which has a predefined task 
structure associated with it. For simplicity of the dis
cussion, we avoid the extra identifier indicating the type 
of activity when we consider the control of a single ac
tivity. Each activity is associated with a progressive 
processing unit. 

Definition 2 A progressive processing 
unit (PRU) is composed of a sequence of processing 
levels, (h,12,oo.,IL)' 

Definition 3 Each processing level, Ii, is composed of 
a set of Pi alternative modules, {my, mr, ... ,mfi}. 

Each module can perform the logical function of level 
Ii> but it has different computational characteristics de
fined below. 

Definition 4 The module descriptor, 
p!((q',~r)lq), of module m{ is the probability distri
bution of output quality and resource consumption for 
a given input quality. 

The module descriptor specifies the probability that 
module m{ consumes ~r resources (a discrete vector 
specifying the number of units of each resource used by 
the module) and produces a result of quality q' when the 
quality of the previously executed module is q. Mod
ule descriptors are similar to conditional performance 
profiles of anytime algorithms (Zilberstein and Russell 
1996). 

When the system completes a task, it receives a re
ward that depends on the quality of the output. 

Definition 5 Each PRU has a reward function, 
U(q), that measures the immediate reward for perform
ing the activity with overall quality q. 

Rewards are cumulative over different activities. 
Given a plan P, a library of task structures that spec

ify a PRU for each activity in the plan, the module 
descriptors of all the components of these PRUs, and 
corresponding reward functions for each activity, we de
fine the following control problem. 

164 2nd NASA International Workshop on Planning and Scheduling for Space 



Definition 6 The reactive control problem is the 
problem of selecting a set of alternative modules so as 
to maximize the expected utility over a complete plan. 

The meta-level control is "reactive" in the sense that 
we assume that the module selection mechanism is very 
fast, largely based on off-line analysis of the problem. 

Optimal control of a single activity 

We begin with the problem of meta-level control of a 
single progressive processing unit corresponding to a 
single activity. This problem can be formulated as a 
Markov decision process (MDP) with states represent
ing the current state of the activity. The state includes 
the current level of the PRU, the quality produced so 
far, and the remaining resources. The rewards are de
fined by the utility of the solution. The possible actions 
are to execute one of the modules of the next processing 
level. The transition model is defined by the descriptor 
of the module selected for execution. 

Note that in certain situation it might be beneficial to 
skip the execution of a particular level or the complete 
activity. To allow that, we introduce a dummy module 
in each level that consumes no resources and produces 
zero quality. This guarantees that at least one module 
is executable in each level regardless of the availability 
of resources. 

The rest of this section gives a formal definition of the 
MDP and the reactive controller produced by solving it. 

State transition model 

The execution of a single progressive processing unit, 
u, can be seen as an MDP with a finite set of states 
S = {[li,q,rJI'i E u} where O:S: i:S: L indicates the last 
executed level, ° :s: q :s: 1 is the quality produced by the 
last executed module, and r is the remaining resources. 

When the system is in state [lil q, rJ, one module of 
the i-th level has been executed. (The first level is i = 1; 
i = 0 is used to indicate the fact that no level has bee11 
executed.) The states [lL' 0, rJ represent termination 
with no useful result and remaining resources r. 

The initial state of the MDP is [10 ,0, rJ, where r is 
the available resources. The initial state indicates that 
the system is ready to start executing a module of the 
first level of the PRU. The terminal states are all the 
states of the form [lL' q, rJ. In every nonterminal state, 
the possible actions are E{+l (execute the j-th module 
of the next level). To complete the transition model, 
the probabilistic outcome of these actions are defined 
as follows. 

To simplify the presentation, we assume that a mod
ule is executable only when there are enough resources 
to cover the worst-case possibility. This can be relaxed 
if we add a mechanism to abort an action once it re
quires more resources than available. 

The outcome of each action, E1+1' is probabilistic. 
Resource consumption and quality uncertainties define 
the new state. 

Rewards and the value function 
Rewards are determined by the given reward function 
applied to the final outcome. Note that no rewards 
are associated with intermediate results, although this 
could be easily incorporated into this model. 

We now define a value function (expected reward
to-go) over all states. The value of terminal states is 
defined as follows. 

V([lL, q, r)) = U(q) (2) 

The value of nonterminal states of the MDP is defined 
as follows. 

V([li,q,r)) = 

m~x L p!+l((q',~r)lq) V([li+1,q',r - ~r)) (3) 
J q' ,L:l.r 

This defines a finite-horizon MDP, or equivalently, 
a state-space search problem that can be represented 
by a decision tree or AND/OR graph. It can be solved 
using standard dynamic programming or using a search 
algorithm such as AO* 

Theorem 1 Given a progressive processing unit u, an 
initial resource allocation ro, and a reward function 
U(q), the optimal policy for the corresponding MDP 
provides an optimal strategy to control u. 

Proof: Because there is a one-to-one correspondence 
between the reactive control problem and the MDP (in
cluding the fact that the PRU transition model satisfies 
the Markov assumption), and because ofthe optimality 
of the resulting policy, we conclude that it provides an 
optimal reactive strategy to control the execution of the 
given progressive processing unit. 0 

We note that the number of states of the MDP is 
bounded by the product of the number of levels L, 
the maximum number of alternative modules per level 
maxi Pi, the number of discrete quality levels, and the 
number of possible resource vectors. While resource 
measures could vary over a large range, the size of the 
control policy can be reduced by using a coarse unit. 
Therefore, unit choice introduces a tradeoff between the 
size of the policy and its effectiveness. 

We have implemented the policy construction algo
rithm for a problem that involves only one resource 
(time). Figure 2 shows the results we got with a task 
structure composed of 3 levels, with 5 modules per level 
(all levels included a dummy 6th module that allows 
the controller to skip that level). The five unit sizes in 
this case represent multiples of 1, 10, 20, 40, and 80 
of the original quality and time units. The dark bars 
show the time to construct the policy (logarithmic scale 
measured in milliseconds). The light bars show the rel
ative reduction in the expected value of the initial state 
with respect to the optimal value. (The reduction in 

2nd NASA International Workshop on Planning and Scheduling for Space 165 



7,00 

:CR"lative Err'f' 

~~g~ 

Figure 2: The effect of resource unit size on policy con
struction time and value 

value is due to the fact that the process is modeled 
using coarse resolution and a compact policy.) It is 
interesting to note that it takes 15619 seconds to con
struct a precise policy with no error (left columns) while 
an approximate policy with a unit size of 20 (middle 
columns) takes only 0.27 seconds and the error is only 
3.6%. These preliminary results are consistent with our 
intuition that the optimal policy can be approximated 
with a coarse resource unit and a compact policy. 

Optimal Control of multiple PRU s using 
opportunity cost 

Suppose now that we need to schedule the execution 
of a complete plan that includes n + 1 activities. One 
approach is to construct an optimal schedule by gener
alizing the solution presented in the previous section. 
That is, one could construct a large MDP for the com
bined sequential decision problem including the entire 
set of n + 1 PRUs. Each state must include an indicator 
of the activity (or PRU) number, i, leading to a general 
state represented as [i, l, q, rl. 

This rather complex MDP is still a finite-horizon 
MDP with no loops. Moreover, the only possible transi
tions between different PRUs are from a terminal state 
of one PRU to an initial state of a succeeding PRU. 
Therefore, we can solve this MDP by computing an op
timal policy for the last PRU for any level or resource 
availability r, then use the value of its initial states to 
compute an optimal policy for the previous PRU and 
so on. 

Theorem 2 Given a plan P represented as a sequence 
of progressive processing units, and a reward function 
Ui(q) associated with each PRU, the optimal policy for 
the corresponding MDP provides an optimal strategy to 
control P. 

This is an obvious generalization of Theorem 1. The 
complete proof, by induction on the number of PRUs, 
is omitted. 

We now show how to measure the effect of the remain
ing n PRU s on the execution of the first one. This effect 
can be reformulated in a way that preserves optimality 
while suggesting an efficient approach to meta-level con
trol that does not requires run-time construction of the 
policy. 

Definition 7 Let lI*(i,r) = lI([i,lo,O,r]) denote the 
expected value of the optimal policy for the last n - i + 1 
PRUs. 

To compute the optimal policy for the i-th PRU, we 
can simply use the following modified reward function. 

U[(q, r) = Ui(q) + lI*(i + 1, r) (4) 

In other words, the reward for completing the i-th activ
ity is the sum of the immediate reward and the reward
to-go for the remaining PRUs using the remaining re
sources. Therefore, the best policy for the first PRU can 
be calculated if we use the following reward function for 
final states: 

U~(q,r) = Uo(q) + lI*(I,r) (5) 

Definition 8 Let OC(r, 6.r) = 11*(1, r) - 11*(1, r-6.r) 
be the resource opportunity cost function. 

The opportunity cost measures the loss of expected 
value due to reduction of 6.r in resource availability 
when starting to execute the last n PRUs. 

Definition 9 Let the OC-policy for the first PRU be 
the policy computed with the following reward function: 

U~(q, r) = Uo(q) - OC(ro, ro - r) 

The OO-policy is the policy computed by deducting 
from the actual reward for the first task the opportunity 
cost of the resources it consumed. 

Theorem 3 Controlling the first PRU using the OC
policy is optimal. 

Proof: From the definition of OC(r, 6.r) we get: 

V*(I, ro - 6.r) = 11*(1, ro) - OC(ro, 6.r) (6) 

To compute the optimal schedule we need to use the re
ward function defined in Equation 4 that can be rewrit
ten as follows. 

U~(q,ro - 6.r) = Uo(q) + V*(I,ro) - OC(ro,6.r) (7) 

Or, equivalently: 

UMq,r) = Uo(q) + V*(I,ro) - OC(ro,ro - r) (8) 

But this reward function is the same as the one used 
to construct the OO-policy, except for the added con
stant V* (1, ro). Because adding a constant to a reward 
function does not affect the policy, the conditions of 
Theorem 2 are met and the resulting policy is optimal. 
o 

Theorem 3 suggests an optimal approach to schedul
ing an arbitrary set of n + 1 activities by first using an 
OO-policy for the first PRU that takes into account the 
resource opportunity cost of the remaining n activities. 
Then the OO-policy for the second PRU is used tak
ing into account the opportunity cost of the remaining 
n - 1 activities and so on. To be able to implement 
this approach we need to have the control policies read
ily available. This issue is addressed in the following 
section. 

166 2nd NASA International Workshop on Planning and Scheduling for Space 



Current work and open problems 
In the previous section, we presented a solution to the 
control problem of multiple progressive processing units 
without accounting for its computational complexity. 
In particular, the opportunity cost must be computed 
and sometimes revised when the plan is modified dur
ing execution. Once the opportunity cost is revised, a 
new policy for the current PRU must be constructed. 
In principle, finding the exact opportunity cost requires 
the construction of an optimal policy for the entire plan. 
In this section we discuss current work aimed at reduc
ing the complexity and enhancing the applicability of 
this framework. 

Using precompiled control policies In order to 
implement an effective reactive controller for progres
sive processing, one should avoid reconstruction of con
trol policies on-board or at the control center. Instead, 
we propose to: 

1. use a fast approximation scheme to estimate the op
portunity cost; and 

2. use pre-compiled policies for different levels of oppor
tunity cost. 

We have examined several approaches to estimating 
the opportunity cost. Function approximation tech
niques seem to be suitable for learning the opportu
nity cost from samples of examples for which we can 
compute the exact cost off-line. In order to avoid com
puting a new policy (for a single PRU) each time the 
opportunity cost is revised, we can divide the space of 
opportunity cost into a small set of regions representing 
typical situations. For each region, an optimal policy 
would be computed off-line and stored in a library. At 
run-time, the system will first estimate the opportunity 
cost and then use the appropriate pre-compiled policy 
from the library. These policies remain valid as long as 
the overall task structure and the utility function are 
fixed. 

Handling multiple resources As the number of re
sources grow, the size of each module descriptor and 
the overall policy also grow. This growth is exponen
tial in the number of resources. Because we anticipate 
the number of resources in this application to remain 
small (two or three), the effect on computational com
plexity of policy construction is limited. Another source 
of complexity, however, is the approximation of the op
portunity cost of multiple resources. In general, the 
OC function is not additive over resources. However, 
independence relationships between certain cost func
tions could simplify the approximation by allowing us 
to approximate separately each cost function. 

More complex task structures The progressive 
processing task structures we have studied so far are 
rather limited. They are composed of a sequence of 
levels each with a set of alternative methods. We are ex
amining several extensions including trees and directed 
acyclic graphs. Cycles in the task structure could be 
handled as well (making the control problem an infi-

nite horizon MDP). Cycles could be used to represent 
multiple attempts to execute actions that fail. 

Partially-ordered plans Another generalization of 
this work is to allow the components of a PRU or the 
overall plan to be partially ordered. The effect of this 
generalization on a single PRU is that the state of the 
MDP must include the "frontier" of the execution sub
graph with several different modules being ready for 
execution. This is much more complex than the sin
gle point in sequence of levels we are currently using. 
This generalization will require some restrictions on 
how large the state space may grow (for example, by 
limiting the non-linearity of the plan to just a few choice 
points). Handling an overall plan that is partially or
dered is not difficult, as long as the different activities 
remain independent. 

Dependency among activities Right now we as
sume that different activities in a plan are independent, 
except for the fact that they share resources and con
tribute to the comprehensive value of the plan. De
pendency among activities could be represented using 
additional state variables that capture the sources of 
dependency. Each action in this model will have possi
ble stochastic effects on some state variables. Activities 
(or specific methods in the progressive processing task 
structure) could be conditioned on these state variables. 
The size of the state space grows exponentially with the 
number of additional state variables, making it hard to 
model highly dependent activities. 

Conclusion 

We present an approach to meta-level control of the 
activity of planetary rovers by mapping each activity 
into a progressive processing unit and formulating the 
control problem as an MDP. It is shown that an optimal 
policy for a plan composed of a sequence of activities 
can be constructed by controlling a single PRU at a 
time, taking into account the opportunity cost of the 
remaining tasks. To apply this model to control the 
operation of an autonomous rover, a fast approximation 
of the opportunity cost is needed. Finally, a highly 
reactive controller is described that uses a library of 
pre-compiled control policies to operate in a dynamic 
environment. 

A less complex model of progressive processing 
that relies on heuristic scheduling has been studied 
in (Mouaddib and Zilberstein 1997). The task struc
ture, however, is limited to a linear set of levels with 
one module per level and no quality uncertainty or qual
ity dependency. The heuristic scheduler is fast, but it 
is not optimal. Heuristic scheduling of computational 
tasks has also been studied by Garvey and Lesser (1993) 
for the design-to-time problem-solving framework. The 
latter framework represents explicitly non-local interac
tions between sub-tasks. 

The progressive processing framework relates to a 
large body of work within the systems community on 
imprecise computation (Liu et al. 1991). Each task 

2nd NASA International Workshop on Planning and Scheduling for Space 167 



in that model is decomposed into a mandatory subtask 
and an optional subtask. A variety of scheduling algo
rithms have been developed for imprecise computation 
under different assumptions about the optional part. 
Our model allows for a richer representation of quality 
and resource uncertainty and quality dependency. Un
like imprecise computation, the schedule constructed by 
the MDP scheduler is a conditional schedule; the selec
tion of modules is conditioned on the actual resource 
consumption and outcome of previous modules. 

The application of dynamic programming to control 
interruptible anytime algorithms has been studied by 
Hansen and Zilberstein (1996). Optimal monitoring 
of progressive processing tasks using a corresponding 
MDP has been studied by Mouaddib and Zilberstein 
(1998) with respect to a simpler task structure and 
without the notion of quality uncertainty and quality 
dependency. The notion of opportunity cost is borrowed 
from economics. It has been used previously in meta
level reasoning by Russell and Wefald (1991). Horvitz 
(1997) uses a similar notion to develop a model of con
tinual computation in which idle time is used to solve 
anticipated future problems. 

The use of pre-compiled control policies to construct 
a highly reactive real-time system has been studied by 
several researchers. For example, Greenwald and Dean 
(1998) show how a real-time avionics control system 
can use a library of schedules that cover all possible 
situations. Each schedule is conditioned on the state of 
the flight operation. 

Acknowledgments 
We thank Richard Washington and John Bresina for 
introducing us to the domain of planetary rover control 
and for numerous helpful discussions. Andy Arnt imple
mented the policy construction algorithm. This work 
was supported in part by the National Science Founda
tion under grants IRI-9624992 and INT-9612092, by the 
Ganymedell Project of Plan Etat/Nord-Pas-De-Calais, 
and by ruT de Lens. 

References 
RP Bonasso, D. Kortenkamp, D. Miller, and M. Slack. 
Experience with an architecture for intelligent, reac
tive agents. Journal of Experimental and Theoretical 
AI,1996. 

T.T. Blackmon, L. Nguyen, C.F. Neveu, D. Smith, C. 
Anderson, and V. Gupta. Command generation for 
planetary rovers using virtual reality. Fifth Interna
tional Symposium on Artificial Intelligence, Robotics 
and Automation in Space, 1999. 

J. Bresina, K. Golden, D. Smith, and R Washington. 
Increased flexibility and robustness for Mars rovers. 
Fifth International Symposium on Artificial Intelli
gence, Robotics, and Automation in Space, 1999. 

T. Dean and M. Boddy. An analysis of time-dependent 
planning. Seventh National Conference on Artificial 
Intelligence, 49-54, 1988. 

T. Estlin, A. Gray, T. Mann, G. Rabideau, R Cas
tano, S. Chien, and E. Mjolsness. An integrated sys
tem for multi-rover scientific exploration. Sixteenth 
National Conference on Artificial Intelligence, 541-
548,1999. 
A. Garvey and V. Lesser. Design-to-time real-time 
scheduling. IEEE Transactions on Systems, Man, and 
Cybernetics, 23(6):1491-1502,1993. 
L. Greenwald and T. Dean. A conditional scheduling 
approach to designing real-time systems. AI Planning 
Systems, 1229-1234, 1998. 
E.A. Hansen and S. Zilberstein. Monitoring the 
progress of anytime problem-solving. Thirteenth Na
tional Conference on Artificial Intelligence, 1229-
1234, 1996. 
E. Horvitz. Reasoning under varying and uncertain 
resource constraints. Seventh National Conference on 
Artificial Intelligence, 111-116, 1988. 
E. Horvitz. Models of continual computation. Four
teenth National Conference on Artificial Intelligence, 
286-293, 1997. 
J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. 
Zao. Algorithms for scheduling imprecise computa
tions. IEEE Transactions on Computers, 24(5):58-68, 
1991. 
A.I. Mouaddib. Contribution au raisonnement pro
gressif et temps reel dans un univers multi-agents. 
PhD thesis, University of Nancy I, (in French), 1993. 
A.I. Mouaddib and S. Zilberstein. Handling duration 
uncertainty in meta-level control of progressive rea
soning. Fifteenth International Joint Conference on 
Artificial Intelligence, 1201-1206, 1997. 
A.I. Mouaddib and S. Zilberstein. Optimal schedul
ing of dynamic progressive processing. Thirteenth Bi
ennial European Conference on Artificial Intelligence, 
449-503, 1998. 
N. Muscettola, P.P. Nayak, B. Pell, and B.C. Williams. 
Remote agent: To boldly go where no AI system has 
gone before. Artificial Intelligence, 103(1-2), 1998. 
D. Musliner, E. Durfee, and K. Shin. Circa: A co
operative, intelligent, real-time control architecture. 
IEEE Transactions on Systems, Man, and Cybernet
ics, 23(6), 1993. 
S. Russell and E. Wefald. Do the Right Thing: Studies 
in Limited Rationality MIT Press, 1991. 
R Washington, K. Golden, J. Bresina, D.E. Smith, C. 
Anderson, and T. Smith. Autonomous rovers for Mars 
exploration. IEEE Aerospace Conference, 1999. 

S. Zilberstein and S. Russell. Optimal composition of 
real-time systems. Artificial Intelligence 82(1-2):181-
213, 1996. 
S. Zilberstein and A.I. Mouaddib. Reactive control 
of dynamic progressive processing. Sixteenth Inter
national Joint Conference on Artificial Intelligence, 
1268-1273, 1999. 

168 2nd NASA Intemational Workshop on Planning and Scheduling for Space 


	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part183
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part184
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part185
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part186
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part187
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part188

