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Abstract 

Proposed missions to explore comets and moons will 
encounter environments that are hostile and unpre
dictable. Any successful explorer must be able to 
adapt to a wide range of possible operating condi
tions in order to survive. The traditional approach of 
constructing special-purpose control methods would 
require information about the environment, which is 
not available a priori for these missions. An alter
nate approach is to utilize general control with sig
nificant capability to adapt its behavior, a so called 
adaptive problem-solving methodology. Using adap
tive problem-solving, a spacecraft can use reinforce
ment learning to adapt an environment-specific search 
strategy given the craft's general problem solver with 
a flexible control architecture. 

Introduction 
Because of light-time communication delays, exploration 
missions require an autonomous explorer that can adapt to 
handle possible environments. For autonomous planning 
systems, the high-level actions of the spacecraft must be 
planned with sufficient environmental information to en
sure that the resulting plans are admissible. A spacecraft 
could easily be lost based on inappropriate behavior in a 
particular environment due to overly-generic control meth
ods (Minton 1996). 

On the other hand, developing and testing domain
specific control methods is extremely difficult, and requires 
support of a domain expert. Moreover, the domain expert 
must have knowledge about the environment in which the 
spacecraft is operating, which is not available before the 
spacecraft arrives at the location to explore. If experts are 
not available, the spacecraft must be able to automatically 
adapt a flexible control structure specific to the new envi
ronment. 

Adaptive problem solving addresses these problems by 
enabling the development and maintenance of effective 

control strategies without extensive domain-specific knowl
edge. An adaptive problem solver is given: (1) a generic 
set of control strategies and (2) a flexible control archi
tecture, and uses a statistical method to estimate the qual
ity of each control strategy or generate a more appropriate 
strategy. Adaptive problem solving also provides hard sta
tistical guarantees on the quality of the behavior for each 
adapted control method. Using adaptive problem solv
ing techniques, spacecraft exploration in unknown environ
ments becomes feasible. 

In this paper, we describe how adaptive problem solving 
can be used to adapt the control methods of a spacecraft 
in-situ. The value of this method is empirically shown in 
the context of two spacecraft operations scheduling prob
lems in a generic planning and scheduling environment. By 
adapting control strategies for each domain, the lifespan 
of the spacecraft is improved since the adaptive problem 
solver can increase chances of spacecraft survival and con
tinue to update the control methods based on aging hard
ware or environmental changes. 

Motivational Example 
The comet lander will land on a surface of unknown den
sity, with the goals of drilling into the comet 90% and imag
ing its surroundings 10% of the time allocated to accom
plishing goals. Situations will force these percentages to 
be innapropriate. One scenario might be that the surface 
of the comet is much denser than expected, so the rate of 
drilling is decreased and the wear on the drill is increased. 
The lander might need to adjust its priorities to take more 
images instead of drilling. Another scenario might be that 
drilling caused a layer of dust on the surface to drift up, the 
dust might limit the visibility of the lander. Taking images 
might be ineffective, so the lander might want to delay its 
drilling activities until the dust settles, or take images be
fore drilling. 

Failure to adapt to these situations could cost the lander 
the mission, by depleting resources too rapidly, not accom
plishing mission objectives, or wearing out equipment. Not 
all possible situations can be enumerated before the mis-
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sion; instead an adaptive problem solver checks the cur
rent control strategy's performance in the given environ
ment and responds to changes by adapting the control strat
egy, independent of the cause of the change. An adaptive 
problem solver would continually adapt the control strategy 
if it found the current strategy non-optimal. 

Planning System 
The planning and scheduling system used to evaluate the 
control strategies for each model is a version of the AS
PEN (Automated Scheduling and Planning ENvironment) 
system (Fukunaga et al. 1997). ASPEN is a config
urable, generic planning/scheduling application framework 
that can be tailored to specific domains to create feasible 
schedules. 

ASPEN employs planning and scheduling techniques 
to automatically generate a necessary activity sequence to 
achieve the mission goals. This sequence is produced by 
utilizing an iterative repair algorithm (Zweben et al. 1994) 
which classifies conflicts and attacks them individually. 
Conflicts occur when a plan constraint has been violated 
where this constraint could be temporal or involve a re
source, state or activity parameter. Conflicts are resolved by 
performing schedule modifications such as moving, adding, 
or deleting activities. The target of the repair modification 
is chosen by a heuristic method, and the point in the search 
where this choice is made is called a choice point. For each 
type of choice point, the user creates a set of heuristic meth
ods to use with varying usage weights. The set of heuristic 
methods impacts the outcome of the schedule, and effec
tively controls the behavior of the spacecraft. 

The control strategies for adaptive problem solving are 
represented as sets of weighted heuristics so that they may 
. be robust enough to perform well over the entire problem 
distribution even when they are slightly suboptimal, as op
posed to a single heuristic which may not be as flexible to 
environment or hardware changes. 

The quality of a resulting schedule generated by ASPEN 
is measured by a set of preferences specified by the user. 
This set of preferences specifies the quality functions asso
ciated with certain parameters in the schedule. 

Adapting Control Strategies 
To adapt control strategies, we can search the neighbor
hood of a current strategy, and select higher-scoring strate
gies. Given a set of possible control strategies, the adap
tive problem solver selects the top strategies based on col
lecting samples of spacecraft performance in the current 
environment by running ASPEN evaluating the resulting 
schedule. The top strategies are returned to the search algo
rithm, which produces a subsequent set of hypotheses based 
on previously selected hypotheses using algorithm-specific 
techniques. This cycle continues until a certain amount of 
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Figure 1: Hypothesis Generation Diagram 
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Figure 2: Adaptive Problem Solving Diagram 

time has passed or another stopping criterion of the specific 
search algorithm has been met (see figure 1). 

Adaptive Problem Solving 
The adaptive problem solver attempts to select the top 
strategies from a set of strategies, supplied by the search 
algorithm, whose quality is a function of unknown parame
ters. It makes estimates of the parameters for strategy utility 
and sample cost in order to achieve a requested accuracy 
for a statistical decision requirement. The adaptive prob
lem solver iteratively refines the utility and cost parameter 
estimates by acquiring training examples and reevaluating 
utility and cost (see figure 2). 

The normal parametric model for reasoning about sta
tistical error is used in this analysis, which assumes that 
the difference between the expected utility and estimated 
utility of a hypothesis can be accurately approximated by 
a normal distribution. This assumption is grounded in the 
Central Limit Theorem and is further discussed in (Chien 
et al. 1995). The analysis would change given a different 
parametric model, but the results should be analogous for 
conventional models. 

Since parameter estimates are refined by random sam
pling, it is impossible to place perfect accuracy require
ments on the selection algorithms. In practice, probabilistic 
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requirements, or decision criteria, on the relative accuracy 
of the parameter estimates (and subsequent strategy selec
tion) are chosen as parameterized forms that allow a trade
off between accuracy and cost. 

Specifically, decision requirements take a set of hypo the
ses and a probabilistic error bound, and terminate when one 
of the hypotheses can be shown to have the greatest mean, 
evaluated through pair-wise comparisons, with a confidence 
higher than the given confidence level. The overall confi
dence for selection is a function of the confidence of each 
pair-wise comparison. Rational analysis can be used to al
locate error to each pairwise comparison in such a way as to 
attempt to optimize the resource usage necessary to acquire 
a sufficient number of samples across the comparisons to 
achieve the decision requirement (Gratch & Dejong 1994). 

In this analysis, the decision requirement that is used in 
the adaptive problem solver is the probably approximately 
correct (PAC) requirement. The choice of using PAC in this 
analysis is mostly based on its prevalence rather than spe
cific attributes of the requirement. The expected loss deci
sion requirement was evaluated and found to have minimal 
impact on the outcome. 

PAC Requirement 
In order to satisfy the PAC requirement, the hypothesis es
timated to be the best must be within some user-specified 
constant E distance of the true best hypothesis with prob
ability 1 - O. The sum of the error from each pair-wise 
comparison is bounded by this probability. Let Hsel be the 
expected utility of the selected hypotheses and Hi be the 
expected utility for the remaining hypotheses. Let H be 
the estimate of the expected utility of a hypothesis. It is 
sufficient to bound the probability of error in selection for 
pair-wise comparisons with the following equation: 

k-1 

L Pr[Hi < Hsel - EIHi > Hsel + E] .:::; 0 (1) 
i=l 

Thus the problem of bounding the overall error reduces 
to bounding the error of each k - 1 comparisons of the cho
sen best hypothesis to the rest of the hypotheses. 

The normality assumption reduces equation 1 to a func
tion of the parameter estimates, the number of examples n 
used to refine the estimates, the closeness parameter E, and 
an unknown variance term (J2. The two stopping criteria 
for selection are dominance, which is based on achieving a 
probability (0) through sampling that hi will perform bet
ter on a specific problem than hj, and indifference, which 
is the probability that the difference between performances 
will fall within E of O. For the rest of this discussion, E 

is ignored to simplify understanding. The equation for the 
probability of incorrect selection for a pair-wise compari
son, ail is: 

ai = if> (-(H,"' -Hi) k) (2) 
(J sel ,I 

We can use this relationship to determine how many 
training examples to allocate to each comparison, given the 
error bound on the probability of a mistake, an estimate 
of the difference in expected utility, and an estimate of the 
variance of each hypothesis: 

Rational Analysis 
The hypothesis selection algorithm as presented does not 
take advantage of unequal distribution of error. By dis
tributing error unequally across the pair-wise comparisons 
using the estimates of the sample cost and utility parame
ters, we can attempt to satisfy the requirements using the 
minimum possible cost. The general idea of rational anal
ysis is to choose the error ai for each comparison to mini
mize, subject to the given decision requirements: 

k-1 

L csel,insel,i 
i=l 

The algorithm must only ensure that the sum of the errors 
remains less than the given bound. If one pair-wise com
parison requires many more samples to achieve the same 
amount of accuracy as another comparison, then if the first 
is allowed to have more error and the second is allowed less, 
the overall cost of achieving those local requirements might 
be reduced. In practice, this method significantly reduces 
the number of samples necessary to achieve the require
ment for certain domains, as shown in (Gratch & Dejong 
1994). 

Adapting Hypotheses 
In order to adapt hypotheses, search algorithms are used to 
generate hypotheses in the neighborhood of the given hy
potheses. At each level of search, an adaptive problem solv
ing algorithm is used to evaluate the competing hypotheses 
with a given confidence bound. 

Local Beam Search 
One algorithm used to generate and search over hypotheses 
is local beam search (Russell & ~orvig 1995). In a flex
ible planning and scheduling domain, each hypothesis, or 
combination of heuristics, can be represented as a vector of 
percentages where the percentages of heuristics associated 
with a certain type of choice point in ASPEN sum to 100% 
(see figure 3). A random heuristic is included for each plan 
problem. The basic algorithm is included below. 
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Figure 3: Hypothesis Vector Diagram 

We chose a neighborhood of a vector to be defined as, for 
each subset of heuristics associated with a certain choice 
point, changing one of the usage percentages by a certain 
range, and scaling all of the other usage percentages equal 
amounts so that the sum is still 100% (see figure 3). Let 
I be the bound on the number of hypotheses the adaptive 
problem solver can evaluate. 

Genetic Algorithm 

Another algorithm that is used to generate hypotheses is 
a genetic algorithm (Goldberg 1989). Each hypothesis is 
represented as a vector of percentages, as in the local beam 
search. The three general operators (crossover, mutation, 
and reproduction) are used to generate the next set of hy
potheses to search over, and ranking the hypotheses is done 
using adaptive problem solving. The crossover operator is 
not aware of the different subsets of heuristics, and may 
choose to split within one of those subsets. Mutation also 
works without knowledge of the constraint that subsets 
must sum to 100%, so each subset is scaled to 100 uni
formly after the mutation operator is run. The basic algo
rithm is shown below. 

Method Implementation 

An adaptive control system of this type can be used in mis
sion operations in multiple capacities. It can be used from 
the start to design spacecraft constraints and payload, by 
evaluating each of the potential designs against possible en
vironments and comparing results. It can be used on the 
ground to perform mission planning and during flight to 
quickly develop new schedules based on changing domains 
or spacecraft deterioration. Environmental constraints for 
the spacecraft, such as the density or temperature of the sur
face for a lander, can be determined when they are available 
to the spacecraft. These constraints can be used to update 
the model of the environment, and adaptive problem solv
ing can be used to efficiently determine the optimal plan
ning heuristics for the current environment. 

Empirical Evaluation 
We claim that hypothesis adaptation can efficiently find a 
better set of hypotheses in a given domain. In this sec
tion we provide evidence that in practice, these methods 
can generate heuristic sets superior to those generated by 
model experts. 

The test of real-world applicability is based on two do
mains related to planned space missions, using the ASPEN 
planning and scheduling system. The original set of hy
potheses that is used is the set of heuristic combinations 
currently in use in these and related models. We hope this 
illustrates how this type of method can be useful in real
world domains, by improving on control strategies already 
in use or updating the strategies to handle domain shifts. 

Evaluation 
New Millennium EO-1 Domain - New Millennium Earth 
Observer 1 (EO-I) is an earth imaging satellite featuring 
an advanced multi-spectral imaging device. EO-l mission 
operations consists of managing spacecraft operability con
straints (power, thermal, pointing, buffers, consumables, 
telecommunications, etc.) and science goals (imaging of 
specific targets within particular observation parameters). 
The EO-l domain models the operations of the EO-l op
erations for a two-day horizon (Sherwood et al. 1998). It 
consists of 14 resources, 10 state variables and 38 differ
ent activity types. Each EO-l problem instance includes 
a randomly generated, fixed profile that represents typi
cal weather and instrument pattern. Each problem also in
cludes 3 to 16 randomly placed instrument requests for ob
servations and calibrations, and between 50 and 175 com
munications satellite passes. 

The score for EO-l includes preferences for more cali
brations and observations, earlier start times for the obser
vations, fewer solar array and aperture manipulations, lower 
maximum value over the entire horizon for the solar array, 
and higher levels of propellant. 

Applying the quantile-quantile (Q-Q) test to the EO-l 
hypotheses shows that they are very likely normal distribu
tions. The Q-Q test compares the quantiles of the samples 
with a normal distribution, and departures in linearity of the 
resulting plot show how the samples differ from a normal 
distribution. Results of applying the Q-Q test to these two 
domains are shown in (Gratch & DeJong 1994). 

Figures 4 and 5 show scores of the generated heuristic 
combinations over 35 cycles of the search algorithms. Al
though the curves for the scores of the two different search 
algorithms are different, the percentage of improvement for 
the high scoring hypothesis within each cycle is similar 
(128% for the linear search compared with 147% for the 
genetic algorithm). The percentage improvement for the 
mean score is somewhat greater, 161% for the genetic al
gorithm compared with 116% for the linear search. The 
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Figure 5: EO-l model search iteration maximum and aver· 
age scores for 35 iterations of the genetic algorithm search. 

high scoring heuristic combinations are also somewhat dif
ferent: the local search hypotheses use a significantly lower 
percentage of random heuristics than the genetic algorithm 
hypotheses, illustrating two different local maxima in the 
search space. 

New Millennium Space Technologies Four Landed Opera· 
tions Domain- The ST-4 domain models the landed oper· 
ations of a spacecraft designed to land on a comet and re· 
tum a sample to earth. This model has 6 shared resources, 6 
state variables, and 22 activity types. Resources and states 
include battery level, bus power, communications, orbiter· 
in-view, drill location, drill state, oven states for a primary 
and backup oven state, camera state, and RAM. There are 
two activity groups that correspond to different types of ex· 
periments: mining and analyzing a sample, and taking a 
picture. Each STA problem instance includes a randomly 
generated, fixed profile that represents communications vis
ibility to the orbiting spacecraft. Each problem also in· 
cludes between 1 and 11 mining activities and between 1 
and 24 picture experiments at random start times. 
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Figure 6: STA model current iteration maximum and aver· 
age scores for 30 genetic algorithm generations. 

The preferences for ST-4 include more imaging, more 
mining, higher average battery power, fewer drill move· 
ments, and fewer uplinks. 

Based on the Q.Q test, hypotheses from the STA domain 
are likely to be normally distributed, and thus provides a 
good model for adaptive problem solving (Gratch & De· 
Jong 1994). Graph 6 shows the mean and high scores of 
the generated heuristic combinations over 25 cycles of the 
search algorithms. The high score reaches a maximum im
provement of 14%, and the mean score has a maximum im
provement of 18%. 

Related Work 

Evaluating control strategies is a growing research topic. 
Horvitz originally described a method for evaluating al
gorithms based on a cost versus quality tradeoff (Horvitz 
1988). Russell, Subramanian, and Parr used dynamic pro· 
gramming to rationally select among a set of control strate· 
gies by estimating utility (which includes cost) (Russell et 
al. 1993). The MULTI·TAC system considers all k-wise 
combinations of heuristics for solving a CSP in its evalu· 
ation which also avoids problems with local maxima, but 
at a large expense to the search (Minton 1996). Fink de· 
scribes a method that sets time bounds for selection as 
opposed to parameter estimation accuracy, since sampling 
time is not large enough to attempt to minimize the num· 
ber of samples (Fink 1998). Previous articles describing 
adaptive problem solving have developed general meth· 
ods have been developed for transforming a standard prob· 
lem solver into an adaptive one(Gratch & Dejong 1992; 
1996), illustrated the application of adaptive problem solv· 
ing to real world scheduling problems (Gratch & Dejong 
1996), and showed how adaptive problem solving can be 
cast as a resource allocation problem (Gratch & Dejong 
1994). We expand on these topics by evaluating different 
methods for generating hypotheses which can be used in 
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adaptive problem solving to efficiently estimate their utility 
and cost, considered separately. 

Future Work 
In the area of adaptive problem solving, additional work 
has been proposed for the stopping criteria, which can be 
resource bounded (specifically, time as a resource) instead 
of a relaxation of the ranking requirement, as in previous 
works on similar topics (Fink 1998). Different methods of 
combining heuristics could be applied to problems of this 
type. One method is composite strategies, from operations 
research, which involve logical decisions about the rela
tive usage of heuristics as opposed to statistical methods. 
Another method is a portfolio approach, which combines 
heuristics in a method similar to a financial portfolio. 

Current results do not indicate any direct benefit to us
ing either local beam search or genetic algorithms over 
the alternative. In order to predict an effective search al
gorithm for each environment, it would be useful to gen
erate a landscape of the utilities for the hypothesis space 
(Wolpert 1996), and choose the appropriate search al
gorithm for the environment. Previous work has been 
done in deterministic landscape generation (Wolpert 1996; 
Whitley 1995), but no practical work has been done in 
stochastic landscape generation, which is what this domain 
requires. 

Conclusions 
This paper outlines different methods for adapting control 
strategies using adaptive problem solving, with the goal of 
finding a control strategy or set of control strategies that 
performs well in the given planning and scheduling envi
ronment. The purpose is validated in all three planning 
and scheduling domains, by showing significant overall im
provement in the generated plans. These results are signif
icant in showing that autonomous spacecraft planning and 
scheduling is becoming a realistic option for missions to 
unknown environments. 
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