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Abstract 
This paper compares and contrasts several coordination 
schemes for a system that continuously plans to control 
collections of rovers or spacecraft using collective mission 
goals instead of goals or command sequences for each 
spacecraft. A collection of self-commanding robotic systems 
would autonomously coordinate itself to satisfy high level 
science and engineering goals in a changing partially 
understood environment making feasible the operation of 
tens or even a hundred spacecraft. 

1. Introduction 
While explicitly commanding a spacecraft via low level 
command sequences has worked spectacularly on previous 
NASA missions, there are limitations deriving from 
communications restrictions - scheduling time to commun­
icate with a particular spacecraft involves competing with 
other projects due to the limited number of deep space 
network antennae. This implies that a spacecraft can spend 
a long time just waiting whenever a command sequence 
fails. This is one reason why the New Millennium program 
has an objective to migrate parts of mission control tasks 
onboard a spacecraft to reduce wait time by making 
spacecraft more robust [Muscettola et al. 1997]. The 
migrated software is called a "remote agent" and can be 
partitioned into 4 components: 

• a mission manager to generate science goals, 
• a planner/scheduler to turn goals into executable 

activities through reasoning about expected future 
situations, 

• an executive/diagnostician to initiate and maintain 
activity execution while interpreting sensed events 
through reasoning about past and present situations, 
and 

• a conventional reactive controller to interface with the 
spacecraft to implement an activity'S execution. 

In addition to needing remote planning and execution 
for isolated spacecraft, a trend toward multiple-spacecraft 
missions points to the need for remote distributed planning 
and execution. The past few years have seen missions with 
growing numbers of probes. Pathfinder has its rover 
(Sojourner), Cassini has its Huygens lander, and Cluster II 

is scheduled to launch in 2000 and has 4 spacecraft for 
multi-point magnetosphere plasma measurements. This 
trend is expected to continue to progressively larger fleets. 
For example,. one proposed interferometer mission 
[Mettler& Milman 1996] would have 18 spacecraft flying 
in formation in order to detect earth-sized planets orbiting 
other stars. Another proposed mission involves 44 to 104 
spacecraft in Earth orbit to measure global phenomena 
within the magnetosphere. 

This paper compares and contrasts 3 ways to distribute 
a planner/scheduler amongst a population of spacecraft or 
rovers that have separate executive/diagnosticians and 
reactive controllers. The first places the planner/scheduler 
on a single platform that remotely commands the others. 
The second is more distributed in that it replicates a 
planner across the population to let each platform plan its 
own activities, but a single platform handles goal 
distribution. The last approach advertises all goals and lets 
each platform bid for a goal based on how well its local 
planner can satisfy the goal given local information. 
These approaches delineate a space of approaches where 
the platform that distributes tasks maintains progressively 
less information on the entire constellation. 

This paper's sections subsequently describe 3 thought 
experiments for multi-platform missions that motivate 8 
performance metrics for evaluating approaches toward 
continuous task-distribution-based coordination, compare 
and contrast 3 coordination methods, discuss related work, 
and finally conclude. 

2. Multi-Platform Thought Experiments 
In order to focus this discussion on distributed autonomy in 
space, consider different types of future multi-platform 
missions. There are 4 kinds of such missions depending on 
the reason for proposing multiple platforms: 

• improved coverage when observing/exploring large 
areas (like the number of identical small satellites 
with scatterometers proposed for the Ocean Surface 
Wind Measurement Program (EOS-5)); 

• specialized probes with explicitly separate science 
objectives (like Cassini with Huygens and Pathfinder 
with Sojourner); 
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• multi-point in-situ sensing for observing large scale 
phenomena that are only detectable with multiple 
spatially separated in-situ sensors (like for observing 
global magnetospheric phenomena with spatially 
separated plasma sensors in the Magnetospheric Multi 
Scale or Cluster II missions); and 

• building large synthetic aperture sensors with many 
small spatially separated sensors for imaging very 
remote targets (like Constellation-X, Terrestrial Planet 
Finder, and TechSat-21). 

These reasons for having multiple platforms in a 
mission are not exclusive. For instance, the Air Force's 
TechSat-21 mission concept [Martin&Stallard 1999] 
involves a constellation of clusters of platforms. Each 
cluster forms a synthetic aperture for radar sensing, and the 
number of clusters depends on the desired global coverage. 

2.1. Coordinating Task Distribution 
In missions where each probe performs its task in isolation, 
the difference between an autonomous multi-platform 
mission and many autonomous single platform missions 
involves distributing tasks to the different platforms. 
While the task distribution for multiple autonomous single 
platform missions is determined on the ground, an 
autonomous multi-platform mission can distribute and 
redistribute tasks remotely. This feature improves both 
distribution quality and robustness by letting the spacecraft 
use local information to optimize the initial task 
distribution and to redistribute tasks when a spacecraft 
suffers an anomaly, unexpectedly finishes a task early, or 
detects an unanticipated science opportunity. 

As an example of coordinated autonomous task 
distribution, consider multiple rovers surveying rocks in an 
area on Mars usingMISUS [Estlin et al. 1999]. In this 
system a Mars lander manages a population of rovers by 
analyzing data from past observations, determining new 
observations, assigning observation goals to rovers, and 
collecting data as each rover moves from rock to rock and 
performs its experiments in isolation (fig. 1). This system 
autonomously maximizes science return while minimizing 
the execution time of the most heavily tasked rover. 

While MISUS focused on a multi-rover scenario, 

Status & Observations 

FIG 1: Coordinating multiple rovers with MISUS 

much of the developed infrastructure applies to any multi­
platform mission with a number of identical platforms that 
operate in isolation. This is includes most of the improved 
coverage and specialized probe classes of missions. As an 
example of this generalization, consider replacing the Mars 
lander and the rover popUlation with a ground station and a 
constellation of RADARSATs like the one illustrated in 
figure 2. Currently the Canada Centre for Remote Sensing 
manages a single RADARS AT [CCRS 1998] in a sun­
synchronous orbit. This satellite can observe any location 
around the poles on a daily basis and any location around 
the equator in 6 days or less. To decrease the equatorial 
delay time, consider replacing the single satellite with 6 
equally spaced RADARSATs. The resultant constellation 
decreases the equatorial delay time to one day. A system 
like MISUS could manage this constellation since each of 
the 6 satellites operates independently of the others. 

FIG 2: Operating modes for one of a constellation of 
radar satellites 

2.2. Coordinating Task Execution 
The multi-point in-situ sensing and large synthetic aperture 
missions differ operationally from the other 2 classes in 
that the separate spacecraft do not operate in isolation. For 
instance consider the Air Force's TechSat-21 mission 
concept (fig. 3). TechSat-21 involves a constellation of 
clusters of spacecraft. While each cluster functions in 
isolation, spacecraft in a cluster have tightly coordinated 

Radar Mission 
(AMTilG/vITl/SAR) 

(Narrow beam/Wide are" cove'age) 

Passive Radiometry Mission 
accuracy geotocation) 

FIG 3: Operating modes for clusters in TechSat-21 
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activities. These activities include tight beam commun­
ications, synthetic aperture radar (SAR), and geolocation. 

In many respects coordinated task execution is easier 
than coordinated task distribution. For the smaller 
missions designating a master spacecraft that commands 
the other (slave)lspacecraft as though they were physically 
attached solves this problem, but bandwidth restrictions 
keep this approach from scale with either the number of 
slaves or the complexity of each slave. Resolving this 
scaling issue is outside this paper's focus. 

2.3. Autonomy Architectures 
In an earlier paper [Barrett 1999], I described 3 different 
autonomy architectures for a constellation of spacecraft 
involving leaders, followers, and slaves. Here I expand 
this taxonomy to also include contractors. The number of 
autonomy modules on a spacecraft determines which of the 
4 classes it falls into: 

• a slave has no modules and is tele-operated by the 
reactive control module of another nearby spacecraft; 

• a follower has both an executive/diagnostician and a 
reactive controller (like many existing spacecraft); 

• an contractor has a follower's components and a 
planner/scheduler to optimize local activities (like 
DS1's remote agent experiment); and 

• a leader has all four components. 

With these 4 classes, we can define a multi-platform 
mission's autonomy architecture by stating the class of 
each platform, and how the collection of platforms 
coordinate their activity. In terms of MISUS, the 
architecture consists of having the lander lead, and letting 
the rovers act as followers or contractors depending on the 
desired local autonomy. 

Given a multi-platform mission, there are two sets of 
metrics for evaluating the acceptability of autonomy 
software. The first set motivates minimizing the amount of 

remote autonomy and has 4 metrics: 

• the amount of explicit control an operator has over the 
constellation's activities, 

• the feasible accuracy of modeling the constellation's 
activities on the ground, 

.. the autonomy software's testability, and 
• the amount of needed onboard computing power. 

While the first set of metrics tend to be maximized by 
limiting the amount of autonomy on a constellation, the 
second set of 4 evaluation metrics are maximized by 
increasing the amount or remote autonomy: 

• the platforms' event response time, 
• the required bandwidth between platforms and to 

Earth, 
• the quality of the downlinked data, and 
• the functional redundancy. 

3. Coordinating Multiple Planners 
In [Rabideau et al. 1999], others and I compared 3 methods 
for coordinating a population of rovers from a central 
lander in the MIS US scenario (figure 4). We used central 
planning ro manage a population with a leader-follower 
architecture, where the leader generates plans that are 
subsequently executed by the followers. In order to assure 
each plan's correctness, the lander needs to acquire large 
amounts of state information on the rovers to appropriately 
determine if they can execute their plans. 

Distributed planning reduces the amount of needed 
state information by using a goal distribution planner. This 
planner takes a subset of the rovers' collective state 
information with less precise models of the rovers, and it 
produces an abstract plan with enough detail to determine 
how to distribute the goal activities among the rovers. The 
lander then transmits goals to the appropriate rovers. 

Another way to migrate planner/schedulers onto the 

Central Planning Distributed Planning Contract Networks 
Goal Distribution 
Planner L 

FIG 4: Approaches to task distribution based coordination 
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rovers uses a central auctioneer to distribute goals, and the 
rovers use onboard planners with local state information to 
determine appropriate bids for each goal as it arises. This 
approach is an instance of the contract network protocol 
[Smith 1980, Sandholm 1993] - a commonly used 
coordination paradigm within the distributed artificial 
intelligence community. Within a contract net protocol, a 
leader announces a task to a set of contractors, each 
contractor bids for it, and the leader awards the task to the 
contractor with the best bid. 

3.1. Central Planning 
The simplest way to extend single-platform spacecraft 
autonomy research to autonomous multi-platform missions 
involves using a master/slave approach where a single 
leader performs all autonomy reasoning. The slaves only 
transmit sensor values to the leader and forward control 
signals received from the leader's reactive controller to 
their appropriate local devices. In this way all spacecraft 
are treated as a single multi-platform spacecraft. 

Both single and multiple platform autonomous 
spacecraft must respond to a (somewhat) dynamic, 
unpredictable environment. In terms of high-level, goal­
oriented activity, a planner needs to modify spacecraft 
sequences to account for fortuitous events such as 
observations completing early and setbacks such as a 
failure to acquire a guide star for a science observation. 

The need to rapidly respond to unexpected events 
motivates continuous planning, an approach where a 
planner continually updates a sequence in light of changing 
operating context. In such an operations mode, a planner 
would accept and respond to activity and state updates on a 
one to ten second time scale. CASPER [Chien et al. 1999] 
is an example of a continuous planner based on a heuristic 
iterative repair approach toward planning [Zweben et al. 
1994, Fukunaga et al. 1997]. This approach takes a 
complete plan at some level of abstraction and manipulates 
its actions to repair detected flaws. Example flaws would 
involve an action being too abstract to execute or many 
simultaneous actions with conflicting resource needs. 

Making a heuristic iterative repair planner continuous 
within a planner/scheduler module results in figure 5' s 
algorithm. The first line assures that the PROJECTION 
variable always reflects how the state of a rover, or a 
spacecraft, should evolve as its plan executes, and the last 
line causes this execution by passing near-term activities to 
the executive/diagnostician. 

The expected state evolution changes as a plan gets 
new goal activities and the perceived state diverges from 
expectations. This divergence is caused by unexpected 
exogenous events and activities having unexpected 
outcomes. Since a planning model can only approximate 
the reality experienced during execution, these unexpected 
state changes can always to happen. 

At any moment the projection can detect flaws in a 
local plan, and lines 2 through 4 select and apply repair 

Given: a PLAN with multiple activities 
a PROJECTION of PLAN into the future 

1. Revise PROJECTION using the currently 
perceived state and new goal activities from the 
mission manager. 

2. Heuristically choose a plan flaw found in 
PROJECTION. 

3. Heuristically choose a flaw repair method. 
4. Use method to alter PLAN & PROJECTION. 
5. Release relevant near-term activities in PLAN to 

the real-time system. 
6. Go to 1. 

FIG 5: Continuous planning using heuristic iterative 
repair 

methods to fix these flaws. For instance, a satellite's 
observation activity can take an unexpectedly long time to 
complete. Depending on the delay, a subsequent 
observation may be impossible due to the target being too 
far behind the satellite when the observation starts. A 
repair method might fix the flaw by rescheduling the 
observation at a later time. 

With respect to our evaluation metrics, using a 
continuous planner with a master/slave approach toward 
multi-platform coordination facilitates allowing a variable 
amount of remote autonomy. At one extreme the 
continuous planner is given low-level command sequences 
and can only apply a go-to-safe-mode repair method upon 
detecting a flaw. This extreme maximizes the first set of 
metrics. Another extreme reduces the first set of metrics 
while improving the second set. Here the planner is only 
given a set of abstract activities and uses local information 
and heuristics improve event response time and the quality 
of downlinked data. While functional redundancy and 
inter-platform bandwidth are unaffected by moving from 
one extreme to another, turning the slaves into followers 
increases redundancy and reduces bandwidth. Due to how 
easily this change can degrade the event response time, 
turning slaves into followers is an active research topic in 
the multi-agent research community [Tambe 1997]. 

3.2. Distributed Planning 
Turning followers into contractors raises issues regarding 
how to coordinate multiple planners. In distributed 
planning, this coordination is achieved through using a 
continuous goal distribution planner on one platform, and 
this planner continuously manages the distribution of goals 
based on continuously updated partial information on the 
other platforms. For instance, the distribution planner 
might model rovers in a multi-rover scenario as points on a 
plane where each rover can travel in a straight line from 
one goal activity's observation target to another's. 

With this abstract characterization, the distribution 
planning problem becomes a Multiple-Traveling Salesman 
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Problem (MTSP) [Johnson&McGeoch 1997] where the 
members of a sales team must collectively visit each of a 
set of cities and the maximum traveling time of the 
salesmen is minimized. While this is a NP-Complete 
problem, there are fast greedy approaches that find slightly 
sub-optimal solutions. By encoding one of these 
approaches into our distribution planner, the lander can 
both determine how to distribute the goal activities and 
provide a rough estimate on the order in which a rover 
should visit its targets to perform the goal activities. 

With respect to our evaluation metrics, distributed 
planning facilitates variable autonomy both with the 
ground and across the platforms. Minimizing autonomy 
across platforms involves making the distribution planner 
use full information and generate low level action 
sequences for the other platforms, which can only execute 
their actions. This restriction turns distributed planning 
into the previously evaluated central planning approach. 

Maximizing autonomy on the contractor platforms has 
the same effects as maximizing autonomy for the central 
planner, but also adds a reduction to inter-platform 
bandwidth needs. The lead platform no longer needs to 
maintain full state information, and each platform's 
planner can locally respond to events without informing 
the leader. Now a contractor can resolve a flaw by either 
quietly shuffling its local activities or reporting failure to 
the leader upon deleting a local activity. This quiet shuffle 
reduces bandwidth needs while failure reporting facilitates 
moving activities between platforms via the leader's 
continuously repairing its goal distribution plan. 

3.3. Contract Networks 
Minimizing the amount of continuously updated contractor 
information on the leader results in taking a contract 
network approach toward coordinating multiple planners. 
Here a leader advertises each goal and each contractor bids 
on the goals based on its local information. To respond to 
an unexpected event, a contractor will either quietly shuffle 
its activities or delete a local activity and report failure to 
the leader. Upon hearing of a failure, the leader can re­
advertise the failed goal for auction. Notice that there is no 
need for continuously updated partial contractor 
information - the leader does not need to know anything 
about the contractors to auction a goal. 

As shown in figure 4, using a contract net protocol to 
implement a greedy solution to the MTSP involves making 
the lander take goal activities and incrementally advertise 
them to all rovers. Upon receiving a task, a rover uses an 
onboard planner to try to fit a solution to the goal activity 
into its current schedule. Upon succeeding, a rover bids its 
total projected travel distance upon including the new 
observation. Rovers that fail to insert the task within a time 
limit do not participate in the auction. Upon receiving all 
bids, the lander awards the task to the rover with the 
smallest bid. By bidding the total distance the rovers 

minimize the maximum rover travel distance - an MTSP 
solution. 

With respect to our evaluation metrics, letting an 
operator restrict the platforms that can bid for certain 
activities results in a system with variable autonomy. At 
one extreme the operator can specify a low level activity 
sequence for each platform, and at the other the leader gets 
a set of high level goals that can go to any platform. 

As before, the first extreme scores best on the 
autonomy minimization metrics and the second scores best 
on the autonomy maximization metrics. While this 
approach has lower inter-platform bandwidth needs than 
the other approaches, it has more computational overhead 
and assumes a greedy approach toward optimization. 

4. Related Work 
While there is a large literature on cooperating robots, most 
focuses on behavioral approaches that do not explicitly 
reason about partitioning goals and planning courses of 
action. Three notable exceptions are GRAMMPS 
[Bumitt&Stentz 1998], MARS [Fischer et al. 1995], and 
RETSINA [Paolucci et al. 1999]. GRAMMPS is a system 
coordinating multiple mobile robots visiting locations in 
cluttered partially known environments. This system 
shares quite a bit similarity with our central goal allocation 
with distributed planning architecture for rovers. Both 
systems solve an MTSP problem to distribute targets, and 
both have low level planners on each mobile robot, but 
GRAMMPS focuses on path planning while learning a 
terrain instead of focussing on resources and exogenous 
events. 

MARS on the other hand is a cooperative transport­
ation scheduling system that shares many similarities with 
the contract net approach. Once again the differences 
involve a focus on multiple resources, exogenous events, 
and variable autonomy. 

Finally RETSINA uses peer-to-peer coordination with 
an HTN planner for local planning. While the use of 
heuristic iterative repair here points to one difference 
between the approaches. The main difference involves 
RETSINA's not modeling known exogenous events and 
not providing default mechanisms for initially distributing 
goals and transferring goals to resolve execution failures. 

5. Conclusions 
This paper compared and contrasted 3 continuous task­
distribution-based coordination schemes for commanding 
multiple platforms with collective goals instead of goals or 
command sequences for each platform: central planning, 
distributed planning, and contract networks. All schemes 
supported variable autonomy and were evaluated with 
respect to 8 different metrics. At the lowest autonomy 
setting, all schemes devolved into commanding the 
platforms with low level sequences, and at the highest 
autonomy setting the schemes differed primarily in terms 
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of needed onboard computing, inter-platform bandwidth, 
and redundancy. While central planning kept all 
computing on the leader, distributed planning spread the 
computiI),g overhead across all platforms. The result was a 
decrease in inter-platform bandwidth needs and an increase 
in redundancy with an unchanging total computing 
overhead. Contract networks further improved the 
bandwidth needs and redundancy, but this scheme also 
increased the total computing overhead by letting each 
platform see and bid for each goal. . 

Reasoning about incremental autonomy for distributed 
planning and contract networks results in a realization that 
these approaches toward coordinating multiple planner/ 
schedulers can be combined. The resultant approach 
would used a goal distribution planner, but would only 
collect enough information to limit the number of 
platforms that participate in an auction. One avenue for 
future work involves building a coordination mechanism 
that spans the space between contract networks and 
distributed planning. Another future research avenue 
involves generating joint activities for multiple spacecraft! 
rovers to collectively satisfy and would extend our 
approach to handle constellations of clusters of platforms 
(in TechSat-21). Finally, a third research direction 
involves making the rovers/orbiters compete for shared 
resources, like communications opportunities. 
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